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For an n × n matrix A over a Lie nilpotent ring R of index 
k, with k ≥ 2, we prove that an invariant “power” Cayley-
Hamilton identity(
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(2)
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λ
(2)
n2

)2k−2

= 0

of degree n22k−2 holds. The right coefficients λ(2)
i ∈ R, 0 ≤

i ≤ n2 are not uniquely determined by A, and the cosets λ(2)
i +

D, with D the double commutator ideal R[[R, R], R]R of R, 
appear in the so-called second right characteristic polynomial 
pA,2(x) of the natural image A of A in the n × n matrix 
ring Mn(R/D) over the factor ring R/D:

pA,2(x) = (λ(2)
0 + D) + (λ(2)

1 + D)x + · · · + (λ(2)
n2−1 + D)xn2−1

+ (λ(2)
n2 + D)xn2
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1. Introduction

The Cayley-Hamilton theorem and the corresponding trace identity play a fundamen-
tal role in proving classical results about the polynomial and trace identities of the n ×n

matrix algebra Mn(K) over a field K (see, for example, [2], [3] and [13]).
In case of char(K) = 0, Kemer’s pioneering work (see [5]) on the T-ideals of associative 

algebras revealed the importance of the identities satisfied by the n × n matrices over 
the Grassmann (exterior) algebra

E = K 〈v1, v2, ..., vi, ... | vivj + vjvi = 0 for all 1 ≤ i ≤ j〉

generated by the infinite sequence of anticommutative indeterminates (vi)i≥1.
Accordingly, the importance of matrices over non-commutative rings features promi-

nently in the theory of PI-rings; indeed, this fact has been obvious for a long time in 
other branches of algebra, for example, in the structure theory of semisimple rings. Thus 
any Cayley-Hamilton type identity for such matrices seems to be of general interest.

In the general case (when R is an arbitrary non-commutative ring with 1) Paré and 
Schelter proved (see [9]) that a matrix A ∈ Mn(R) satisfies a monic identity in which 
the leading term is Am for some large integer m, i.e., m ≥ 22n−1 . The other summands 
in the identity are of the form r0Ar1Ar2 · · · rl−1Arl, with left scalar coefficient r0 ∈ R, 
right scalar coefficient rl ∈ R and “sandwich” scalar coefficients r2, . . . , rl−1 ∈ R. An 
explicit monic identity for 2 × 2 matrices arising from the argument of [9] was given by 
Robson in [12]. Further results in this direction can be found in [10] and [11].

Obviously, by imposing extra algebraic conditions on the base ring R, we can expect 
“stronger” identities in Mn(R). A number of examples show that certain polynomial 
identities satisfied by R can lead to “canonical” constructions providing invariant Cayley-
Hamilton identities for A of degree much lower than 22n−1 .

If R satisfies the polynomial identity

[[[. . . [[x1, x2], x3], . . .], xk], xk+1] = 0

of Lie nilpotency of index k (with [x, y] = xy− yx), then for a matrix A ∈ Mn(R), a left 
(and right) Cayley-Hamilton identity of degree nk was constructed in [14] (see also [7]). 
Since E is Lie nilpotent of index k = 2, this identity for a matrix A ∈ Mn(E) is of 
degree n2.

In [1], Domokos considered a slightly modified version of the mentioned identity, in 
which the left (as well as the right) coefficients are invariant under the conjugate action 
of GLn(K) on Mn(E). For a 2 × 2 matrix A ∈ M2(E), the left scalar coefficients of 
this Cayley-Hamilton identity are expressed as polynomials (over K) of the traces tr(A), 
tr(A2) and tr(A3).

If 1
2 ∈ R and R satisfies the so-called weak Lie solvability identity

[[x, y], [x, z]] = 0,
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then for a 2 × 2 matrix A ∈ M2(R), a Cayley-Hamilton trace identity (of degree 4 in A) 
with sandwich coefficients was exhibited in [8]. If R satisfies the identity

[x1, x2, ..., x2s ]solv = 0

of general Lie solvability, then a recursive construction (also in [8]) gives a similar Cayley-
Hamilton trace identity (the degree of which depends on s) for a matrix A ∈ M2(R).

