J. Austral. Math. Soc. (Series A) 52 (1992), 368-382

THE LATTICE OF IDEALS OF $M_R(R^2)$, R A COMMUTATIVE PIR

C. J. MAXSON AND L. VAN WYK

(Received 20 June 1990; revised 20 November 1990)

Communicated by P. Schultz

Abstract

In this paper we characterize the ideals of the centralizer near-ring $N = M_R(R^2)$, where R is a commutative principle ideal ring. The characterization is used to determine the radicals $J_{\nu}(N)$ and the quotient structures $N/J_{\nu}(N)$, $\nu = 0, 1, 2$.

1991 Mathematics subject classification (Amer. Math. Soc.): 16 A 76.

1. Introduction

Let R be a ring with identity and let G be a unitary (right) R-module. Then $M_R(G) = \{f: G \to G \mid f(ar) = f(a) \cdot r, a \in G, r \in R\}$ is a nearring under function addition and composition, called the *centralizer near-ring* determined by the pair (R, G). When G is the free R-module on a finite number of (say n) generators, then $M_R(R^n)$ contains the ring $\mathcal{M}_n(R)$ of $n \times n$ matrices over R, and in this case the known structure of $\mathcal{M}_n(R)$ can be used to obtain structural results for $M_R(R^n)$. An investigation of these relationships was initiated in [5]. (As in [5] we restrict our attention to the case n = 2, which shows all the salient features, for ease of exposition.)

When R is an integral domain, it was shown in [5] that $M_R(R^2)$ is a simple near-ring. Moreover, when R is a principal ideal domain, there is a lattice isomorphism between the ideals of R and the lattice of two-sided

^{© 1992} Australian Mathematical Society 0263-6115/92 \$A2.00 + 0.00

invariant subgroups of $M_R(R^2)$. In this work we turn to the case in which R is a commutative principal ideal ring and investigate the lattice of ideals of $M_R(R^2)$. Here the situation is quite different from that of the principal ideal domain.

Let R be a commutative principal ideal ring with identity. It is wellknown ([1], [8]) that R is the direct sum of principal ideal domains (PID) and special principal ideal rings (PIR). A special PIR is a principal ideal ring which has a unique prime ideal and this ideal is nilpotent. Thus a special PIR is a local ring with nilpotent radical $J = \langle \theta \rangle$ (the principal ideal generated by θ). If m is the index of nilpotency of $\langle \theta \rangle$, then every non-zero element in a special PIR, R, can be written in the form $a\theta^l$ where a is a unit in R, $0 \le l < m$, l is unique and a is unique modulo θ^{m-l} . Furthermore every ideal of R is of the form $\langle \theta^j \rangle$, $0 \le j \le m$. We mention that special PIR's are chain rings. (See [3] and the references there for information and examples of finite chain rings.)

Our work also has geometric connections. Specifically, let R be a principal ideal ring and let \mathscr{C} be a cover (see [2]) of R^2 by cyclic submodules. Then for each $f \in M_R(R^2)$ and each $\mathscr{C}_{\alpha} \in \mathscr{C}$, there exists $\mathscr{C}_{\beta} \in \mathscr{C}$ such that $f(\mathscr{C}_{\alpha}) \subseteq \mathscr{C}_{\beta}$. Hence $M_R(R^2)$ is a set of operators for the geometry $\langle R^2, \mathscr{C} \rangle$ and we obtain a generalized translation space with operators as investigated in [4].

Throughout the remainder of this paper all rings R will be commutative principal ideal rings, unless specified to the contrary, with identity and all R-modules will be unitary. We let $N = M_R(R^2)$ denote the centralizer nearring and all near-rings will be right near-rings. For details about near-rings we refer the reader to the books by Meldrum [6] or Pilz [7]. Also, for any set S, let $S^* = S \setminus \{0\}$.

The objective of this investigation is to determine the ideals of $N = M_R(R^2)$. After developing some general results in the next section we establish the characterization of the ideals of N in Section 3. As mentioned above, the situation here differs from the PID situation. In fact, we find for a special PIR, R, a very nice bijection between the ideals of R and the ideals of $M_R(R^2)$. In the final section we use our results to determine the radicals $J_{\nu}(N)$, $\nu = 0, 1, 2$, and we find the quotient structure $N/J_{\nu}(N)$.

2. General results

We start out with an arbitrary (not necessarily commutative principal ideal) ring S with identity and suppose $S = S_1 \oplus \cdots \oplus S_r$ is the direct

sum of the ideals S_1, S_2, \ldots, S_t . Then $1 = e_1 + e_2 + \cdots + e_t$ where $\{e_i\}$ is a set of orthogonal idempotents, e_i the identity of S_i . Note further that $S^2 = S_1^2 \oplus \cdots \oplus S_t^2$, and let $\binom{x}{y} \in S^2$, $\binom{x}{y} = \binom{x_1}{y_1} + \cdots + \binom{x_t}{y_t}$, $\binom{x_i}{y_i} \in S_i^2$. For $f \in M_S(S^2)$, $f\binom{x}{y} = f\binom{x_1}{y_1} + \cdots + \binom{x_t}{y_t} = \binom{a_1}{b_1} + \cdots + \binom{a_t}{b_t}$, $\binom{a_i}{b_i} \in S_i^2$. But $f\binom{x}{y}e_i = f\binom{x}{y}e_i$ implies $f\binom{x_i}{y_i} = \binom{a_i}{b_i}$, so we obtain $f\binom{x}{y} = f\binom{x_1}{y_1} + \cdots + \binom{x_t}{y_1} + \cdots + \binom{x_t}{y_t}$.

If $M_i = M_S(S_i^2)$, then $\varphi: M \to M_1 \oplus \cdots \oplus M_t$ defined by $\varphi(f) = (f_1, \ldots, f_t)$, where $f_i = f|S_i^2$, is a near-ring homomorphism. Moreover, φ is onto. For, if $(g_1, \ldots, g_t) \in M_1 \oplus \cdots \oplus M_t$, define $g: S^2 \to S^2$ by $g\binom{x}{y} = g_1\binom{x_1}{y_1} + \cdots + g_t\binom{x_t}{y_t}$, where $\binom{x}{y} = \binom{x_1}{y_1} + \cdots + \binom{x_t}{y_t}$. Then $g \in M$ and $\varphi(g) = (g_1, \ldots, g_t)$. Next, suppose $f \in M$ and $\varphi(f) = 0$. This means that $f|S_i^2 = 0$, $i = 1, 2, \ldots, t$, so $f \equiv 0$, and hence φ is an isomorphism. Since $S_i \subseteq S$, we have $M_S(S_i^2) \subseteq M_S(S_i^2)$. On the other hand, for $s \in S$, $s = s_1 + \cdots + s_t$, $s_i \in S_i$, and for $\binom{a_i}{b_i} \in S_i^2$, $\binom{a_i}{b_i} s = \binom{a_i}{b_i} (e_1s_1 + \cdots + e_ts_t) = \binom{a_i}{b_i} s$. Thus if $f \in M$ (S^2) then $f\binom{a_i}{b_i} s = f\binom{a_i}{b_i} s = f\binom{a_i}{b_i} s = f\binom{a_i}{b_i} s$.

 $\binom{a_i}{b_i}s_i$. Thus if $f \in M_{S_i}(S_i^2)$, then $f\binom{a_i}{b_i}s = f\binom{a_i}{b_i}s_i = f\binom{a_i}{b_i}s_i = f\binom{a_i}{b_i}s$, i.e., $f \in M_S(S_i^2)$. We have established the following result.

