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We prove that the minimum number v = v(%,,(R)) such that the m X m upper
triangular matrix algebra #,,(R) over an arbitrary commutative ring R can be
generated as an R-algebra by v idempotents, is given by
[log, m] + 1, ifm=2,3,4;

[log, m], if m=>5.

v(#,(R)) =

In order to prove the result mentioned above, we show that »(R™) = [log, m]
for every m > 2, where R™ denotes the direct sum of m copies of R. The
latter result corrects an error by N. Krupnik (Comm. Algebra 20, 1992, 3251-3257).
© 1998 Academic Press

In [5] an internal characterization of structural matrix rings in terms of a
set of matrix units associated with a partial order relation was obtained,
and in [6] this characterization was used to recognize certain subrings of
full matrix rings as structural matrix rings. However, the mentioned
characterization is rather technical, and the search for a new internal
characterization of upper triangular matrix rings, and of structural matrix
rings in general, which is our long term goal, is the origin of this paper.
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Krupnik showed in [2] that for n > 3 the full matrix algebra M, (F) over
an arbitrary field F can be generated as an F-algebra by 3 idempotents.
Krupnik also found the minimum number of idempotents needed to
generate direct sums of full matrix algebras over F. In particular, in [2,
Theorem 5] Krupnik asserts that m — 1 is the minimum number of
idempotents needed to generate the F-algebra F, where F™ denotes
the direct sum of m copies of F (= M,(F)), F an arbitrary infinite field.
This assertion is incorrect. In Theorem 2 of the sequel we show that
m — 1 must be replaced by [log, m]. In fact, this holds for every commuta-
tive ring R. We use this result, together with the fact that R is a
homomorphic image of %,,(R), the m X m upper triangular matrix alge-
bra over R, to determine the minimum number of idempotents needed to
generate %, (R) as an R-algebra.

We wish to mention that idempotents in full matrix rings over commuta-
tive von Neumann regular rings were studied in their own right in [1].
Furthermore, the problem of finding the minimum number of idempotent
generators of an algebra is also important in operator theory. See, for
example, [3, 4]. In [4] it is shown that for each finitely generated Banach
algebra & there is a number n, so that the full n X n matrix algebra
M, (%) can be generated by three idempotents whenever n > n,.

Every algebra will be assumed to have an identity element, and subalge-
bras inherit the identity. Throughout the sequel R will be a commutative
(and associative) ring (with identity).

Let m > 2. We denote the direct sum of m copies of R by R, and we
consider R"™ as an algebra (over R). For k = 1,..., m, the element of
R with 1 in position k and zeros elsewhere is denoted by e{™.

Let n > 1. In Lemma 1 we show that R?" can be generated (as an
algebra) by n idempotents; more particularly, by the following »n idempo-
tents. Fori = 1,..., n we set

2,'71_ 1 j.2n—i+1+2n—i

W= YT e (1)

J=0 k=1+j2"7"*1
For example, for n = 3 this means that
u® =(1,1,1,1,0,0,0,0), u® =(1,1,0,0,1,1,0,0),
u® =(1,0,1,0,1,0,1,0).

Another way of viewing the u{?"’s is the following. First set u{? = e{? =

(1,0). Then, for n > 1, decompose R as R @ R, set u@""" =
n+1 n

(1R(2">,0R<2")), and forj = 2, ,n+ l set u(z ) = ( 52 Lu (2 ))

LEMMA 1. The set {u®",...,u®"} is a set of idempotent generators of
R® for every n > 1.
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Proof. If n =1, then u{® = e{® = (1,0), which, together with 1,2 =
(1,1), clearly generates R®.

We proceed by induction on n. Therefore, suppose that the set
{w?", ..., u?"} generates R for some n > 1. Let .« denote the subalge-
bra of R generated by {u® ",...,u® ). Then (u"},0pan) =
u(12n+1)u§2n+1) € and (0zen, uﬁzji) = (Lgemy — u(12’l+1))u§~2n+1) ey for j =
2,...,n + 1, which by the induction hypothesis completes the proof. |

We remark that the algebra R, for m > 2, cannot be generated by
less than [log, m] idempotents. Indeed, for m > 3, let py, ..., Piiog, mi-1
be any [log, m] — 1 idempotents in R“™. Denote by P the set comprising
1 and all products of the elements py,..., Pjiog, m—1- Obviously, |P| <
2l mI=1 < ;. The subalgebra .o/, of R generated by {p,,...,
Pliog, m-1} 1S the R-submodule of 7, generated by P, and so its rank is
less than m. Therefore, <7, is a proper subalgebra of R™.

Furthermore, if m < 2", then R" is a homomorphic image of R?" via

Ton - (Xpsee s Xy Xon) 2 (Xq,000,X,),

and so it follows from Lemma 1 that R, for 2"~ ! <m < 2", can be
generated by n = [log, m] idempotents. Thus we have proved the follow-
ing result.