In the present paper we consider an n × n matrix A ∈ Mn(R) over a ring R (with 1) 
satisfying the identity

[[x1, y1], z1][[x2, y2], z2] · · · [[xt, yt], zt] = 0,

and we prove that an invariant “power” Cayley-Hamilton identity of the form

(
Inλ

(2)
0 + Aλ

(2)
1 + · · · + An2−1λ

(2)
n2−1 + An2

λ
(2)
n2

)t

= 0

holds, with certain right coefficients

λ
(2)
i ∈ R, 0 ≤ i ≤ n2 − 1, and λ

(2)
n2 = n

{
(n− 1)!

}1+n
,

which are only partially determined by A. The cosets λ(2)
i +D, with D the double com-

mutator ideal R[[R, R], R]R of R, appear in the second right characteristic polynomial 
pA,2(x) of the natural image A ∈ Mn(R/D) of A over the factor ring R/D:

pA,2(x) = (λ(2)
0 + D) + (λ(2)

1 + D)x + · · · + (λ(2)
n2−1 + D)xn2−1 + (λ(2)

n2 + D)xn2
.

We note that [[x1, y1], z1][[x2, y2], z2] · · · [[xt, yt], zt] = 0 is a typical identity of the ring 
Ut(R) of t ×t upper triangular matrices over a ring R satisfying the identity [[x, y], z] = 0
(i.e., Lie nilpotency of index 2).

Finally, using a theorem of Jennings (see [4]), we prove that if R is Lie nilpotent of 
index k, then an identity of the form

(
Inλ

(2)
0 + Aλ

(2)
1 + · · · + An2−1λ

(2)
n2−1 + An2

λ
(2)
n2

)2k−2

= 0 (∗)

holds for A ∈ Mn(R). The total degree of this identity (in A) is n22k−2, a much smaller 
integer than the degree nk of A in the right Cayley-Hamilton identity

Inλ
(k)
0 + Aλ

(k)
1 + · · · + Ank−1λ

(k)
nk−1 + Ank

λ
(k)
nk = 0 (∗∗)

arising from the k-th right characteristic polynomial

pA,k(x) = λ
(k)
0 + λ

(k)
1 x + · · · + λ

(k)
k xnk−1 + λ

(k)
k x

nk ∈ R[x]

n −1 n
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of A (see [14] and [16]). The advantage of (∗∗) is that all of the coefficients are on the 
right side of the powers of A, while the expansion of the power in (∗) yields a sum of 
products of the form Ai1λi1A

i2λi2 · · ·Aisλis , with s = 2k−2.
In order to provide a self-contained treatment, we present the necessary prerequisites 

in sections 2 and 3.

2. Some results on Lie nilpotent rings

Let R be a ring, and let [x, y] = xy − yx denote the additive commutator of the 
elements x, y ∈ R. It is well known that (R, +, [ , ]) is a Lie ring, [y, x] = −[x, y] and 
[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (the Jacobian identity).

For a sequence x1, x2, . . . , xk of elements in R we use the notation [x1, x2, . . . , xk]k for 
the left normed commutator (Lie-)product:

[x1]1 = x1 and [x1, x2, . . . , xk]k = [. . . [[x1, x2], x3], . . . , xk].

Clearly, we have

[x1, x2, . . . , xk, xk+1]k+1 = [[x1, x2, . . . , xk]k, xk+1] = [[x1, x2], x3, . . . , xk, xk+1]k.

A ring R is called Lie nilpotent of index k (or having property Lk) if

[x1, x2, . . . , xk, xk+1]k+1 = 0

is a polynomial identity on R. If R has property Lk, then [x1, x2, . . . , xk]k is central for 
all x1, x2, . . . , xk ∈ R.

A concise proof of Theorem 2.1 due to Jennings can be found in [17].