THEOREM 2.1. Let $S = S_1 \oplus \cdots \oplus S_t$ be a direct sum of ideals S_1, \ldots, S_t . Then $M_S(S^2) \cong M_{S_1}(S_1^2) \oplus \cdots \oplus M_{S_t}(S_t^2)$.

Let $K = K_1 \oplus \cdots \oplus K_t$ be a direct sum of near-rings with identities e_i , and let B denote an ideal of K. Note that $B \cap K_i$ is an ideal of K_i , and for $b \in B$, $b = (b_1, \ldots, b_t)$, we have $be_i = b_i e_i = b_i$, which implies $b_i \in B \cap K_i$. Thus $B = (B \cap K_1) \oplus \cdots \oplus (B \cap K_t)$, and so, from the previous theorem, to determine the ideals of $M_S(S^2)$ it suffices to determine the ideals of the individual components.

If R is a commutative PIR, then, as stated above, R is the direct sum of principal ideal domains (PID) and special PIR's, say $R = R_1 \oplus \cdots \oplus R_t$. From Theorem 2.1, $N = M_R(R^2) \cong M_{R_i}(R_1^2) \oplus \cdots \oplus M_{R_t}(R_t^2)$, so we are going to determine the ideals of $M_{R_i}(R_i^2)$. We know, however, if R_i is a PID then $M_{R_i}(R_i^2)$ is simple, so the only ideals are $M_{R_i}(R_i^2)$ and $\{0\}$. (See [5, Theorem II.12].) It remains to determine the ideals of $M_{R_i}(R_i^2)$ when R_i is a special PIR.

To this end, let R be a special PIR with unique maximal ideal $J = \langle \theta \rangle$, and let m be the index of nilpotency of J, i.e., $\theta^m = 0$ and $\theta^{m-1} \neq 0$. We know that the ideals of R are of the form $\langle \theta^k \rangle$, k = 0, 1, 2, ..., m. We denote $\langle \theta^k \rangle$ by A_k and remark that $A_k^2 = \{ \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \mid a_1, a_2 \in A_k \}$ is an R-submodule of R^2 with the property $f(A_k^2) \subseteq A_k^2$ for each $f \in N = M_R(R^2)$, because $f\binom{r\theta^2}{s\theta^2} = f\binom{r}{s}\theta^2$ for all $r, s \in R$. But then $(\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}\}; A_k^2)$ is an ideal of N. For $r, s \in R$ and $f \in (\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}\}; A_k^2)$, we have $\begin{pmatrix} 0 \\ 0 \end{pmatrix} = f\binom{r\theta^k}{s\theta^k} = f\binom{r}{s}\theta^k$, so $f\binom{r}{s} \in \langle \theta^{m-k} \rangle^2 = A_{m-k}^2$. Therefore $(\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}\}; A_k^2) \subseteq (A_{m-k}^2; R^2)$. Since the reverse inclusion is straightforward, we have the next result.

PROPOSITION 2.2. If R is a special PIR with $J = \langle \theta \rangle$ and index of nilpotency m, and if $A_k = \langle \theta^k \rangle$, then $\left(\left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} : A_k^2 \right) = \left(A_{m-k}^2 : R^2 \right), \ k = 0, 1, 2, \ldots, m$.

We know that if I is an ideal of N, then there exists a unique ideal A_k of R with $I \cap \mathscr{M}_2(R) = \mathscr{M}_2(A_k)$. In particular from [5], if $f \in I$, say $f\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}a\\b\end{pmatrix}$, then $f \circ \begin{bmatrix}x & 0\\y & 0\end{bmatrix} = \begin{bmatrix}a & 0\\b & 0\end{bmatrix}$. This in turn implies $f(R^2) \subseteq A_k^2$, so we have $I \subseteq (A_k^2; R^2)$.

PROPOSITION 2.3. If R is a special PIR with $J = \langle \theta \rangle$ and index of nilpotency m, then for each non-trivial ideal I of $N = M_R(R^2)$ there is a unique integer k, 0 < k < m, such that $I \subseteq (A_l^2; R^2)$ for $l \le k$, and $I \not\subseteq (A_l^2; R^2)$ for l > k.

In the next section we develop the machinery to show that $I = (A_k^2; R^2)$. (Of course, if $I = \{0\}$, then $I = (\{\binom{0}{0}\}; R^2) = (A_m^2; R^2)$, and if $I = M_R(R^2)$, then $I = (R^2; R^2) = (A_0^2; R^2)$.) This will complete a proof of our major result.

THEOREM 2.4. Let R be a commutative principal ideal ring with $R = R_1 \oplus \cdots \oplus R_t$, where R_i is a PID or a special PIR. Then $N = M_R(R^2) = M_{R_1}(R_1^2) \oplus \cdots \oplus M_{R_t}(R_t^2)$, and if I is an ideal of N, then $I = I_1 \oplus \cdots \oplus I_t$, where I_i is an ideal of $M_{R_i}(R_i^2)$. If R_i is a PID, then $I_i = \{0\}$ or $I_i = M_{R_i}(R_i^2)$. If R_i is a piD, then $I_i = \{0\}$ or $I_i = M_{R_i}(R_i^2)$. If R_i is a special PIR with $J = \langle \theta \rangle$ and index of nilpotency m, then $I_i = \{A_k^2; R_i^2\} = (\{(0)^0\}; A_{m-k}^2)$ for some k, $0 \le k \le m$, where $A_k = \langle \theta^k \rangle$.

3. Ideals in $M_R(R^2)$, R a special PIR

Unless otherwise stated, in this section R will denote a special PIR with unique maximal ideal $J = \langle \theta \rangle$ and index of nilpotency m. Let I be an

[5]

ideal of $N = M_R(R^2)$ with $I \subseteq (A_k^2; R^2)$ as given in Proposition 2.3. From the fact that $\mathcal{M}_2(A_k) \subseteq I$ our plan is to show that an arbitrary function in $(A_k^2; R^2)$ can be constructed from functions in *I*. This will then give the desired equality. To aid in the construction of functions in *N* we recall from [5] that $x, y \in (\mathbb{R}^2)^*$ are connected if there exist $x = a_0, a_1, \dots, a_s = y$ in $(R^2)^*$ such that $a_i R \cap a_{i+1} R \neq \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}, i = 0, 1, 2, \dots, s-1$. This defines an equivalence relation on $(R^2)^*$ and the equivalence classes are called connected components. We first determine the connected components of $(R^2)^*$.

Let F be a set of representatives for the classes R/J, where we choose 0 for the class J. Thus for $\alpha \in F^*$, α is a unit in R. We know for each $r \in R$ there is a unique $\alpha_0 \in F$ such that $r = \alpha_0 + r_0 \theta$, $r_0 \in R$. But $r_0 = \alpha_1 + r_1 \theta$, with $\alpha_1 \in F$, $r_1 \in R$, implies $r = \alpha_0 + \alpha_1 \theta + r_1 \theta^2$. Continuing, we find that every element $r \in R$ has a unique "base θ " representation, $r = \alpha_0 + \alpha_1 \theta + \dots + \alpha_{m-1} \theta^{m-1}$, $\alpha_i \in F$, $i = 0, 1, 2, \dots, m-1$. In the sequel, for ease of exposition we let # denote a symbol not in F,

and we let $\widehat{F} = F \cup \{\#\}$.

LEMMA 3.1. Let $M_{\#} = \langle {\theta}_{0}^{m-1} \rangle$ and let $M_{\alpha} = \langle {\alpha}{\theta}_{0}^{m-1} \rangle$, $\alpha \in F$. The submodules M_{β} , $\beta \in \widehat{F}$, are the minimal submodules of \mathbb{R}^{2} .

