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For a field K containing 1
2 , we exhibit two matrices in the full 

n × n matrix algebra Mn(K) which generate Mn(K) as a Lie 
K-algebra with the commutator Lie product. We also study 
Lie centralizers of a not necessarily commutative unitary 
algebra and obtain results which we hope will eventually be 
a step in the direction of, firstly, proving that, for any field 
K, a Lie-nilpotent K-subspace (or a Lie K-subalgebra) of 
a finite-dimensional associative algebra over K of index k
(say), generates a Lie-nilpotent associative subalgebra of much 
higher nilpotency index, and secondly, in consideration of the 
sharp upper bound for the maximum (K-)dimension of a Lie-
nilpotent K-subalgebra of Mn(K) of index k obtained in [13], 
finding an upper bound for the maximum dimension of a Lie-
nilpotent (of index k) Lie K-subalgebra of Mn(K). Finally, the 
constructive elementary proof of the Skolem-Noether theorem 
for the matrix algebra Mn(K) in [14], in conjunction with the 
well-known characterization of Lie automorphisms of Mn(K)
(if the characteristic of K is different from 2 and 3) in terms 
of, amongst others, automorphisms and anti-automorhisms 
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of Mn(K), leads us to a unifying approach to constructively 
describe automorphisms and anti-automorphisms of Mn(K).

© 2021 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Throughout the paper an algebra R means a not necessarily commutative unitary 
algebra over a field K. In many of the results K can be replaced by a commutative 
unitary ring satisfying certain mild extra conditions. The centralizer of an element a ∈
R is denoted by Cen(a) = {r ∈ R : ra = ar}, and the center of R is denoted by 
Z(R) = {r ∈ R : rs = sr for all s ∈ R}. Clearly, Z(R) ⊆ Cen(a) are K-subalgebras of R.

We start with the following simple observation.

1.1. Proposition. If the elements a1, a2, . . . , at ∈ R generate R as an associative algebra, 
then the intersection of their centralizers is trivial, i.e.,

Cen(a1) ∩ Cen(a2) ∩ · · · ∩ Cen(at) = Z(R).

The full n ×n matrix algebra over K is denoted by Mn(K). The standard matrix unit 
in Mn(K) with 1 in the (i, j) position and zeros in all other positions is denoted by Ei,j, 
and In denotes the n × n identity matrix.

The fact that Mn(K) can be generated as a K-algebra by the two matrices En,1 and

S := E1,2 + E2,3 + · · · + En−1,n,

i.e.,

Mn(K) = 〈E1,1, S〉K , (1.1)

played a prominent role in [14], in which a constructive elementary proof of the Skolem-
Noether theorem (see, e.g., [3], [9] and [12]) for the matrix algebra Mn(K), with K any 
field, was given. To be more precise, given a K-automorphism ϕ of Mn(K), an invertible 
matrix A ∈ Mn(K) yielding the conjugation,

ϕ(X) = AXA−1

for all X ∈ Mn(K), was constructed from only the two ϕ-images ϕ(En,1) and ϕ(S) of 
the matrices En,1 and S, respectively, and a nonzero vector a in the kernel of the matrix 
In −

(
ϕ(S)

)n−1
ϕ(En,1) ∈ Mn(K), as follows:

A=
[(
ϕ(S)

)n−1
ϕ(En,1)a|

(
ϕ(S)

)n−2
ϕ(En,1)a|· · ·|ϕ(S)ϕ(En,1)a|ϕ(En,1)a

]
. (1.2)



494 S. Homolya et al. / Journal of Algebra 573 (2021) 492–508
A Lie automorphism ψ of a K-algebra R is a one-to-one K-linear map from R onto 
itself which preserves the commutator Lie product (also called the Lie bracket in the 
literature), i.e.,

ψ([x, y]) = [ψ(x), ψ(y)],

equivalently,

ψ(xy − yx) = ψ(x)ψ(y) − ψ(y)ψ(x),

for all x, y ∈ R. We note that Mn(K) with the commutator Lie product plays an excep-
tional role in the theory of finite-dimensional Lie algebras. The fundamental Ado-Iwasava 
theorem (see [5]) asserts that every finite-dimensional Lie K-algebra can be embedded 
into Mn(K) for some n ≥ 1.

If K is any field of characteristic different from 2 and 3, then (see, e.g., [4], [6], [7] and 
[8]) every Lie automorphism ψ of Mn(K) can be presented as a sum

ψ = σ + τ, (1.3)

where σ is either an automorphism of Mn(K) (as a K-algebra) or the negative of an anti-
automorphism of Mn(K), and τ is an additive mapping from Mn(K) to K which maps 
commutators into zero. In the light of this significant result we apply (1.2) in Section 4, 
where we present a unifying approach to constructively describe automorphisms and 
anti-automorphisms of the ring Mn(K).

First we show in Section 2, in a vein similar to [14], that if 12 ∈ K, then the matrix E1,1
and the permutation matrix P = S + En,1 generate Mn(K) as a Lie K-algebra.