THEOREM 2. Let R be a commutative ring, and let m > 2. The minimum
number v = v(R"™) such that R"™ can be generated as an R-algebra by v
idempotents is [log, m], and Wz[,ogzm]vm({u(z“(’gz""), L u%‘;zz’:]‘)}) is a set of
idempotent generators of R™™.

For example, with m = 7 we have [log, m] = 3, and so with u®, u®,
and u$ as in the paragraph following (1), it follows from Theorem 2 that

{(1,1,1,1,0,0,0),(1,1,0,0,1,1,0),(1,0,1,0,1,0,1)}

is a set of idempotent generators of R(".

Next we consider the m X m upper triangular matrix algebra %, (R) (as
an R-algebra).

For m > 3 we consider the (two-sided) ideal .7, of %, (R) generated by
the set

(Em1<ism=-2,i+2<j<m)]

Here E{"}’ denotes the (i, j)th matrix unit in #,,(R), i.e., the matrix with 1
in position (i, j) and zeros elsewhere. We denote the main diagonal by
D{™ and the ith diagonal above the main diagonal by D{™, i =1,...,m
— 1. Then the set above comprises the matrix units with zeros on the two
diagonals D{™ and D{™, and so .7, is the ideal of %, (R) comprising all
the matrices in #,(R) with zeros on D{™ and D{™. For example, for
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m = 4 we have that

o o

I =

o oX
coxX™

Our first aim now is to show (in Lemma 3) that, for n > 3, the quotient
algebra #,.(R) /.%,,» can be generated by n idempotents.

For i = 1,...,n we denote the diagonal matrix in %,.(R) with (j, j)th
entry equal to the jth entry of u®” (asin (1), j = 1,...,2", by U®", i.e.,
U®" is the image of u®" under the natural injection LRE™ 5 (k) R@®
%,,(R). For example, for n = 3 and i = 2 this means that we construct
US® by placing #® on the main diagonal, i.e.,

1

0

(Since we deal throughout the sequel with upper triangular matrices, we
leave the part below the main diagonal vacant, implying that that part
consists entirely of zeros.)

Using permutations together with the natural injection mentioned in the
previous paragraph, we will in the next paragraph construct three idempo-
tent matrices generating #4(R)/ 7. Then in Lemma 3 we use, among
others, induction and the ideas involved in the proof of Lemma 1 to obtain
n idempotent generators for #%,.(R)/.%. for n > 4. Next, since .%. is a
nilpotent ideal of #,.(R), we proceed in Lemma 4 and Corollary 5 by
lifting the n idempotents in #%,.(R)/ % to n idempotents in #%,.(R) which
generate %,.(R).

Consider the elements u{® =(1,1,1,1,0,0,0,0), 1ze — u$® = (0,0,1,
1,0,0,1,1), and u® =(1,0,1,0,1,0,1,0) of R®. By Lemma 1 the set
{W®, 10 — u®, u®} generates R®. Let o € S, (the symmetric group on 8
symbols) be the permutation (2 6 4)(3 5 7), and let 7: R® — R® pe the
map

(xl, cey xs) g (xu—l(l), caey xo_—1(8)).
Then

{(uf, 7(1ge — uP), u} generates R®, (2)
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since 7(u®) = (1,1,0,0,1,1,0,0) = u® and 7(u®) = uP. Note that

T(1R<8) —u(zg)) = (0,1,1,0,1,0,0,1). (3)
Next we set
1 0 O
1 1
0 O
0 1
YO = U+ B + B+ B = o
1 1
0 O
L 0_
(4)
If we call the map
r O
r— '
’

the scalar matrix injection, then for n > 3 we construct Y@ as the sum
of ES',»)., and the image

Yen o

i

of Y@ under the scalar matrix injection of %,.(R) into #,.-1(R).
We also set

8) . 8 8 8 8 8
Z® = ey (7 (Lger — uP)) + E®) + EP, + ES) + EF).

Then by (3),

0 1
1 0 O
1 1
0 O
7Z® — 11 ) (5)
0 O
0 1
1

For n > 4 we construct Z?" as the image
z® O

7Z®
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of Z® under the scalar matrix injection #y(R) into %,.(R). Equivalently,
for n > 3, Z®""" may be viewed as the image

z@ 0
yAGS!

of Z®" under the scalar matrix injection of #,.(R) into #,.+:(R).
Before we state Lemma 3, recall that

. - (6)

For n > 3 and for a matrix X®" in #,.(R) we write X@" for its image in
#,(R) /Fn, and we write X" as a matrix with nonzero elements of R
allowed only on D" and D{".

LEMMA 3. The set {Y®, Z®, U®} is a set of idempotent generators of the
quotient algebra #y(R) /.5, and {Y?", Z?", U, UE™, ..., U%)} is a set of
idempotent generators of %, R) /% for every n > 4.