PROOF. Let H be an R-submodule of R^2 , $\{\begin{pmatrix} 0\\ 0 \end{pmatrix}\} \stackrel{<}{\neq} H \subseteq M_{\beta}$, where $\beta \in$ F, and let $\begin{pmatrix} 0\\0 \end{pmatrix} \neq x \in H$. Then $x = \begin{pmatrix} \beta \theta^{m-1}\\ \theta^{m-1} \end{pmatrix} s$ for some $s \in R$, and since $x \neq 0$, we have $s \notin J$, so s is a unit in R. But then $xs^{-1} \in H$, hence $M_{\beta} \subseteq H$. In the same manner if $\beta = \#$, then $H = M_{\#}$.

To show that the M_{β} , $\beta \in \widehat{F}$, are the only minimal submodules, we show that every non-zero submodule L of R^2 must contain some M_{β} , $\beta \in \widehat{F}$. Let $y = \begin{pmatrix} u_1 \theta'_1 \\ u_2 \theta'_2 \end{pmatrix}$ be a non-zero element in L, where u_1, u_2 are units in R. Suppose $l_1 \ge l_2$. Then $y u_2^{-1} \theta^{m-l_2-1} = \begin{pmatrix} u_1 u_2^{-1} \theta^{l_1-l_2+m-1} \\ 1 \theta^{m-1} \end{pmatrix}$. If $l_1 > l_2$, then $yu_2^{-1}\theta^{m-l_2-1} = \begin{pmatrix} 0\\ \theta^{m-1} \end{pmatrix}$, so $M_0 \subseteq L$. We have $u_1u_2^{-1} = \alpha + r\theta$ for some $\alpha \in F$, $r \in R$, and $u_1u_2^{-1}\theta^{m-1} = \alpha\theta^{m-1}$, and so if $l_1 = l_2$, then $yu_2^{-1}\theta^{m-l_2-1} = \begin{pmatrix} \alpha\theta^{m-1}\\ \theta^{m-1} \end{pmatrix}$, i.e., $M_\alpha \subseteq L$. A similar argument for $l_1 < l_2$ gives $M_{\#} \subseteq L$ and the proof is complete.

LEMMA 3.2. For $x, y \in (\mathbb{R}^2)^*$, the following are equivalent: (i) x and y are connected; (ii) xR and yR contain the same minimal submodule M;

(iii) there exist positive integers l_1 , l_2 such that $x\theta^{l_1} \in M^*$ and $y\theta^{l_2} \in M^*$ for some minimal submodule M.

PROOF. (i) \Rightarrow (ii). Suppose x and y are connected. As we showed in the previous proof, xR and yR contain minimal submodules, say $xR \supseteq M' = cR$ and $yR \supseteq M'' = dR$. Thus there exist $r, s \in R^*$ such that c = xr and d = ys. Since x and y are connected, so are c and d, say $cr_1 = b_1s_1 \neq 0$, $b_1r_2 = b_2s_2 \neq 0, \ldots, b_{t-1}r_t = ds_t \neq 0$. Since $cr_1 \in (M')^*$, it follows that $cr_1R = cR$, so there exists $r' \in R$ such that $cr_1r' = c$, hence $c = cr_1r' = b_1s_1r'$. Now c has the form $\binom{a}{b}\theta^{m-1}$, so if $b_1 = \binom{u_1\theta^{l_1}}{u_2\theta^{l_2}}$ and $s_1r' = v_1\theta^{l_3}$, then $b_1\theta^{l_3} = cv_1^{-1} \in (cR)^*$. If $r_2 = v_2\theta^{l_4}$, then $0 \neq b_1r_2 = b_1v_2\theta^{l_3+(l_4-l_3)}$, and since $b_1\theta^{l_3} \in cR$, a minimal submodule, it follows from Lemma 3.1 that $l_4 \leq l_3$, otherwise $b_1r_2 = 0$. Therefore $r_2\theta^{l_3-l_4} = v_2\theta^{l_3}$, which in turn implies $b_1r_2\theta^{l_3-l_4} = b_1v_2\theta^{l_3} \in (cR)^*$. Hence $b_2s_2\theta^{l_3-l_4} \in (cR)^*$, so there exists $r'' \in R$ such that $b_2r'' = c$. Continuing in this manner we get \hat{r} such that $d\hat{r} = c$ for some $\hat{r} \in R$. But this means M' = M''.

(ii) \Rightarrow (iii). If $xR \supseteq M$ and $yR \supseteq M$, then there exist $r, s \in R$ such that $xr, ys \in M^*$, say $r = u\theta^{l_1}, s = v\theta^{l_2}, u, v$ units. But then $x\theta^{l_1}$ and $y\theta^{l_2}$ are non-zero in M.

(iii) \Rightarrow (i). From $x\theta^{l_1} \in M^*$ we have $\{\binom{0}{0}\}_{\neq}^{\subseteq} M \cap xR = M$. Hence $M \subseteq xR$, and similarly, $M \subseteq yR$. Therefore, for some $r, s \in R^*$, $xr = ys \neq 0$, i.e., x and y are connected.

From this lemma we have that every minimal submodule M determines a connected component \mathscr{C} , where $\mathscr{C} = (\bigcup \{xR \mid xR \supseteq M\}) \setminus \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$.

Consider the minimal submodule M_{α} , for some $\alpha \in F$. We consider the submodules $H(\alpha, \alpha_1, \ldots, \alpha_{m-1}) = \langle {\alpha + \alpha_1 \theta + \cdots + \alpha_{m-1} \theta^{m-1}} \rangle$, where $\alpha_1, \ldots, \alpha_{m-1}$ range over F. We note that $H(\alpha, \alpha_1, \ldots, \alpha_{m-1}) \cap H(\beta, \beta_1, \ldots, \beta_{m-1}) = \{ {0 \atop \theta^{m-1}} \}$ if and only if $\alpha \neq \beta$. For if $\alpha = \beta$, then ${\alpha + \alpha_1 \theta + \cdots + \alpha_{m-1} \theta^{m-1} - \theta^{$

$$H(\alpha, \alpha_1, \ldots, \alpha_{m-1}) \cap H(\beta, \beta_1, \ldots, \beta_{m-1}) \supseteq M_{\alpha}.$$

Conversely, suppose $\binom{\alpha+\alpha_1\theta+\cdots+\alpha_{m-1}\theta^{m-1}}{1}r = \binom{\beta+\beta_1\theta+\cdots+\beta_{m-1}\theta^{m-1}}{1}s$ for some non-zero $r, s \in \mathbb{R}$. Then if $r = a\theta^{l_1}, s = b\theta^{l_2}$, we get $l_1 = l_2$ and $\binom{\alpha\theta^{m-1}}{\theta^{m-1}} = \binom{\beta\theta^{m-1}}{\theta^{m-1}}$. Hence $\alpha = \beta$, since $\alpha, \beta \in F$. In the same way

we see that $H(\#, \alpha_1, \ldots, \alpha_{m-1}) = \langle \begin{array}{c} 1 \\ \alpha_1 \theta + \cdots + \alpha_{m-1} \theta^{m-1} \rangle \end{array}$ contains $M_{\#}$ and that $H(\#, \alpha_1, \ldots, \alpha_{m-1}) \cap H(\beta, \beta_1, \ldots, \beta_{m-1}) = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$ for all $\beta \in F$.