In Section 3 we study Lie centralizers in a (not necessarily commutative) unitary 
algebra R. We obtain results which we hope will eventually pave the way towards, firstly, 
proving that a Lie-nilpotent K-subspace (or a Lie K-subalgebra) of a finite-dimensional 
associative algebra over K of index k (say), for any field K, generates a Lie-nilpotent 
associative subalgebra (of much higher nilpotency index), and secondly, finding an upper 
bound (perhaps even a sharp upper bound) for the maximum dimension of a Lie-nilpotent 
(of index k) Lie K-subalgebra of Mn(K) (see Conjecture 3.9). In this context the sharp 
upper bound for the maximum dimension of a Lie-nilpotent K-subalgebra of Mn(K) of 
index k ≥ 1 is important (see [13]).

2. Two matrices generating Mn(K) as a Lie K-algebra if 1
2 ∈ K

We shall make use of the well known multiplication rule for standard matrix units:

Ei,jEk,l =
{

Ei,l, if j = k;
0, if j �= k.
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The permutation matrix P ∈ Mn(K) is defined as follows:

P = E1,2 + E2,3 + · · · + En−1,n + En,1.

We now show that if 1
2 ∈ K, then Mn(K) can be generated as a Lie K-algebra by two 

matrices.

2.1. Theorem. If K contains 1
2 , then the matrices P and E1,1 generate Mn(K) as a Lie 

K-algebra with the commutator Lie product.

Proof. Let G = 〈P,E1,1〉Lie denote the Lie K-subalgebra of Mn(K) generated by the 
matrices P and E1,1. Clearly,

E1,2 − En,1 = E1,1P − PE1,1 = [E1,1, P ] ∈ G

and

E1,2 + En,1 = E1,1(E1,2 − En,1) − (E1,2 −En,1)E1,1 = [E1,1, E1,2 − En,1] ∈ G

ensure that

E1,2 = 1
2

(
(E1,2 + En,1) + (E1,2 − En,1)

)
∈ G

and

En,1 = 1
2

(
(E1,2 + En,1) − (E1,2 −En,1)

)
∈ G.

Starting from E1,2 ∈ G, assume that E1,j ∈ G for some 2 ≤ j ≤ n − 1. Using

S = E1,2 + E2,3 + · · · + En−1,n = P −En,1 ∈ G,

we obtain that E1,j+1 = [E1,j , S] ∈ G. Therefore, it follows that

E1,1, E1,2, E1,3, . . . , E1,n ∈ G.

Next, starting from En,1 ∈ G, assume that Ei,1 ∈ G for some 3 ≤ i ≤ n. Now

Ei−1,1 − Ei,2 = SEi,1 −Ei,1S = [S,Ei,1] ∈ G

and

Ei,2 = Ei,1E1,2 − E1,2Ei,1 = [Ei,1, E1,2] ∈ G

give that
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Ei−1,1 = (Ei−1,1 − Ei,2) + Ei,2 ∈ G.

Consequently, we have that

En,1, En−1,1, . . . , E2,1, E1,1 ∈ G.

Finally, if i �= j, then

Ei,j = Ei,1E1,j − E1,jEi,1 = [Ei,1, E1,j ] ∈ G,

and if i = j, then

Ei,i = E1,1 + (Ei,1E1,i − E1,iEi,1) = E1,1 + [Ei,1, E1,i] ∈ G.

Thus we have that Ei,j ∈ G for all 1 ≤ i, j ≤ n, and so G = Mn(K). �
2.2. Remark. We note that, in the above theorem, K can be any commutative unitary 
ring such that 1

2 ∈ K. Another observation is that the Lie generation of Mn(K) is much 
stronger than the associative generation. Indeed, E1,1 = SE2,1 implies that S and E2,1
also generate Mn(K) as an associative K-algebra. Since S and E2,1 have zero traces, it 
follows that all matrices in 〈S,E2,1〉Lie have zero traces and 〈S,E2,1〉Lie �= Mn(K).

3. The Lie centralizer

For a sequence x1, x2, . . . , xm of elements in a not necessarily commutative unitary 
algebra R over (a field) K we use the notation [x1, x2, . . . , xm]m for the left normed 
commutator (or Lie) product:

[x1]1 = x1 and [x1, x2, . . . , xm]m = [. . . [[x1, x2], x3], . . . , xm].

The k-th Lie centralizer of a subset H ⊆ R is

Lk(H) =
{
r ∈ R : [r, x1, . . . , xk]k+1 = 0 for all xi ∈ H, 1 ≤ i ≤ k

}
,

a K-subspace (submodule) of R.
As a consequence of [rs, x1] = [r, sx1] + [s, x1r], we can see that the containment

{shr : s, r ∈ R and h ∈ H} ⊆ H

implies that Lk(H) is a (unitary) K-subalgebra of R. Clearly,

∩
h∈H

Cen(h) = L1(H) ⊆ L2(H) ⊆ · · · ⊆ Lk(H) ⊆ Lk+1(H) ⊆ · · ·

follows from



S. Homolya et al. / Journal of Algebra 573 (2021) 492–508 497
[r, x1, . . . , xk, xk+1]k+2 = [[r, x1, . . . , xk]k+1, xk+1].