Theorem 2.1 ([4]). Let k ≥ 3 be an integer and R be a ring with Lk. Then

[x1, x2, . . . , xk]k · [y1, y2, . . . , yk]k = 0

for all xi, yi ∈ R, 1 ≤ i ≤ k. Thus the two-sided ideal

N = R
{
[x1, x2, . . . , xk]k | xi ∈ R, 1 ≤ i ≤ k

}
=

{
[x1, x2, . . . , xk]k | xi ∈ R, 1 ≤ i ≤ k

}
R

generated by the (central) elements [x1, x2, . . . , xk]k is nilpotent, with N2 = {0}.

Corollary 2.2 ([4]). If R is a ring with Lk (k ≥ 2), then the double commutator ideal

D = R[[R,R], R]R = {
∑

1≤i≤mri[[ai, bi], ci]si | ri, ai, bi, ci, si ∈ R, 1 ≤ i ≤ m} � R

is nilpotent, with D2k−2 = {0}.

Proof. This follows from Theorem 2.1 by an easy induction on k. �
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3. The Lie nilpotent Cayley-Hamilton theorem

A Lie nilpotent analogue of classical determinant theory was developed in [14]; further 
details can be found in [1], [15] and [16]. Here we present the basic definitions and results 
about the sequences of right determinants and right characteristic polynomials, including 
the so-called Lie nilpotent right Cayley-Hamilton identities.

Let R be an arbitrary (possibly non-commutative) ring or algebra with 1, and let

Sn = Sym({1, . . . , n})

denote the symmetric group of all permutations of the set {1, 2, . . . , n}. If A = [ai,j ] is 
an n × n matrix over R, then the element

sdet(A) =
∑

τ,ρ∈Sn

sgn(ρ)aτ(1),ρ(τ(1)) · · · aτ(t),ρ(τ(t)) · · · aτ(n),ρ(τ(n))

=
∑

α,β∈Sn

sgn(α)sgn(β)aα(1),β(1) · · · aα(t),β(t) · · · aα(n),β(n)

of R is called the symmetric determinant of A.
The (r, s)-entry of the symmetric adjoint matrix A∗ = [a∗r,s] of A is defined as follows:

a∗r,s =
∑
τ,ρ

sgn(ρ)aτ(1),ρ(τ(1)) · · · aτ(s−1),ρ(τ(s−1))aτ(s+1),ρ(τ(s+1)) · · · aτ(n),ρ(τ(n))

=
∑
α,β

sgn(α)sgn(β)aα(1),β(1) · · · aα(s−1),β(s−1)aα(s+1),β(s+1) · · · aα(n),β(n) ,

where the first sum is taken over all τ, ρ ∈ Sn with τ(s) = s and ρ(s) = r, while the 
second sum is taken over all α, β ∈ Sn with α(s) = s and β(s) = r. We note that the 
(r, s) entry of A∗ is exactly the signed symmetric determinant (−1)r+ssdet(As,r) of the 
(n − 1) × (n − 1) minor As,r of A arising from the deletion of the s-th row and the r-th 
column of A.

The trace tr(M) of a matrix M ∈ Mn(R) is the sum of the diagonal entries of M . 
In spite of the fact that the well known identity tr(AB) = tr(BA) is no longer valid for 
matrices A, B ∈ Mn(R) over a non-commutative R, we still have (see [16])

sdet(A) = tr(AA∗) = tr(A∗A).

If R is commutative, then sdet(A) = n!det(A) and A∗ = (n − 1)!adj(A), where det(A)
and adj(A) denote the ordinary determinant and adjoint, respectively, of A.

The right adjoint sequence (Pk)k≥1 of a matrix A ∈ Mn(R) is defined by the following 
recursion:

P1 = A∗ and Pk+1 = (AP1 · · ·Pk)∗
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for k ≥ 1. The k-th right adjoint of A is defined as

radj(k)(A) = nP1 · · ·Pk.

The k-th right determinant of A is the trace of AP1 · · ·Pk:

rdet(k)(A) = tr(AP1 · · ·Pk).

The following theorem shows that radj(k)(A) and rdet(k)(A) can play a role similar to 
that played by the ordinary adjoint and determinant, respectively, in the commutative 
case.

Theorem 3.1 ([14], [16]). If 1
n ∈ R and the ring R is Lie nilpotent of index k, then for 

a matrix A ∈ Mn(R) we have

Aradj(k)(A) = nAP1 · · ·Pk = rdet(k)(A)In.