Let *a* be an arbitrary non-zero element of R^2 , say $a = \begin{pmatrix} a_1 \theta^{l_1} \\ a_2 \theta^{l_2} \end{pmatrix}$. If $l_1 \ge l_2$, then $a = \begin{pmatrix} a_1 \theta^{l_1-l_2} \\ a_2 \end{pmatrix} \theta^{l_2} = \begin{pmatrix} a_1 a_2^{-1} \theta^{l_1-l_2} \\ 1 \end{pmatrix} a_2 \theta^{l_2}$ implies *a* is in some $H(\alpha, \alpha_1, \ldots, \alpha_{m-1})$, $\alpha \in F$. If $l_1 < l_2$, then

$$a = \begin{pmatrix} a_1 \\ a_2 \theta^{l_2 - l_1} \end{pmatrix} \theta^{l_1} = \begin{pmatrix} 1 \\ a_2 a_1^{-1} \theta^{l_2 - l_1} \end{pmatrix} a_1 \theta^{l_1}$$

implies a is in some $H(\#, \alpha_1, \ldots, \alpha_{m-1})$. Thus we see that the collection of submodules $\{H(\beta, \alpha_1, \ldots, \alpha_{m-1}) \mid \beta \in \widehat{F}, \alpha_1, \ldots, \alpha_{m-1} \in F\}$ is a cover for \mathbb{R}^2 (see [2]) and we call the submodules $H(\beta, \alpha_1, \ldots, \alpha_{m-1})$ covering submodules.

Therefore, to define a function f in N it suffices to define f on the generators of the covering submodules, use the homogeneous property f(xr) = f(x)r to extend f to all of R^2 and then verify that f is well-defined. That is, if x and y are generators of covering submodules and $0 \neq xr = ys$ for $r, s \in R$, then one must show that f(x)r = f(y)s. Suppose $r = a_1\theta^{l_1}$, $s = a_2\theta^{l_2}$ and $x = \binom{x_1}{1}$, $y = \binom{y_1}{1}$. (A similar argument works for $x = \binom{1}{x_1}$, $y = \binom{1}{y_1}$.) Thus we have $x_1a_1\theta^{l_1} = y_1a_2\theta^{l_2}$ and $a_1\theta^{l_1} = a_2\theta^{l_2}$. Thus $l_1 = l_2$, and so $a_2 = a_1 + r\theta^{m-l_1}$ for some $r \in R$. Thus xr = ys implies $x\theta^{l_1} = y\theta^{l_1}$. Consequently, to show that f is well-defined, it suffices to show that $x\theta^l = y\theta^l$ implies $f(x)\theta^l = f(y)\theta^l$, where x and y are generators of covering submodules.

For convenience in manipulating functions in N we give the next result.

LEMMA 3.3. If $f \in N$, then for any j, $1 \le j \le m-1$, $f(\overset{\alpha+\alpha_1\theta+\cdots+\alpha_{m-1}\theta^{m-1}}{1}) = f(\overset{\alpha+\alpha_1\theta+\cdots+\alpha_j\theta^j}{1}) + \sigma_{j+1}\theta^{j+1} + \cdots + \sigma_{m-1}\theta^{m-1}$ and $f(\underset{\alpha_1\theta+\cdots+\alpha_{m-1}\theta^{m-1}}{1}) = f(\underset{\alpha_1\theta+\cdots+\alpha_j\theta^j}{1}) + \sigma'_{j+1}\theta^{j+1} + \cdots + \sigma'_{m-1}\theta^{m-1}$, where $\sigma_{j+1}, \ldots, \sigma_{m-1}$, $\sigma'_{j+1}, \ldots, \sigma'_{m-1} \in \mathbb{R}^2$.

PROOF. We note that $f({a+\alpha_1\theta+\dots+\alpha_{m-1}\theta^{m-1}})\theta = f({a+\alpha_1\theta+\dots+\alpha_{m-2}\theta^{m-2}})\theta$ implies $f({a+\alpha_1\theta+\dots+\alpha_{m-1}\theta^{m-1}}) = f({a+\alpha_1\theta+\dots+\alpha_{m-2}\theta^{m-2}}) + \sigma_{m-1}\theta^{m-1}$ for some $\sigma_{m-1} \in \mathbb{R}^2$. The result now follows by induction. The second equality follows similarly.

Some additional notation will now be introduced. Let x be a generator

of a covering submodule. We denote by $m_{\theta^k} f(x)$ the multiplier of θ^k in f(x). If $x = \begin{pmatrix} \alpha + \alpha_1 \theta + \dots + \alpha_{m-1} \theta^{m-1} \end{pmatrix}$ and $j+1 \ge k$, then from the above lemma, $f(x) = f\begin{pmatrix} \alpha + \alpha_1 \theta + \dots + \alpha_j \theta^j \end{pmatrix} + \sigma_{j+1} \theta^{j+1} + \dots + \sigma_{m-1} \theta^{m-1}$ and so $m_{\theta^k} f(x) = m_{\theta^k} f\begin{pmatrix} \alpha + \alpha_1 \theta + \dots + \alpha_j \theta^j \end{pmatrix} + \sigma_{j+1} \theta^{j+1-k} + \dots + \sigma_{m-1} \theta^{m-1-k}$.

As at the beginning of this section, let $I \subseteq (A_k^2; R^2)$. We consider two cases, F finite and F infinite.

First, suppose F is finite, and let $f \in (A_k^2; \mathbb{R}^2)$. Since F is finite, there are only a finite number of connected components, namely \mathscr{C}_{β} where $\beta \in \widehat{F}$, \mathscr{C}_{β} determined by M_{β} . We show how to find a function in I which agrees with f on a single component and is zero off this component. Then by adding we get $f \in I$. We work first with the component $\mathscr{C}_{\#}$. We know the generators of the covering submodules for this component have the form $(\alpha_{1}\theta+\alpha_{2}\theta^{2}+\dots+\alpha_{m-1}\theta^{m-1}), \alpha_{1}, \alpha_{2}, \dots, \alpha_{m-1} \in F$.

For the fixed k above (determined by $I \subseteq (A_k^2; R^2)$) we partition these generators of the covering submodules of $\mathscr{C}_{\#}$ into sets determined by the (k-1)-tuples $(\alpha_1, \alpha_2, \ldots, \alpha_{k-1}), \alpha_1, \alpha_2, \ldots, \alpha_{k-1} \in F$, where we take $k \ge 2$. (The case k = 1 will be handled separately.) That is, given $(\alpha_1, \ldots, \alpha_{k-1})$, in one set we have all generators $\begin{pmatrix} 1 \\ \beta_1\theta+\cdots+\beta_{m-1}\theta^{m-1} \end{pmatrix}$ where $(\beta_1, \ldots, \beta_{k-1}) = (\alpha_1, \ldots, \alpha_{k-1})$. Define $p_{k-1}: R^2 \to R^2$ by $p_{k-1}(\beta_1\theta+\cdots+\beta_{m-1}\theta^{m-1}) = (\beta_k\theta^k+\cdots+\beta_{m-1}\theta^{m-1})$ if

$$(\beta_1, \dots, \beta_{k-1}) = (\alpha_1, \dots, \alpha_{k-1}), \ p_{k-1}(\frac{1}{\beta_1\theta + \dots + \beta_{m-1}\theta^{m-1}}) = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

if $(\beta_1, \ldots, \beta_{k-1}) \neq (\alpha_1, \ldots, \alpha_{k-1})$, extend using the homogeneous property, and define $p_{k-1}(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ if $x \notin \mathscr{C}_{\#}$. We show that p_{k-1} is well-defined. Let $\overline{\alpha} = \alpha_1 \theta + \cdots + \alpha_{m-1} \theta^{m-1}$, $\overline{\beta} = \beta_1 \theta + \cdots + \beta_{m-1} \theta^{m-1}$ and suppose $(\frac{1}{\alpha})\theta^l = (\frac{1}{\beta})\theta^l$. This means $(\alpha_1, \ldots, \alpha_{m-l-1}) = (\beta_1, \ldots, \beta_{m-l-1})$. If $l \leq m-k-1$, then $m-l-1 \geq k$ and so $(\frac{1}{\alpha})$ and $(\frac{1}{\beta})$ are in the same set of the partition, thus $p_{k-1}(\frac{1}{\alpha})\theta^l = (\alpha_k \theta^{k+l} + \cdots + \alpha_{m-1-l} \theta^{m-1} + \cdots + \alpha_{m-1} \theta^{m-1+l}) = p_{k-1}(\frac{1}{\beta})\theta^l$. If l > m - k - 1, then $l \geq m - k$ and so $p_{k-1}(\frac{1}{\alpha})\theta^l = (0) = p_{k-1}(\frac{1}{\beta})\theta^l$. Thus $p_{k-1} \in M_R(R^2)$. Also, since $[0 \\ \theta^k \\ 0 \end{bmatrix} \in I$, $\hat{f} = [0 \\ \theta^k \\ 0 \end{bmatrix} = p_{k-1} \in I$.