The ω-Lie centralizer of H ⊆ R is defined as

Lω(H) =
∞
∪

k=1
Lk(H).

A subset H ⊆ R is called Lie-nilpotent of index k ≥ 1 if H ⊆ Lk(H). A natural further 
step is the following: H is called ω-Lie-nilpotent (or almost Lie-nilpotent) if H ⊆ Lω(H).

3.1. Proposition. If r ∈ Lk(H) and 1 ≤ j ≤ k, then

[x1, . . . , xj , r, xj+1, . . . , xk]k+1 = 0

for all xi ∈ H, 1 ≤ i ≤ k.

Proof. It is a well known consequence of the Jacobian identity that, in any Lie ring, 
[x1, . . . , xj , r]j+1 can be written as a sum of 2j−1 terms of the form

±[r, xπ(1), . . . , xπ(j)]j+1,

where π is some permutation of {1, 2, . . . , j}. We note that an easy induction on j works. 
It follows that [x1, . . . , xj , r, xj+1, . . . , xk]k+1 can be written as a sum of 2j−1 terms of 
the form

±[r, xπ(1), . . . , xπ(j), xj+1, . . . , xk]k+1,

whence [x1, . . . , xj , r, xj+1, . . . , xk]k+1 = 0 follows. �
3.2. Proposition. If Lk(H) = Lk+1(H), then Lk+1(H) = Lk+2(H).

Proof. For the elements x1 ∈ H and r ∈ Lk+2(H) we have

[[r, x1], x2, . . . , xk+2]k+3 = [r, x1, . . . , xk+2]k+3 = 0

for all xi ∈ H, 2 ≤ i ≤ k + 2. Thus we obtain that [r, x1] ∈ Lk+1(H) for all x1 ∈ H, 
whence [r, x1] ∈ Lk(H) and

[r, x1, . . . , xk+1]k+2 = [[r, x1], x2, . . . , xk, xk+1]k+1 = 0

follow for all xi ∈ H, 1 ≤ i ≤ k + 1. In view of the above argument, r ∈ Lk+1(H) and 
Lk+2(H) = Lk+1(H) can be derived. �
3.3. Proposition. Let R be a finite-dimensional algebra over a field K with dimK(R) = d. 
Then for any subset H ⊆ R we have Lω(H) = Ld(H).
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Proof. The finite-dimensionality of R implies that

{0} ⊆ L1(H) ⊆ L2(H) ⊆ · · · ⊆ Lk(H) ⊆ Lk+1(H) ⊆ · · ·

cannot be a strictly ascending infinite chain of K-subspaces. In view of Proposition 3.2, 
the shape of the above chain is

{0} ⊂ L1(H) ⊂ L2(H) ⊂ · · · ⊂ Lt(H) = Lt+1(H) = Lt+2(H) = · · ·

for some t ≥ 1 (notice that 1R ∈ L1(H)). Now

t ≤ dimK

(
Lt(H)

)
≤ dimK(R) = d

and Lω(H) = Ld(H) follows. �
3.4. Corollary. Let R be a finite-dimensional algebra over a field K such that dimK(R) =
d. If H ⊆ R is ω-Lie-nilpotent, then H is Lie-nilpotent of index d.

3.5. Theorem. For any subset H ⊆ R, we have Lp(H)Lq(H) ⊆ Lp+q−1(H) for all p, q ≥
1, and Lω(H) is a K-subalgebra of R.

Proof. Using an induction on k ≥ 1, we prove that for all r, s, x1, . . . , xk ∈ R,

[rs, x1, . . . , xk]k+1 =
∑

1≤i1<i2<···<it≤k
j1<j2<···<jk−t

[r, xi1 , . . . , xit ]t+1 · [s, xj1 , . . . , xjk−t
]k−t+1, ∗(k)

where the sum is taken over all strictly increasing sequences

1 ≤ i1 < i2 < · · · < it ≤ k and 1 ≤ j1 < j2 < · · · < jk−t ≤ k,

with 0 ≤ t ≤ k and

{j1, j2, . . . , jk−t} = {1, 2, . . . , k}� {i1, i2, . . . , it}.

In the above the empty and the full sequences are allowed with [r, ∅]0+1 = r and 
[s, ∅]0+1 = s.