The above Theorem 3.1 is not used explicitly in the sequel, however it helps our 
understanding and serves as a starting point in the proof of Theorem 3.3.

Let R[x] denote the ring of polynomials in the single commuting indeterminate x, 
with coefficients in R. The k-th right characteristic polynomial of A is the k-th right 
determinant of the n × n matrix xIn −A in Mn(R[x]):

pA,k(x) = rdet(k)(xIn −A).

Proposition 3.2 ([14], [16]). The k-th right characteristic polynomial pA,k(x) ∈ R[x] of 
A ∈ Mn(R) is of the form

pA,k(x) = λ
(k)
0 + λ

(k)
1 x + · · · + λ

(k)
nk−1x

nk−1 + λ
(k)
nk x

nk

,

where λ(k)
0 , λ(k)

1 , . . . , λ(k)
nk−1, λ

(k)
nk ∈ R and λ(k)

nk = n
{
(n − 1)!

}1+n+n2+···+nk−1

.

Theorem 3.3 ([14], [16]). If 1
n ∈ R and the ring R is Lie nilpotent of index k, then a 

right Cayley-Hamilton identity

(A)pA,k = Inλ
(k)
0 + Aλ

(k)
1 + · · · + Ank−1λ

(k)
nk−1 + Ank

λ
(k)
nk = 0

with right scalar coefficients holds for A ∈ Mn(R). We also have (A)u = 0, where 
u(x) = pA,k(x)h(x) and h(x) ∈ R[x] is arbitrary.

Theorem 3.4 ([1]). If 1
2 ∈ R and the ring R is Lie nilpotent of index 2, then for a 2 × 2

matrix A ∈ M2(R) the right Cayley-Hamilton identity in the above 3.3 can be written in 
the following trace form:
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(A)pA,2 = I2

(
1
2
tr4(A) + 1

2
tr2(A2) + 1

4
tr2(A)tr(A2) − 5

4
tr(A2)tr2(A) +

[
tr(A3), tr(A)

])

+ A
(
tr(A)tr(A2) + tr(A2)tr(A) − 2tr3(A)

)
+ A2

(
4tr2(A) − 2tr(A2)

)
−A3

(
4tr(A)

)
+ 2A4 = 0.

Corollary 3.5 ([1]). If 1
2 ∈ R and the ring R is Lie nilpotent of index 2, then, for every 

A ∈ M2(R),

tr(A) = tr(A2) = 0 imply that A4 = 0.

4. Matrices over a ring with [[x1, y1], z1][[x2, y2], z2] · · · [[xt, yt], zt] = 0

We shall make use of the following well known fact.

Proposition 4.1. If [[x1, y1], z1][[x2, y2], z2] · · · [[xt, yt], zt] = 0 is a polynomial identity on 
a ring R, then Dt = {0}, with D the ideal R[[R, R], R]R of R.

Theorem 4.2. If 1
2 ∈ R and A ∈ Mn(R) is a matrix over a ring R satisfying the poly-

nomial identity [[x1, y1], z1][[x2, y2], z2] · · · [[xt, yt], zt] = 0, then an invariant “power” 
Cayley-Hamilton identity of the form

(
Inλ

(2)
0 + Aλ

(2)
1 + · · · + An2−1λ

(2)
n2−1 + An2

λ
(2)
n2

)t

= 0

holds, with certain right coefficients

λ
(2)
i ∈ R, 0 ≤ i ≤ n2 − 1, and λ

(2)
n2 = n

{
(n− 1)!

}1+n

(only partially determined by A). The cosets λ(2)
i +D with D = R[[R, R], R]R � R appear 

in the second right characteristic polynomial pA,2(x) of the natural image A ∈ Mn(R/D)
of A over the factor ring R/D:

pA,2(x) = (λ(2)
0 +D)+(λ(2)

1 +D)x+ · · ·+(λ(2)
n2−1 +D)xn2−1 +(λ(2)

n2 +D)xn2 ∈ (R/D)[x].