Define $h: \mathbb{R}^2 \to \mathbb{R}^2$ by $h(\frac{1}{\alpha_1\theta+\dots+\alpha_{m-1}\theta^{m-1}}) = (\frac{\alpha_k\theta^k+\dots+\alpha_{m-1}\theta^{m-1}}{0})$, extend, and define $h(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ if $x \notin \mathscr{C}_{\#}$. As above one shows that h is welldefined, i.e., $h \in M_{\mathbb{R}}(\mathbb{R}^2)$. Thus for each $g \in M_{\mathbb{R}}(\mathbb{R}^2)$, $\hat{q} = g(\hat{f} + h) - g(\hat{f} + h)$ $gh \in I$. For $x \notin \mathscr{C}_{\#}$ we have $\hat{q}(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, because $p_{k-1}(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ if $x \notin \mathscr{C}_{\#}$. Further, $\hat{q}(\frac{1}{\beta}) = g(\hat{f}(\frac{1}{\beta}) + h(\frac{1}{\beta})) - gh(\frac{1}{\beta})$. If $(\beta_1, \ldots, \beta_{k-1}) \neq (\alpha_1, \ldots, \alpha_{k-1})$, then $\hat{f}(\frac{1}{\beta}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and in this case $\hat{q}(\frac{1}{\beta}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Thus we focus on $(\frac{1}{\beta})$ where $(\beta_1, \ldots, \beta_{k-1}) = (\alpha_1, \ldots, \alpha_{k-1})$. Here, $\hat{q}(\frac{1}{\beta}) = g(\begin{pmatrix} 0 \\ \theta^k \end{pmatrix} + \begin{pmatrix} \beta_k \theta^k + \cdots + \beta_{m-1} \theta^{m-1} \end{pmatrix}) - g(\begin{pmatrix} 1 \\ 0 \end{pmatrix})(\beta_k \theta^k + \cdots + \beta_{m-1} \theta^{m-1})$. We wish to define g so that \hat{q} agrees with f on all generators $\begin{pmatrix} 1 \\ \beta_1 \theta + \cdots + \beta_{m-1} \theta^{m-1} \end{pmatrix}$ with $(\beta_1, \ldots, \beta_{k-1}) = (\alpha_1, \ldots, \alpha_{k-1})$. First define $g(\mathscr{C}_{\#}) = \{\begin{pmatrix} 0 \\ 0 \end{pmatrix}\}$. Then define

$$g\begin{pmatrix} \beta_0 + \beta_1\theta + \dots + \beta_{m-1}\theta^{m-1} \\ 1 \end{pmatrix}$$

= \dots = g $\begin{pmatrix} \beta_0 + \beta_1\theta + \dots + \beta_{m-k-1}\theta^{m-k-1} \\ 1 \end{pmatrix}$
= $m_{\theta^k} f\begin{pmatrix} 1 \\ \alpha_1\theta + \dots + \alpha_{k-1}\theta^{k-1} + \beta_0\theta^k + \dots + \beta_{m-k-1}\theta^{m-1} \end{pmatrix}.$

We show that g is well-defined. Let $\beta = \beta_0 + \beta_1 \theta + \dots + \beta_{m-k-1} \theta^{m-k-1}$ and $\gamma = \gamma_0 + \gamma_1 \theta + \dots + \gamma_{m-k-1} \theta^{m-k-1}$, and suppose $\binom{\beta}{1} \theta^l = \binom{\gamma}{1} \theta^l$. Then

$$(\boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \ldots, \boldsymbol{\beta}_{m-l-1}) = (\boldsymbol{\gamma}_0, \boldsymbol{\gamma}_1, \ldots, \boldsymbol{\gamma}_{m-l-1}).$$

If $l \leq k$, then $m-l-1 \geq m-k-1$ and

$$g\binom{\beta}{1} = m_{\theta^k} f\left(\frac{1}{\alpha_1 \theta + \dots + \alpha_{k-1} \theta^{k-1} + \beta_0 \theta^k + \dots + \beta_{m-k-1} \theta^{m-1}} \right) = g\binom{\gamma}{1}.$$

If $l \ge k + 1$, then

$$g\binom{\beta}{1} = m_{\theta^{k}} \left[f \left(\frac{1}{\alpha_{1}\theta + \dots + \alpha_{k-1}\theta^{k-1} + \beta_{0}\theta^{k} + \dots + \beta_{m-l-1}\theta^{m+k-l-1}} \right) \right] + \rho_{l}\theta^{m-l} + \dots + \rho_{k+1}\theta^{m-k-1},$$

where $\rho_{k+1}, \ldots, \rho_l \in \mathbb{R}^2$. A similar expression holds for $g\binom{\gamma}{1}$. But then $g\binom{\beta}{1}\theta^l = g\binom{\gamma}{1}\theta^l$ as desired.

Thus,

$$\begin{split} \hat{q}\left(\frac{1}{\beta}\right) &= g\left(\frac{\beta_k \theta^k + \dots + \beta_{m-1} \theta^{m-1}}{\theta^k}\right) - g\left(\frac{1}{0}\right)(\beta_k \theta^k + \dots + \beta_{m-1} \theta^{m-1}) \\ &= g\left(\frac{\beta_k + \dots + \beta_{m-1} \theta^{m-1-k}}{1}\right) \theta^k \\ &= m_{\theta^k} f(\alpha_1 \theta + \dots + \alpha_{k-1} \theta^{k-1} + \beta_k \theta^k + \dots + \beta_{m-1} \theta^{m-1}) \theta^k \\ &= f\left(\frac{1}{\beta}\right). \end{split}$$

Therefore \hat{q} agrees with f on those generators $\begin{pmatrix} 1 \\ \beta_1\theta+\dots+\beta_{m-1}\theta^{m-1} \end{pmatrix}$ with $(\beta_1,\dots,\beta_{k-1}) = (\alpha_1,\dots,\alpha_{k-1})$, and is zero on all other generators of covering submodules. Since there are $|F|^{k-1}$ such functions, by adding we obtain a function $q_{\#}$ which agrees with f on $\mathcal{C}_{\#}$ and is 0 off $\mathcal{C}_{\#}$.