If k = 1, then

[rs, x1]2 = [rs, x1] = r[s, x1] + [r, x1]s = [r,∅]1 · [s, x1]2 + [r, x1]2 · [s,∅]1

is well known.
Assume that ∗(k) holds for some k ≥ 1. We use

[ab, xk+1] = a[b, xk+1] + [a, xk+1]b
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repeatedly in the following calculations:

[rs, x1, . . . , xk, xk+1]k+2 = [[rs, x1, . . . , xk]k+1, xk+1]

=

⎡
⎢⎢⎣
⎛
⎜⎜⎝ ∑

1≤i1<i2<···<it≤k
j1<j2<···<jk−t

[r, xi1 , . . . , xit ]t+1 · [s, xj1 , . . . , xjk−t
]k−t+1

⎞
⎟⎟⎠ , xk+1

⎤
⎥⎥⎦

=
∑

1≤i1<i2<···<it≤k
j1<j2<···<jk−t

[
[r, xi1 , . . . , xit ]t+1 · [s, xj1 , . . . , xjk−t

]k−t+1, xk+1
]

=

⎛
⎜⎜⎝ ∑

1≤i1<i2<···<it≤k
j1<j2<···<jk−t

[r, xi1 , . . . , xit ]t+1 · [[s, xj1 , . . . , xjk−t
]k−t+1, xk+1]

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝ ∑

1≤i1<i2<···<it≤k
j1<j2<···<jk−t

[[r, xi1 , . . . , xit ]t+1, xk+1] · [s, xj1 , . . . , xjk−t
]k−t+1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ ∑

1≤i1<i2<···<it≤k
j1<j2<···<jk−t

[r, xi1 , . . . , xit ]t+1 ·
[
s, xj1 , . . . , xjk−t

, xk+1
]
k−t+2

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝ ∑

1≤i1<i2<···<it≤k
j1<j2<···<jk−t

[r, xi1 , . . . , xit , xk+1]t+2 · [s, xj1 , . . . , xjk−t
]k−t+1

⎞
⎟⎟⎠

=
∑

1≤i′1<i′2<···<i′m≤k+1
j′1<j′2<···<j′(k+1)−m

[r, xi′1 , . . . , xi′m ]m+1 · [s, xj′1 , . . . , xj′(k+1)−m
]k−m+2. ∗(k + 1)

The last equality is a consequence of the fact that a strictly increasing sequence 1 ≤ i′1 <

i′2 < · · · < i′m ≤ k + 1 can appear either as

1 ≤ i′1 = i1 < i′2 = i2 < · · · < i′m = it ≤ k (with m = t)

or as

1 ≤ i′1 = i1 < i′2 = i2 < · · · < i′m−1 = it < i′m = k + 1 (with m = t + 1).

If r ∈ Lp(H), s ∈ Lq(H), x1, . . . , xp+q−1 ∈ H and 0 ≤ t ≤ p + q − 1, then either p ≤ t

or q ≤ (p + q − 1) − t, and each summand in
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[rs, x1, . . . , xp+q−1]p+q

=
∑

1≤i1<i2<···<it≤p+q−1
j1<j2<···<jk−t

[r, xi1 , . . . , xit ]t+1 · [s, xj1 , . . . , xj(p+q−1)−t
]p+q−t

is zero. Indeed, if p ≤ t, then r ∈ Lp(H) implies that [r, xi1 , . . . , xit ]t+1 = 0, and if 
q ≤ (p + q − 1) − t, then s ∈ Lq(H) implies that

[s, xj1 , . . . , xj(p+q−1)−t
]p+q−t = 0.

It follows that rs ∈ Lp+q−1(H).
Since Lp+q−1(H) ⊆ Lω(H), we derive that Lω(H) is a K-subalgebra of R. �

3.6. Remark. A property P which is defined for any finite sequence x1, . . . , xm of elements 
in R is called hereditary if P holds for any subsequence xi1 , . . . , xit with 1 ≤ i1 < i2 <

· · · < it ≤ m. Two typical examples are D and L. For a sequence x1, . . . , xm ∈ R the 
meaning of D is that the elements x1, . . . , xm are distinct and the meaning of L is that 
the elements x1, . . . , xm are linearly independent over the base field K.

The k-th Lie centralizer of a subset H ⊆ R with respect to the property P is

LP
k (H)={r∈R : [r, x1, . . . , xk]k+1 =0 for all x1, . . . , xk ∈ H having property P}.

Using the same calculations as in the above proof, the following interesting (and probably 
far reaching) generalization of Theorem 3.5 can be obtained: If P is a hereditary property, 
then for any subset H ⊆ R, we haveLP

p (H)LP
q (H) ⊆ LP

p+q−1(H) (and the union LP
ω (H) =

∪∞
k=1LP

k (H) is a K-subalgebra of R).

3.7. Remark. Unfortunately we were not able to prove the following:
Let R be a finite-dimensional algebra over a field K with dimK(R) = d. If V ⊆ R is 

a Lie-nilpotent K-subspace (or a Lie K-subalgebra) of index k ≥ 1, then the associative
K-subalgebra 〈V 〉K of R generated by V is Lie-nilpotent of index f(k, d).

