Mathematics Wiskunde

Friday 13 September 2019

A p-adic analogue of Siegel's theorem on sums of squares.

Speaker: Dr Sylvy Anscombe, University of Central Lancashire
Time: 14:00
Venue: Mathematics, Room 1005

Siegel proved that every totally positive element of a number field K is the sum of four squares, so in particular the Pythagoras number is uniformly bounded across number fields. The p-adic Kochen operator provides a p-adic analogue of squaring, and a certain localisation of the ring generated by this operator consists of precisely the totally p-integral elements of K. We use this to formulate and prove a p-adic analogue of Siegel’s theorem, by introducing the p-Pythagoras number of a general field, and showing that this number is uniformly bounded across number fields. We also generally study fields with finite p-Pythagoras number and show that the growth of the p-Pythagoras number in finite extensions is bounded.