For k = 1 the situation is somewhat easier. There is no need to partition the generators of the covering modules of $\mathscr{C}_{\#}$. For this case we use $\begin{bmatrix} 0 & 0 \\ \theta & 0 \end{bmatrix} e_{\#}$ and the *h* defined above, where e_{μ} is the idempotent determined by \mathscr{C}_{μ} , i.e., $e_{\mu}(x) = x$ if $x \in \mathscr{C}_{\mu}$ and $e_{\mu}(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ if $x \notin \mathscr{C}_{\mu}$, $\mu \in \widehat{F}$. Thus for each $g \in M_{\mathbb{R}}(\mathbb{R}^2)$, $\hat{q} = g(\begin{bmatrix} 0 & 0 \\ \theta & 0 \end{bmatrix} e_{\#} + h) - gh \in I$. For $x \notin \mathscr{C}_{\#}$, $\hat{q}(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Further, $\hat{q}(\frac{1}{\beta}) = g(\begin{pmatrix} 0 \\ \theta \end{pmatrix} + \begin{pmatrix} \overline{\beta} \\ 0 \end{pmatrix}) - g\begin{pmatrix} 1 \\ 0 \end{pmatrix} \overline{\beta} = g(\begin{pmatrix} \beta_1 \theta + \beta_2 \theta^2 + \dots + \beta_{m-1} \theta^{m-1}) - g\begin{pmatrix} 1 \\ 0 \end{pmatrix} \overline{\beta}$. Define $g(\mathscr{C}_{\#}) = \{\begin{pmatrix} 0 \\ 0 \end{pmatrix}\}$ and

$$g\begin{pmatrix}\alpha_0 + \alpha_1\theta + \dots + \alpha_{m-1}\theta^{m-1}\\1\end{pmatrix} = g\begin{pmatrix}\alpha_0 + \alpha_1\theta + \dots + \alpha_{m-2}\theta^{m-2}\\1\end{pmatrix}$$
$$= m_{\theta}f\begin{pmatrix}1\\\alpha_0\theta + \alpha_1\theta^2 + \dots + \alpha_{m-2}\theta^{m-1}\end{pmatrix}.$$

As above one verifies that $g \in M_R(R^2)$ and that \hat{q} agrees with f on $\mathcal{C}_{\#}$.

In a similar manner one constructs $q_{\alpha}, \alpha \in F$, which agrees with f on \mathscr{C}_{α} and is 0 off \mathscr{C}_{α} . Then $f = \sum_{\beta \in \widehat{F}} q_{\beta} \in I$, and so the proof of Theorem 2.4 is complete when F is finite.

Alternatively, one could use the following approach in the finite case. For $\alpha \in F$, define $p_{\alpha} \begin{pmatrix} \alpha+\alpha_{1}\theta+\dots+\alpha_{m-1}\theta^{m-1} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ \alpha_{1}\theta+\dots+\alpha_{m-1}\theta^{m-1} \end{pmatrix}$ and $p_{\alpha}(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ for $x \notin \mathscr{C}_{\alpha}$. For each $g' \in N$, $q' = \begin{bmatrix} g' \begin{pmatrix} 0 & 0 \\ \theta^{k} & 0 \end{bmatrix} + h - g'h \end{bmatrix} p_{\alpha} \in I$. For $x \notin \mathscr{C}_{\alpha}$, $q'(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, and $q' \begin{pmatrix} \alpha+\alpha_{1}\theta+\dots+\alpha_{m-1}\theta^{m-1} \\ 1 \end{pmatrix} = g' \begin{pmatrix} \alpha_{k}\theta^{k}+\dots+\alpha_{m-1}\theta^{m-1} \\ \theta^{k} \end{pmatrix} - g'h \end{bmatrix}$

 $g'({}^{1}_{0})(\alpha_{k}\theta^{k} + \dots + \alpha_{m-1}\theta^{m-1}). \text{ Define } g'(\mathscr{C}_{\#}) = \{({}^{0}_{0})\} \text{ and}$ $g'\begin{pmatrix}\beta_{0} + \beta_{1}\theta + \dots + \beta_{m-1}\theta^{m-1}\\1\end{pmatrix}$ $= \dots = g'\begin{pmatrix}\beta_{0} + \beta_{1}\theta + \dots + \beta_{m-k-1}\theta^{m-k-1}\\1\end{pmatrix}$ $= m_{\theta^{k}}f\begin{pmatrix}\alpha + \alpha_{1}\theta + \dots + \alpha_{k-1}\theta^{k-1} + \beta_{0}\theta^{k} + \dots + \beta_{m-k-1}\theta^{m-1}\\1\end{pmatrix},$

where we have partitioned the generators $\binom{\alpha+\alpha_1\theta+\cdots+\alpha_{m-1}\theta^{m-1}}{1}$ of the covering submodules in \mathscr{C}_{α} by using the k-tuples $(\alpha, \alpha_1, \ldots, \alpha_{k-1})$. One shows that g' is well-defined and continuing obtains a function which agrees with f on \mathscr{C}_{α} and is zero off \mathscr{C}_{α} .

Suppose now F is infinite, and let $\delta_k: F^k \to F$ be a bijection. We again start with $\mathscr{C}_{\#}$, where as above we let $\overline{\alpha} = \alpha_1 \theta + \dots + \alpha_{m-1} \theta^{m-1}$. Define $h': R^2 \to R^2$ by $h'(\frac{1}{\alpha}) = ({}^{\delta_k(\alpha_1, \dots, \alpha_k)}{\theta^k + \alpha_{k+1}}{\theta^{k+1} + \dots + \alpha_{m-1}}{\theta^{m-1}})$ and $h'(x) = ({}^0_0), x \notin \mathscr{C}_{\#}$. As above one shows that $h' \in M_R(R^2)$. Thus for each $g \in N, t_{\#} = g(e_{\#} + h') - gh' \in I$. For $x \notin \mathscr{C}_{\#}, t_{\#}(x) = ({}^0_0)$. For $x = (\frac{1}{\alpha}), t_{\#}(x) = g(({}^0_{\theta^k}) + ({}^{\delta_k(\alpha_1, \dots, \alpha_k)}{\theta^k + \alpha_{k+1}}{\theta^{k+1} + \dots + \alpha_{m-1}}{\theta^{m-1}})) - gh'(x)$. Define $g(\mathscr{C}_{\#}) = \{({}^0_0)\}$ and $g({}^{\beta_0 + \beta_1 \theta + \dots + \beta_{m-1}}{\theta^{m-1}}) = \dots = g({}^{\beta_0 + \dots + \beta_{m-1-k}}{\theta^{m-1-k}}) = m_{\theta^k} f({}_{\mu_1\theta + \mu_2\theta^2 + \dots + \mu_k\theta^k + \beta_1\theta^{k+1} + \dots + \beta_{m-k-1}\theta^{m-1-k} + \dots + \gamma_{m-1}\theta^{m-1}})$ and $({}^{\gamma}_1)\theta^l = ({}^{\beta}_1)\theta^l$, then $(\gamma_0, \gamma_1, \dots, \gamma_{m-l-1}) = (\beta_0, \beta_1, \dots, \beta_{m-l-1})$. If $l \le k$, then $m - l - 1 \ge m - k - 1$ and so $g({}^{\gamma}_1)\theta^l = g({}^{\beta}_1)\theta^l$. If $l \ge k + 1$, then $g({}^{\beta}_1) = m_{\theta^k} f({}_{\mu_1\theta + \dots + \mu_k\theta^k + \beta_1\theta^{k+1} + \dots + \beta_{m-l-1}\theta^{m-l-1+k}) + \sigma_l\theta^{m-l} + \dots + \sigma_{k+1}\theta^{m-k-1}$, where $\sigma_{k+1}, \dots, \sigma_l \in R^2$, and

$$g\begin{pmatrix}\gamma\\1\end{pmatrix} = m_{\theta^k} f\begin{pmatrix}1\\\nu_1\theta + \dots + \nu_k\theta^k + \gamma_1\theta^{k+1} + \dots + \gamma_{m-l-1}\theta^{m-l-1+k}\end{pmatrix} + \sigma'_l\theta^{m-l} + \dots + \sigma'_{k+1}\theta^{m-k-1},$$

where $\sigma'_{k+1}, \ldots, \sigma'_l \in \mathbb{R}^2$ and $\delta_k(\nu_1, \ldots, \nu_k) = \gamma_0$. Since $\gamma_0 = \beta_0$, $(\nu_1, \ldots, \nu_k) = (\mu_1, \ldots, \mu_k)$ and $g({}^{\beta}_1)\theta^l = g({}^{\gamma}_1)\theta^l$. Hence $g \in N$.