The main result in [13] states that if K is any field and R is any Lie-nilpotent K-
subalgebra of Mn(K) of index k ≥ 1, then

dimK(R) ≤ g(k + 1, n),

where g(k + 1, n) is the maximum of

1
2

(
n2 −

k+1∑
i=1

n2
i

)
+ 1,

subject to the constraint 
∑k+1

i=1 ni = n, with n1, n2, ..., nk+1 non-negative integers. To be 
precise:
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3.8. Theorem (see [13]). If R is a Lie-nilpotent K-subalgebra of Mn(K) of index k ≥ 1, 
with (according to the Division Algorithm)

n = (k + 1)
⌊

n

k + 1

⌋
+ r, 0 ≤ r < k + 1,

then

1
2

(
n2 − (k + 1 − r)

⌊
n

k + 1

⌋2

− r

(⌊
n

k + 1

⌋
+ 1

)2
)

+ 1

is a sharp upper bound for dimK(R).

Using Theorem 3.8 and the statement formulated in Remark 3.7 we had hoped that we 
would be able to obtain an upper bound for the maximum dimension of a Lie nilpotent 
(of index k) Lie K-subalgebra of the full matrix algebra Mn(K). To be more precise, 
we had been hopeful that the foregoing results would lead to a proof of the following 
conjecture, but unfortunately we fell short:

3.9. Conjecture. If L ⊆ Mn(K) is an ω-Lie-nilpotent Lie K-subalgebra, then dimK(L) ≤
1 + 1

2 (n2 − n).

4. A unifying approach to constructively describe automorphisms and 
anti-automorphisms of matrix algebras

Evidence in the literature is abundant for the importance of automorphisms and anti-
automorphisms of a matrix ring Mn(K) over a field K. We apply (1.2) in this section 
by presenting a unifying approach to constructively describe automorphisms and anti-
automorphisms of Mn(K).

In particular, first consider the following setting: for an automorphism f of a field K, 
i.e., for f ∈ Aut(K), and for any X ∈ Mn(K), let Xf denote the matrix obtained from 
X by applying f entrywise, i.e., Xf = [xi,j ]f = [f(xi,j)], and let B be any invertible 
matrix in Mn(K). Then the function β : Mn(K) → Mn(K), defined by

β(X) = BXfB
−1

for all X ∈ Mn(K), is a ring automorphism of Mn(K), but it needs not be a K-
automorphism of Mn(K). In fact, it is easily verified that β is a K-automorphism 
of Mn(K) if and only if f is the identity automorphism of K. Nevertheless, we obtain 
the following constructive description in the above vein (see also [11, Corollary 1.2]):

4.1. Proposition. Let f ∈ Aut(K) (K any field), let B be any invertible matrix in Mn(K), 
and let β : Mn(K) → Mn(K) be the function defined by
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β(X) = BXfB
−1

for all X ∈ Mn(K). Then

β(X) = BXfB
−1

for all X ∈ Mn(K), where B ∈ Mn(K) is the invertible matrix

B =
[(
β(S)

)n−1
β(En,1)b|

(
β(S)

)n−2
β(En,1)b| · · · |β(S)β(En,1)b|β(En,1)b

]
,

and b is a nonzero vector in the kernel of In −
(
β(S)

)n−1
β(En,1) ∈ Mn(K).

Proof. Since

β(Xf−1) = BXB−1

for all X ∈ Mn(K), it follows that α : Mn(K) → Mn(K), defined by

α(X) = β(Xf−1)

for all X ∈ Mn(K), is indeed a K-automorphism of Mn(K). Hence, by (1.2), we can 
constructively find an invertible matrix B (say) in Mn(K) such that

α(X) = BXB
−1

for all X ∈ Mn(K), where B ∈ Mn(K) is the invertible matrix

B =
[(
α(S)

)n−1
α(En,1)b|

(
α(S)

)n−2
α(En,1)b| · · · |α(S)α(En,1)b|α(En,1)b

]
,

with b a nonzero vector in the kernel of the matrix In −
(
α(S)

)n−1
α(En,1) in Mn(K). 

Since α(S) = β(Sf−1) and α(En,1) = β
(
(En,1)f−1

)
, and since every entry of S and En,1

is 0 or 1, with f ∈ Aut(K), we have that α(S) = β(S) and α(En,1) = β(En,1). Therefore,

β(X) = β
(
(Xf )f−1

)
= α(Xf ) = BXfB

−1

for all X ∈ Mn(K), where

B =
[(
β(S)

)n−1
β(En,1)b|

(
β(S)

)n−2
β(En,1)b| · · · |β(S)β(En,1)b|β(En,1)b

]
,

with b a nonzero vector in the kernel of In −
(
β(S)

)n−1
β(En,1) ∈ Mn(K). �

For our purposes we state explicitly a result from [11], using our notation:
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4.2. Corollary ([11, Corollary 1.2]). Let K be an arbitrary field, and let φ : Mn(K) →
Mn(K) be a bijective additive function satisfying φ(XY ) = φ(X)φ(Y ) for all X, Y ∈
Mn(K). Then there exists an automorphism f of the field K and an invertible matrix 
A ∈ Mn(K) such that

φ(X) = AXfA
−1

for all X ∈ Mn(K).