Proof. Consider the factor ring R/D, where D = R[[R, R], R]R � R is the double 
commutator ideal. If A = [ai,j ] ∈ Mn(R), then we use the notation A = [ai,j + D] for 
the image of A in Mn(R/D). Since R/D is Lie nilpotent of index 2, Theorem 3.3 implies 
that, in Mn(R/D),

(A)pA,2 = In(λ(2)
0 +D)+A(λ(2)

1 +D)+ · · ·+(A)n
2−1(λ(2)

n2−1 +D)+ (A)n
2
(λ(2)

n2 +D) = 0,

where
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pA,2(x) = rdet(k)(xIn −A)

= (λ(2)
0 + D) + (λ(2)

1 + D)x + · · · + (λ(2)
n2−1 + D)xn2−1 + (λ(2)

n2 + D)xn2

is the second right characteristic polynomial of A in (R/D)[x]. Clearly,

Inλ
(2)
0 + Aλ

(2)
1 + · · · + An2−1λ

(2)
n2−1 + An2λ

(2)
n2

= In(λ(2)
0 + D) + A(λ(2)

1 + D) + · · · + (A)n
2−1(λ(2)

n2−1 + D) + (A)n
2
(λ(2)

n2 + D) = 0

implies that

Inλ
(2)
0 + Aλ

(2)
1 + · · · + An2−1λ

(2)
n2−1 + An2

λ
(2)
n2 ∈ Mn(D).

Now Dt = {0} is a consequence of Proposition 4.1, whence (Mn(D))t = {0} and

(
Inλ

(2)
0 + Aλ

(2)
1 + · · · + An2−1λ

(2)
n2−1 + An2

λ
(2)
n2

)t

= 0

follows. �
Remark 4.3. If [x1, y1][x2, y2] · · · [xt, yt] = 0 is a polynomial identity on R and A ∈
Mn(R), then using the commutator ideal T = R[R, R]R and the natural image Ã ∈
Mn(R/T ) of A over the commutative ring R/T , a similar argument as in the proof of 
Theorem 4.2 gives that

(
Inλ

(1)
0 + Aλ

(1)
1 + · · · + An−1λ

(1)
n−1 + Anλ(1)

n

)t

= 0

holds, where pÃ,1(x) = (λ(1)
0 + T ) + (λ(1)

1 + T )x + · · · + (λ(1)
n−1 + T )xn−1 + (λ(1)

n + T )xn

is the n! times scalar multiple of the classical characteristic polynomial of Ã in (R/T )[x]
with λ(1)

n = n!.

Theorem 4.4. If 1
2 ∈ R and A ∈ Mn(R) is a matrix over a Lie nilpotent ring R of index 

k, then an invariant “power” Cayley-Hamilton identity of the form

(
Inλ

(2)
0 + Aλ

(2)
1 + · · · + An2−1λ

(2)
n2−1 + An2

λ
(2)
n2

)2k−2

= 0

holds, with certain right coefficients

λ
(2)
i ∈ R, 0 ≤ i ≤ n2 − 1, and λ

(2)
n2 = n

{
(n− 1)!

}1+n

(only partially determined by A). The cosets λ(2)
i +D with D = R[[R, R], R]R � R appear 

in the second right characteristic polynomial pA,2(x) of the natural image A ∈ Mn(R/D)
of A over the factor ring R/D:
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pA,2(x) = (λ(2)
0 +D)+(λ(2)

1 +D)x+ · · ·+(λ(2)
n2−1 +D)xn2−1 +(λ(2)

n2 +D)xn2 ∈ (R/D)[x].

Proof. According to Jennings’s result (Corollary 2.2), the double commutator ideal

D = R[[R,R], R]R =
{∑

1≤i≤mri[[ai, bi], ci]si | ri, ai, bi, ci, si ∈ R, 1 ≤ i ≤ m
}

� R

is nilpotent, with D2k−2 = {0}. Thus the application of Theorem 4.2 gives our iden-
tity. �
Remark 4.5. If k = 2, then R[[R, R], R]R = {0}, and the identity in Theorem 4.4 remains 
the same as the Lie nilpotent right Cayley-Hamilton identity in Theorem 3.3.