[11]

Further,

$$\begin{split} t_{\#} \begin{pmatrix} 1 \\ \overline{\alpha} \end{pmatrix} &= g \begin{pmatrix} \delta_k(\alpha_1, \dots, \alpha_k) \theta^k + \alpha_{k+1} \theta^{k+1} + \dots + \alpha_{m-1} \theta^{m-1} \\ \theta^k \end{pmatrix} - g h' \begin{pmatrix} 1 \\ \overline{\alpha} \end{pmatrix} \\ &= g \begin{pmatrix} \delta_k(\alpha_1, \dots, \alpha_k) + \alpha_{k+1} \theta + \dots + \alpha_{m-1} \theta^{m-1-k} \\ 1 \end{pmatrix} \theta^k - 0 \\ &= m_{\theta^k} f \begin{pmatrix} 1 \\ \alpha_1 \theta + \dots + \alpha_k \theta^k + \alpha_{k+1} \theta^{k+1} + \dots + \alpha_{m-1} \theta^{m-1} \end{pmatrix} \theta^k \\ &= f \begin{pmatrix} 1 \\ \overline{\alpha} \end{pmatrix}. \end{split}$$

Thus $t_{\#}$ agrees with f on $\mathscr{C}_{\#}$ and is zero off $\mathscr{C}_{\#}$. We next show that there is a function $\hat{t}_{\#}$ in I which agrees with f off $\mathscr{C}_{\#}$ and is zero on $\mathscr{C}_{\#}$. This will imply that $f = t_{\#} + \hat{t}_{\#} \in I$. To this end let δ_{k+1} : $F^{k+1} \to F$ be a bijection, let $\alpha = \alpha_0 + \alpha_1 \theta + \cdots + \alpha_{m-1} \theta^{m-1}$ and define h'': $R^2 \to R^2$ by $h''(\mathscr{C}_{\#}) = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$ while $h''({\alpha \atop 1}) = 0$. $\begin{pmatrix} \sigma_{k+1}(\alpha_0,\ldots,\alpha_k)\theta^k + \alpha_{k+1}\theta^{k+1} + \cdots + \alpha_{m-1}\theta^{m-1} \\ 0 & 0 \end{pmatrix}$. One finds that $h'' \in N$. Let $\widehat{E}_{\#} = \begin{bmatrix} 0 & 0 \\ 0 & \theta^k \end{bmatrix}$ (id. $-e_{\#}$). Then $\widehat{E}_{\#}({}^{\alpha}_{1}) = ({}^{0}_{\theta^{k}})$ and $\widehat{E}_{\#}(\mathscr{C}_{\#}) = \{({}^{0}_{0})\}$. Since $\widehat{E}_{\#} \in I$, for each $g \in N$, $\hat{t}_{\pm} = g(\hat{E}_{\pm} + \hat{h}'') - g\hat{h}''$ is in I. For $x \in \mathscr{C}_{\pm}$, $\hat{t}_{\pm}(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and for

$$\begin{aligned} x &= \binom{\alpha}{1}, \ \hat{t}_{\#} \binom{\alpha}{1} = g \left(\binom{0}{\theta^{k}} + h'' \binom{\alpha}{1} \right) - g h'' \binom{\alpha}{1} \\ &= g \left(\delta_{k+1}(\alpha_{0}, \dots, \alpha_{k}) + \alpha_{k+1}\theta + \dots + \alpha_{m-1}\theta^{m-1-k} \right) \theta^{k} \\ &- g \binom{1}{0} (\delta_{k+1}(\alpha_{0}, \dots, \alpha_{k})\theta^{k} + \alpha_{k+1}\theta^{k+1} + \dots + \alpha_{m-1}\theta^{m-1}). \end{aligned}$$

Again we define $g(\mathscr{C}_{*}) = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$ and

$$g\begin{pmatrix}\gamma\\1\end{pmatrix} = g\begin{pmatrix}\gamma_0 + \gamma_1\theta + \dots + \gamma_{m-1}\theta^{m-1}\\1\end{pmatrix}$$
$$= \dots = g\begin{pmatrix}\gamma_0 + \gamma_1\theta + \dots + \gamma_{m-1-k}\theta^{m-1-k}\\1\end{pmatrix}$$
$$= m_{\theta^k}f\begin{pmatrix}c_0 + c_1\theta + \dots + c_k\theta^k + \gamma_1\theta^{k+1} + \dots + \gamma_{m-1-k}\theta^{m-1}\\1\end{pmatrix},$$

Downloaded from http://www.cambridge.org/core. Stellenbosch University, on 09 Nov 2016 at 11:27:16, subject to the Cambridge Core terms of use, available at http://www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1446788700035096

[13]

where $\delta_{k+1}(c_0, c_1, \dots, c_k) = \gamma_0$. As above, $g \in N$ and $\hat{t}_{\#}({}_1^{\alpha}) = f({}_1^{\alpha})$. Thus $f = t_{\#} + \hat{t}_{\#} \in I$, and the proof of Theorem 2.4 is complete.

4. Applications

In this final section we apply the above characterization of the ideals of N to determine the radicals $J_{\nu}(N)$ of N and the quotient structures $N/J_{\nu}(N)$, $\nu = 0, 1, 2$.

From Theorem 2.1 and [7, Theorem 5.20], $J_{\nu}(N) = J_{\nu}(M_{R_1}(R_1^2)) \oplus \cdots \oplus J_{\nu}(M_{R_i}(R_i^2))$. If R_i is a PID, then $J_0(M_{R_i}(R_i^2)) = \{0\}$. If R_i is a PID, not a field, then $J_1(M_{R_i}(R_i^2)) = J_2(M_{R_i}(R_i^2)) = M_{R_i}(R_i^2)$, and if R_i is a field, then $J_1(M_{R_i}(R_i^2)) = J_2(M_{R_i}(R_i^2)) = \{0\}$. If R_i is a special PIR, then from the previous section we know that $M_{R_i}(R_i^2)$ has a unique maximal ideal $(A_1^2; R_i^2) = (\{(_0^0)\}; A_{m-1}^2)$. Moreover, A_{m-1}^2 is a type 2, $M_{R_i}(R_i^2)$ -module, for if $\binom{\chi\theta^{m-1}}{\chi\theta^{m-1}} \in A_{m-1}^2$ then x and y are units in R (or zero), and so if $x \neq 0$ (say) then $[\binom{rx^{-1}}{sx^{-1}} (\binom{\chi\theta^{m-1}}{\chi\theta^{m-1}}) = (\binom{r\theta^{m-1}}{s\theta^{m-1}})$ for an arbitrary $\binom{r\theta^{m-1}}{s\theta^{m-1}}$ in A_{m-1}^2 . Therefore $J_2(N) \neq N$, so we have $J_0(M_{R_i}(R_i^2)) \subseteq J_1(M_{R_i}(R_i^2)) \subseteq J_2(M_{R_i}(R_i^2)) \subseteq (A_1^2; R_i^2)$. On the other hand it is straightforward to verify that $(A_1^2; R_i^2)$ is a nil ideal, so by [7, Theorem 5.37], $J_0(M_{R_i}(R_i^2)) \supseteq (A_1^2; R_i^2)$.