Next, combining Proposition 4.1 and Corollary 4.2, and denoting the transpose of 
a matrix X ∈ Mn(K) by X�, we also obtain the following constructive and explicit 
description of an invertible matrix yielding any anti-automorphism of Mn(K). In this 
regard it is noteworthy that, just as S and En,1 generate Mn(K) as a K-algebra, so do 
their transposes S� and E1,n, respectively.

4.3. Theorem. If φ is a ring anti-automorphism of Mn(K), then

φ(X) = AX�
f A

−1

for all X ∈ Mn(K), where A ∈ Mn(K) is the invertible matrix

A =
[(
φ(S�)

)n−1
φ(E1,n)a|

(
φ(S�)

)n−2
φ(E1,n)a| · · · |φ(S�)φ(E1,n)a|φ(E1,n)a

]
,

with a a nonzero vector in the kernel of In −
(
φ(S�)

)n−1
φ(E1,n) ∈ Mn(K).

Proof. Let T denote the transposition map X �→ X� on Mn(K). Since T is also a ring 
anti-automorphism of Mn(K), the composition φ ◦ T is a ring automorphism of Mn(K), 
and so by Corollary 4.2, there is an automorphism f of K and an invertible matrix 
A ∈ Mn(K) such that

(φ ◦ T )(X) = AXfA
−1

for all X ∈ Mn(K). Hence, by Proposition 4.1,

(φ ◦ T )(X) = AXfA
−1

for all X ∈ Mn(K), where

A =
[(

(φ ◦ T )(S)
)n−1((φ ◦ T )(En,1)

)
a|
(
(φ ◦ T )(S)

)n−2((φ ◦ T )(En,1)
)
a| · · ·

· · · |
(
(φ ◦ T )(S)φ(En,1)

)
a|
(
(φ ◦ T )(En,1)

)
a
]

=
[(
φ(S�)

)n−1
φ(E1,n)a|

(
φ(S�)

)n−2
φ(E1,n)a| · · ·
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· · · |φ(S�)φ(E1,n)a|φ(E1,n)a
]
.

(Here S� = E2,1 + E3,2 + · · · + En,n−1, and a is a nonzero vector in the kernel of 
In −

(
φ(S�)

)n−1
φ(E1,n).)

In particular,

(φ ◦ T )(X�) = AX�
f A−1,

i.e.,

φ(X) = AX�
f A−1

for all X ∈ Mn(K). �
We illustrate the construction of Ā in Theorem 4.3 with the (canonical) symplectic 

involution as a special case of an anti-automorphism φ.

4.4. Example. Consider the symplectic involution φ on M8(K) (see, e.g., [1] or [10]), i.e., 
φ is the anti-automorphism of M8(K) defined by

φ

([
U P

Q V

])
=
[

V � −P�

−Q� U�

]

for all U, V, P, Q ∈ M4(K). In order to construct A above, we need certain powers of 
φ(S�). Since S� = E2,1 + E3,2 + · · · + E8,7, we have

(S�)2 = E3,1 + E4,2 + E5,3 + E6,4 + E7,5 + E8,6,

(S�)3 = E4,1 + E5,2 + E6,3 + E7,4 + E8,5,

(S�)4 = E5,1 + E6,2 + E7,3 + E8,4,

(S�)5 = E6,1 + E7,2 + E8,3,

(S�)6 = E7,1 + E8,2,

(S�)7 = E8,1,

and so

φ(S�) = E1,2 + E2,3 + E3,4 + E5,6 + E6,7 + E7,8 − E8,1,(
φ(S�)

)2 = E1,3 + E2,4 + E5,7 + E6,8 −E7,1 − E8,2,(
φ(S�)

)3 = E1,4 + E5,8 − E6,1 − E7,2 −E8,3,(
φ(S�)

)4 = −E5,1 −E6,2 −E7,3 − E8,4,
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(
φ(S�)

)5 = −E5,2 −E6,3 − E7,4,(
φ(S�)

)6 = −E5,3 −E6,4,(
φ(S�)

)7 = −E5,4.

Hence, φ(S�)
)7
φ(E1,8) = (−E5,4)(−E4,5) = E5,5. Consequently, a := e5 is a nonzero 

vector in the kernel of

I8 − φ(S�)
)7
φ(E1,8) = E1,1 + E2,2 + E3,3 + E4,4 + E6,6 + E7,7 + E8,8.

(Here ej denotes the 8 × 1 column vector with 1 in position j, and with 0 elsewhere.) 
Therefore, since φ(E1,8)a = −E4,5e5 = −e4, the foregoing presentations of 

(
φ(S�)

)i
, i =

1, 2, . . . , 7, together with the construction of A in Theorem 4.3, yield

A =
[(
φ(S�)

)7
φ(E1,8)a|

(
φ(S�)

)6
φ(E1,8)a| · · · |φ(S�)φ(E1,8)a|φ(E1,8)a

]

=
[

0 −I4
I4 0

]
,

the latter being the negative of the matrix y on the last line of the first page of [10]. (Of 
course, AX�A

−1 = (λA)X�(λA)−1 for every 0 �= λ ∈ K.) This concludes the example.