Remark 4.6. The Grassmann algebra

E = K 〈v1, v2, ..., vi, ... | vivj + vjvi = 0 for all 1 ≤ i ≤ j〉

over a field K (with 2 �= 0) has property L2, and

[v1, v2] · [v3, v4] · · · · · [v2t−1, v2t] = 2tv1v2 · · · v2t �= 0

shows that L2 does not imply the identity [x1, y1][x2, y2] · · · [xt, yt] = 0 for any t. Thus 
the identity mentioned in Remark 4.3 cannot be used directly to derive new identities for 
matrices over a Lie nilpotent ring of index k ≥ 2. However, as the referee pointed out, the 
following (weak) version of Latyshev’s theorem provides a possibility to use Remark 4.3
in order to obtain another remarkable “power” Cayley-Hamilton identity.

Theorem ([6]). If S is a Lie nilpotent algebra (over an infinite field) of index k, gener-
ated by m elements, then there exists an integer d = d(k, m) such that S satisfies the 
polynomial identity [x1, y1][x2, y2] · · · [xd, yd] = 0. (In the original version S satisfies a 
so-called nonmatrix polynomial identity.)

If A ∈ Mn(R) is a matrix over a Lie nilpotent algebra (over an infinite field) R of index 
k, then A ∈ Mn(S), where S is the (unitary) subalgebra generated by the n2 entries of 
A. Thus [x1, y1][x2, y2] · · · [xd, yd] = 0 is a polynomial identity on S with d = d(k, n2)
and Remark 4.3 gives that an identity

(
Inλ

(1)
0 + Aλ

(1)
1 + · · · + An−1λ

(1)
n−1 + Anλ(1)

n

)d(k,n2)
= 0

of degree nd(k, n2) holds. Unfortunately, our knowledge about d(k, n2) is very limited, 
the fact that d(2, 4) = 3 was mentioned by the referee.

Remark 4.7. If R is an algebra over a field K of characteristic zero, then the invariance of 
the identities in 4.2 and 4.4 means that pT−1AT,2(x) = pA,2(x) holds for any T ∈ GLn(K)
(see [1]).
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Corollary 4.8. If 1
2 ∈ R and the ring R is Lie nilpotent of index k, then, for every 

A ∈ M2(R),

tr(A) = tr(A2) = 0 imply that A2k

= 0.

Proof. Using D = R[[R, R], R]R � R, A ∈ M2(R/D) and

tr(A) = tr(A) + D = 0, tr((A)2) = tr(A2) = tr(A2) + D = 0,

the application of Corollary 3.5 ensures that A4 =
(
A
)4 = 0. Thus the nilpotency of D

(D2k−2 = {0}) gives that A2k =
(
A4)2k−2

= 0. �
Remark 4.9. According to the following important observation of the referee, the use of 
Latyshev’s theorem gives an n × n variant of Corollary 4.8. If A ∈ Mn(R) is a matrix 
over a Lie nilpotent algebra (over a field K of characteristic zero) R of index k, then we 
prove that

tr(A) = tr(A2) = · · · = tr(An) = 0

implies that And(k,n2) = 0. Indeed, A ∈ Mn(S), where S ⊆ R is the (unitary) subalgebra 
of R generated by the entries of A. Now consider the natural image Ã ∈ Mn(S/S[S, S]S)
of A. The application of the well known fact that

tr(Ã) = tr((Ã)2) = · · · = tr((Ã)n) = 0̃

implies that Ãn = (Ã)n = 0̃ (it is a consequence of the Newton trace formulae for 
the coefficients of the characteristic polynomial pÃ,1(x) ∈ (S/S[S, S]S)[x], where the 

factor S/S[S, S]S is a commutative algebra over K). Since (S[S, S]S)d(k,n2) = {0} by 
Latyshev’s theorem and An ∈ Mn(S[S, S]S), we obtain the desired equality.

Declaration of competing interest

There is no competing interest.

Acknowledgement

The authors thank the referee for the valuable report and the important contributions 
mentioned in Remarks 4.6 and 4.9.