THEOREM 4.1.. If R is a special PIR with $J(R) = \langle \theta \rangle$, then $J_{\nu}(M_R(R^2)) = (\langle \theta \rangle^2; R^2)$, $\nu = 0, 1, 2$.

Since $N/J_{\nu}(N) \cong M_{R_1}(R_1^2)/J_{\nu}(M_{R_1}(R_1^2)) \oplus \cdots \oplus M_{R_i}(R_i^2)/J_{\nu}(M_{R_i}(R_i^2))$, it remains to determine $M_{R_i}(R_i^2)/J_{\nu}(M_{R_i}(R_i^2))$ when R_i is a special PIR. This characterization is provided in the following result.

THEOREM 4.2. Let R be a special PIR with $J(R) = \langle \theta \rangle$ and index of nilpotency m. Then $M_R(R^2)/J_{\nu}(M_R(R^2)) \cong M_{R/J(R)}(R/J(R))^2$, $\nu = 0, 1, 2$.

PROOF. We know that every element of $(R/J(R))^2$ has a unique representative $\binom{\alpha+J(R)}{\beta+J(R)}$, where α , $\beta \in F$. We define $\psi: M_R(R^2) \to M_{R/J(R)}(R/J(R))^2$ as follows: for $f \in M_R(R^2)$, $\psi(f)\binom{\alpha+J(R)}{\beta+J(R)} = f\binom{\alpha}{\beta} + J(R)^2$. If $\binom{\alpha+J(R)}{\beta+J(R)} = \binom{\gamma+J(R)}{\delta+J(R)}$, then $\alpha = \gamma$ and $\beta = \delta$, so $\psi(f)$ is well-defined. Furthermore

The lattice of ideals

$$\begin{split} \psi(f) &\in M_{R/J(R)}(R/J(R))^2 \text{, since } \psi(f)[\binom{\alpha+J(R)}{\beta+J(R)})(\gamma+J(R))] = f\binom{\alpha\gamma}{\beta\gamma} + J(R)^2 = f\binom{\alpha}{\beta}\gamma + J(R)^2 = \psi(f)\binom{\alpha+J(R)}{\beta+J(R)}(\gamma+J(R)). \end{split}$$

It is clear that $\psi(f+g) = \psi(f) + \psi(g)$. Further, $\psi(fg)(\frac{\alpha+J(R)}{\beta+J(R)}) = fg(\frac{\alpha}{\beta}) + J(R)^2$, while $(\psi(f)\psi(g))(\frac{\alpha+J(R)}{\beta+J(R)}) = \psi(f)(g(\frac{\alpha}{\beta}) + J(R)^2)$. If $g(\frac{\alpha}{\beta}) = (\frac{\alpha_0+\alpha_1\theta+\dots+\alpha_{m-1}\theta^{m-1}}{\beta_0+\beta_1\theta+\dots+\beta_{m-1}\theta^{m-1}})$, then $\psi(f)(g(\frac{\alpha}{\beta}) + J(R)^2) = f(\frac{\alpha_0}{\beta_0}) + J(R)^2$. But, as in Lemma 3.3, one finds $f(\frac{\alpha_0+\alpha_1\theta+\dots+\alpha_{m-1}\theta^{m-1}}{\beta_0+\beta_1\theta+\dots+\beta_{m-1}\theta^{m-1}}) = f(\frac{\alpha_0}{\beta_0}) + \sigma\theta$, $\sigma \in R^2$, so $f(\frac{\alpha_0}{\beta_0}) + J(R)^2 = f(\frac{\alpha_0+\dots+\alpha_{m-1}\theta^{m-1}}{\beta_0+\dots+\beta_{m-1}\theta^{m-1}}) + J(R)^2 = fg(\frac{\alpha}{\beta}) + J(R)^2$, i.e., $\psi(fg) = \psi(f)\psi(g)$.

We complete the proof by showing that ψ is onto and Ker $\psi = J_{\nu}(M_R(R^2))$. To show that ψ is onto, let $g \in M_{R/J(R)}(R/J(R))^2$. For $\binom{\alpha_0 + \alpha_1 \theta + \dots + \alpha_{m-1} \theta^{m-1}}{\beta_0 + \beta_1 \theta + \dots + \beta_{m-1} \theta^{m-1}}$ $\equiv \binom{\alpha}{\beta}$ define $f: R^2 \to R^2$ by $f\binom{\alpha}{\beta} = \binom{\alpha'_0}{\beta'_0}$ where $g\binom{\alpha_0 + J(R)}{\beta_0 + J(R)} = \binom{\alpha'_0 + J(R)}{\beta'_0 + J(R)}$. If $\binom{\alpha_0 + \alpha_1 \theta + \dots + \alpha_{m-1} \theta^{m-1}}{\beta_0 + \beta_1 \theta + \dots + \beta_{m-1} \theta^{m-1}} \theta^l$, then $f\binom{\alpha_0 + \alpha_1 \theta + \dots + \alpha_{m-1} \theta^{m-1}}{\beta_0 + \beta_1 \theta + \dots + \beta_{m-1} \theta^{m-1}} \theta^l$ $= f\binom{\delta_0 + \delta_1 \theta + \dots + \delta_{m-1} \theta^{m-1}}{\epsilon_0 + \epsilon_1 \theta + \dots + \epsilon_{m-1} \theta^{m-1}} \theta^l$, so one finds that $f \in M_R(R^2)$. Moreover, $\psi(f)\binom{\alpha_0 + J(R)}{\beta_0 + J(R)} = f\binom{\alpha_0}{\beta_0} + J(R)^2 = \binom{\alpha'_0}{\beta'_0} + J(R)^2 = g\binom{\alpha_0 + J(R)}{\beta_0 + J(R)}$, and hence $\psi(f) = g$.

Finally, Ker $\psi = \{f \in M_R(R^2) \mid f(\frac{\alpha}{\beta}) \in J(R)^2, \text{ for all } \alpha, \beta \in F\} = \{f \in M_R(R^2) \mid f(\frac{x}{\gamma}) \in J(R)^2 \text{ for all } x, y \in R\} = (J(R)^2; R^2) = (\langle \theta \rangle^2; R^2) = J_{\nu}(M_R(R^2)).$

Acknowledgement

This paper was written while the second author was visiting the Department of Mathematics at Texas A&M University in 1989–1990. He wishes to express his gratitude for financial assistance by the CSIR of South Africa and for the hospitality bestowed upon him by Texas A&M University.

References

 T. W. Hungerford, 'On the structure of principal ideal rings', Pacific J. Math. 25 (1968), 543-547.

- [2] H. Karzel, C. J. Maxson and G. F. Pilz, 'Kernels of covered groups', Res. Math. 9 (1986), 70-81.
- [3] B. R. McDonald, Finite Rings with Identity, (Dekker, N.Y., 1974).
- [4] C. J. Maxson, 'Near-rings associated with generalized translation structures', J. of Geometry 24 (1985), 175-193.
- [5] C. J. Maxson and A. P. J. van der Walt, 'Centralizer near-rings over free ring modules,' J. Austral. Math. Soc. (Series A) 50 (1991), 279-296.
- [6] J. D. P. Meldrum, Near Rings and Their Links With Groups, Res. Notes in Math. 134 (North-Holland, London, 1986).
- [7] G. F. Pilz, Near-rings, 2nd Edition, (North-Holland, Amsterdam, 1983).
- [8] O. Zariski and P. Samuel, *Commutative Algebra*, Volume I, (Van Nostrand, Princeton, 1958).

Texas A& M University College Station, TX 77843 U.S.A. University of Stellenbosch 7600 Stellenbosch South Africa