Next, consider the setting following (1.2), with the only difference that the function 
β : Mn(K) → Mn(K) is defined by

β(X) = BX�
f B−1

for all X ∈ Mn(K) (instead of β(X) = BXfB
−1). Then, as before, β is a ring anti-

automorphism of Mn(K), but it needs not be a K-anti-automorphism of Mn(K). In this 
case we have the following result:

4.5. Corollary. Let f ∈ Aut(K) (K any field), let B be any invertible matrix in Mn(K), 
and let β : Mn(K) → Mn(K) be the function defined by

β(X) = BX�
f B−1

for all X ∈ Mn(K). Then

β(X) = BX�
f B

−1

for all X ∈ Mn(K), where B ∈ Mn(K) is the invertible matrix

B =
[(
β(S�)

)n−1
β(E1,n)b|

(
β(S�)

)n−2
β(E1,n)b| · · · |β(S�)β(E1,n)b|β(E1,n)b

]
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and b is a nonzero vector in the kernel of In −
(
β(S�)

)n−1
β(E1,n) ∈ Mn(K).

Proof. Since

β(Xf−1) = BX�B−1

for all X ∈ Mn(K), it follows that α : Mn(K) → Mn(K), defined by

α(X) = β(Xf−1)

for all X ∈ Mn(K), is a K-anti-automorphism of Mn(K). Hence, by Theorem 4.3, we 
can constructively find an invertible matrix B (say) in Mn(K) such that

α(X) = BX�B
−1

for all X ∈ Mn(K), where B ∈ Mn(K) is the invertible matrix

B=
[(
α(S�)

)n−1
α(E1,n)b|

(
α(S�)

)n−2
α(E1,n)b|· · ·|α(S�)α(E1,n)b|α(E1,n)b

]

and b is a nonzero vector in the kernel of the matrix In−
(
α(S�)

)n−1
α(E1,n) in Mn(K). 

We have α(S�) = β(S�
f−1) and α(E1,n) = β

(
(En,1)f−1

)
, and so, since every entry of 

both S� and E1,n is 0 or 1, and since f−1 ∈ Aut(K), we have that α(S�) = β(S�) and 
α(E1,n) = β(E1,n). Therefore,

β(X) = β
(
(Xf )f−1

)
= α(Xf ) = BX�

f B
−1

for all X ∈ Mn(K), where

B =
[(
β(S�)

)n−1
β(E1,n)b|

(
β(S�)

)n−2
β(E1,n)b| · · · |β(S�)β(E1,n)b|β(E1,n)b

]
,

with b a nonzero vector in the kernel of In −
(
β(S�)

)n−1
β(E1,n) ∈ Mn(K). �

Consider again (1.3). By Proposition 4.1, Corollary 4.2 and Theorem 4.3 we have 
an exact description of σ in (1.3) in the terms of the images of generators of Mn(K). 
Regarding τ , recall that it is an additive mapping from Mn(K) to K which maps com-
mutators into zero. With tr(X) denoting the trace of a matrix X in Mn(K), we have the 
following:

4.6. Proposition. Let τ be as in (1.3), and let X =
∑n

i,j=1 kijEi,j ∈ Mn(K). Then 
τ(X) = τ

(
tr(X) ·E1,1

)
.
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Proof. If i �= j, then [kijEi,j , Ej,j ] = kijEi,j , and so, since τ maps commutators to 
zero, we have τ(kijEi,j) = 0. Hence, τ(X) = τ

(∑n
i=1 kiiEi,i

)
. Note also that kiiEi,i =

[kiiEi,1, E1,i] + kiiE1,1 for every i, and so τ(kiiEi,i) = τ(kiiE1,1). Consequently,

τ(X) = τ

(( n∑
i=1

kii

)
E1,1

)
= τ

(
tr(X) · E1,1

)
. �

Unfortunately, we do not seem to be able to describe τ
(
tr(X) · E1,1

)
any better. In 

general, if ψ in (1.3) is not a Lie K-automorphism, then we do not necessarily have 
τ(tr(X) ·E1,1) = tr(X)τ(E1,1).

The following result by Dolinar et al. should be mentioned here:

4.7. Theorem (see [2]). Let K be a field, and let ψ : Mn(K) → Mn(K) be a bijective 
map which preserves the commutator Lie product. Then there is an invertible matrix 
T ∈ Mn(K), a field authomorphism f of K, and a function τ : Mn(K) → K, where 
τ(X) = 0 for all matrices of trace zero such that:

(i) for n ≥ 3 and K with a least 2n−1 elements, either

ψ(X) = TXfT−1 + τ(X)I for all X ∈ Mn(K),

or

ψ(X) = −T (Xf )�T−1 + τ(X)I for all X ∈ Mn(K);

(ii) for n = 2 and charK �= 2,

ψ(X) = TXfT−1 + τ(X)I for all X ∈ Mn(K).