References

[1] M. Domokos, Cayley-Hamilton theorem for 2 × 2 matrices over the Grassmann algebra, J. Pure 
Appl. Algebra 133 (1998) 69–81.

http://refhub.elsevier.com/S0024-3795(19)30399-4/bib446Fs1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib446Fs1


J. Szigeti et al. / Linear Algebra and its Applications 584 (2020) 153–163 163
[2] V. Drensky, Free Algebras and PI-Algebras, Graduate Course in Algebra, Springer-Verlag, Singa-
pore, Singapore, 2000.

[3] V. Drensky, E. Formanek, Polynomial Identity Rings, Advanced Courses in Mathematics. CRM 
Barcelona, Birkhäuser-Verlag, Basel, 2004.

[4] S.A. Jennings, On rings whose associated Lie rings are nilpotent, Bull. Amer. Math. Soc. 53 (1947) 
593–597.

[5] A.R. Kemer, Ideals of Identities of Associative Algebras, Translated from the Russian by C.W. 
Kohls Translations of Math. Monographs, vol. 87, American Mathematical Society, Providence, RI, 
1991.

[6] V.N. Latyshev, Generalization of the Hilbert theorem on the finiteness of bases, Sibirsk. Mat. Zh. 
7 (1966) 1422–1424 (Russian). Translation: Sib. Math. J. 7 (1966) 1112–1113.

[7] L. Márki, J. Meyer, J. Szigeti, L. van Wyk, Matrix representations of finitely generated Grassmann 
algebras and some consequences, Israel J. Math. 208 (2015) 373–384.

[8] J. Meyer, J. Szigeti, L. van Wyk, A Cayley-Hamilton trace identity for 2 ×2 matrices over Lie-solvable 
rings, Linear Algebra Appl. 436 (2012) 2578–2582.

[9] R. Paré, W. Schelter, Finite extensions are integral, J. Algebra 53 (1978) 477–479.
[10] K.R. Pearson, A lower bound for the degree of polynomials satisfied by matrices, J. Aust. Math. 

Soc. A 27 (1979) 430–436.
[11] K.R. Pearson, Degree 7 monic polynomials satisfied by a 3 × 3 matrix over a noncommutative ring, 

Comm. Algebra 10 (1982) 2043–2073.
[12] J.C. Robson, Polynomials satisfied by matrices, J. Algebra 55 (1978) 509–520.
[13] L.H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics, vol. 84, Aca-

demic Press, New York-London, 1980.
[14] J. Szigeti, New determinants and the Cayley-Hamilton theorem for matrices over Lie nilpotent rings, 

Proc. Amer. Math. Soc. 125 (1997) 2245–2254.
[15] J. Szigeti, On the characteristic polynomial of supermatrices, Israel J. Math. 107 (1998) 229–235.
[16] J. Szigeti, L. van Wyk, Determinants for n × n matrices and the symmetric Newton formula in the 

3 × 3 case, Linear Multilinear Algebra 62 (2014) 1076–1090.
[17] J. Szigeti, L. van Wyk, On Lie nilpotent rings and Cohen’s theorem, Comm. Algebra 43 (2015) 

4783–4796.

http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4472s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4472s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib447246s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib447246s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4As1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4As1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4Bs1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4Bs1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4Bs1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4Cs1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4Cs1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4D614D65537657s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4D614D65537657s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4D65537657s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib4D65537657s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib5061536368s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib506531s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib506531s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib506532s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib506532s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib526F62s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib526F77s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib526F77s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib5331s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib5331s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib5332s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib53765731s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib53765731s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib53765732s1
http://refhub.elsevier.com/S0024-3795(19)30399-4/bib53765732s1

	A power Cayley-Hamilton identity for nxn matrices over a Lie nilpotent ring of index k
	1 Introduction
	2 Some results on Lie nilpotent rings
	3 The Lie nilpotent Cayley-Hamilton theorem
	4 Matrices over a ring with [[x1,y1],z1][[x2,y2],z 2]···[[xt,yt],zt]=0
	Acknowledgement
	References