Considering Theorem 4.7, we note that if we consider the functions

σ1, σ2 : Mn(K) → Mn(K),

defined by

σ1(X) = TXfT−1 and σ2(X) = −T (Xf )�T−1

for all X ∈ Mn(K), then by the foregoing constructions and considerations, σ1 is an 
automorphism of Mn(K) and σ2 is the negative of an anti-automorphism of Mn(K) (in 
both cases as rings), and as before, we have exact descriptions of them in the terms of 
generators of Mn(K). However, we know nothing more about τ .



508 S. Homolya et al. / Journal of Algebra 573 (2021) 492–508
Funding

The second author was partially supported by the National Research, Development 
and Innovation Office of Hungary (NKFIH) K119934.

The research of the fourth author was funded by the Polish National Science Centre 
Grant DEC-2017/25/B/ST1/00384.

Declaration of competing interest

There is no competing interest.

Acknowledgment

The authors thank the referee for helpful comments which improved the exposition of 
the paper.

References

[1] J. Dale Hill, Polynomial identities for matrices symmetric with respect to the symplectic involution, 
J. Algebra 349 (2012) 8–21.

[2] G. Dolinar, B. Kuzma, J. Marovt, Lie product preserving maps on Mn(F ), Filomat 31 (2017) 
5335–5344.

[3] P. Gille, T. Szamuely, Central Simple Algebras and Galois Cohomology, Cambridge Studies in 
Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, 2006.

[4] L.K. Hua, A theorem on matrices over a sfield and its applications, J. Chin. Math. Soc. (N. S.) 1 
(1951) 110–163.

[5] N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, vol. 10, Inter-
science Publishers (A Division of John Wiley & Sons, New York-London, 1962.

[6] W.S. Martindale III, Lie isomorphisms of primitive rings, Proc. Am. Math. Soc. 14 (1963) 909–916.
[7] W.S. Martindale III, Lie isomorphisms of simple rings, J. Lond. Math. Soc. 44 (1969) 213–221.
[8] W.S. Martindale III, Lie isomorphisms of prime rings, Trans. Am. Math. Soc. 142 (1969) 437–455.
[9] E. Noether, Nichtkommutative algebra, Math. Z. 37 (1933) 514–541.

[10] L.H. Rowen, U. Schild, A scalar expression for matrices with symplectic involution, Math. Comput. 
32 (1978) 607–613.

[11] P. Semrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006) 364–393.
[12] T. Skolem, Zur Theorie der assoziativen Zahlensysteme, Skr. Oslo 12 (1927) 50.
[13] J. Szigeti, J. van den Berg, L. van Wyk, M. Ziembowski, The maximum dimension of a Lie nilpotent 

subalgebra of Mn(F ) of index m, Trans. Am. Math. Soc. 372 (2019) 4553–4583.
[14] J. Szigeti, L. van Wyk, A constructive elementary proof of the Skolem-Noether theorem for matrix 

algebras, Am. Math. Mon. 124 (2017) 966–968.

http://refhub.elsevier.com/S0021-8693(21)00026-0/bib3DD26E38978BCDCD911AD79D8EBA446Cs1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib3DD26E38978BCDCD911AD79D8EBA446Cs1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib0567953871B1BF589B797D9B178D5A94s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib0567953871B1BF589B797D9B178D5A94s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib5C56327158C3A269BCFB4F950B68A5BAs1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib5C56327158C3A269BCFB4F950B68A5BAs1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib61F511F727B857A4B16547CA4E59A680s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib61F511F727B857A4B16547CA4E59A680s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib375EE26098B46E23BCB854331F0AD8C5s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib375EE26098B46E23BCB854331F0AD8C5s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bibF31E1EEF20F64733A18C538073E78396s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib9D8322530B67E2366E5B1BA67081DED9s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bibF1C6EB6F4E48EB34AB40B2987D4976A8s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib8D9C307CB7F3C4A32822A51922D1CEAAs1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bibC0916B02FC4CCF200D5FDE009FED1DF4s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bibC0916B02FC4CCF200D5FDE009FED1DF4s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib92634C58D9D04F5B8214A2DC99795D69s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib560879F81345572E739B0E3977C6F377s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bibCF8BB350A80F3B739F1DA461FFBBD14Fs1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bibCF8BB350A80F3B739F1DA461FFBBD14Fs1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib61B7709C7105451F6D278D7207F72F95s1
http://refhub.elsevier.com/S0021-8693(21)00026-0/bib61B7709C7105451F6D278D7207F72F95s1

	Lie properties in associative algebras
	1 Introduction and motivation
	2 Two matrices generating Mn(K) as a Lie K-algebra if 1/2∈K
	3 The Lie centralizer
	4 A unifying approach to constructively describe automorphisms and anti-automorphisms of matrix algebras
	Funding
	Declaration of competing interest
	Acknowledgment
	References