Proof. Direct verification shows that the mentioned matrices are idem-
potent.

We now use induction on n, starting with n = 3, i.e., with 2" = 2% = 8,
First note that for every matrix

X111 X12
X2,2 %23 O
X33 X34
X® .— Xa,4 Xas
X555 X5
X6.6 X6,7
X771 X718
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in Z(R) /.7, we have that

T®X® — YOU®

[0 X1
0 —Xy3 O
0 X3 4
_ 0 —X45 )
0 Xs5,6
0 ~Xe,7
0 X7.8
0

By (3)-(6) the main diagonals of Y®, Z®, and U® are
ul, 7(1ge — uf’), and ud,

respectively, and so by (2) it follows from matrix multiplication in an upper
triangular matrix algebra that, for i = 1,...,8, there is a matrix V,® in the
subalgebra % of #Zy(R) /%, generated by {Y®, Z®, U®} with 1 in position
(i, i) and zeros elsewhere on D®. Therefore (7) implies that

TO(®FE® _ ¥OT®) — 78
Vi )(Us( 'X® — XOU{ )) = £x; 1 Ef

Hence, since for i =1,...,7, Y® or Z® has 1 in position (i,i + 1), it
follows that E®, , €. We conclude that & = Z,(R) /%, i.e., Z,(R) /%
can be generated by {Y®, Z®, U®}.

Next, suppose that {Y®", Z@" U@ U#", ..., U%)} generates
%,(R) /7, for some n > 4. It will be clear that our arguments, which will
show that

—(on+1l =mon+l == on+1 —mon+l —mon+l
{Y(Z ", Ze@H geoh, ultth, L U, )} generates %, 1(R) /Fpn+1,

(8)

cater for the transition from n = 3 to n = 4 as well. By the induction
hypothesis, the arguments regarding the scalar matrix injection (preceding
the statement of Lemma 3), the construction of Y@ and Z@""", and
the spirit of the proof of Lemma 1 it follows that the set

= on+l\Son+ I\t mon+ly Tomont+tI\=SmontilNTomontly Tomont I\t ont+ TS on+1
{Ul(Z yet )U1(2 * ), Ul(Z hz@e" )Ul(2 * ) Ul(2 * )Un(%rf )Ul(2 * ),

- 2n+1 - 2n+1 - 2n+1 - 2n+1 - 2n+1 - 2n+1
T Hge HTe L TG T >}
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generates the subalgebra

=

@)

of %,.-1(R)/%.+1. Note that this subalgebra represents the image of
%, (R)/Fy: under the injection map r— ["3] of #%,.(R)/%. into
Wyni1(R) /Fpuvr. Similarly, with 1 denoting the identity of %,.:1(R)/ Fyu-1,
and with W@ .= 1 — U2""Y, it follows that

= 2n+1 e 271+1 = 2n+1 = 2n+1 = 2n+1 = 2n+1 - 2n+1 e 2n+1 - 2n+1
{W( )Y ¢ 774t ),W( A D774t ), W )Un(+1 774t ),

W(Z/HI)U:L(Z/HI)W(ZrHl)’ . W(21x+1)l—/;1(2_n2+1)W(2n+1)}

generates the subalgebra

2" +1
)
©) ©)
R R 0 0
0
R
R

of 7/2n+1(R)/f2n+1.

Up to now we have shown that all the matrix units in %,.+1(R) /Fn-1,
except possibly E$',.).,, are in &, where & is the subalgebra of
Uy i(R)/Fyner generated by {Y@"'D, Z@"D g™ g, .. 0"},
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n+1 2n+l 2n+1

Therefore Y®") — EZ .1 € ¢, and hence E$',), €. Thus & =
#,ns1(R) /F01, Which establishes (8). I

The following result holds for every ring S, not necessarily commutative.

LEMMA 4. Let S be a ring with subring A and nilpotent ideal 1. If the
natural ring homomorphism A — S /1% is an epimorphism, then A = S.

Proof. Let N be the index of nilpotency of 1. Then IV = {0} c 4. We
use induction to show that 1" € 4 for n = N, N — 1,...,2. Suppose that
I""1 c A for some n + 1 <N. Since 4 > S/I? is an epimorphism, it
follows that 4 + I? = S. Therefore (4 +I>) NI =1 But (4 +1?)nN1I
=(ANI)+1%andso(A NI)+ 1% =1 Raising both sides to the power
n, we obtain, using the induction hypothesis, that 1" c A. Thus 1% C A4,
andso A=A+1>=3S. 1

Let m > 3, and let {W,"™,..., W™} be a set of k idempotent genera-
tors of #%,(R)/.7,, for some k. Since .#, is a nilpotent ideal of %,,(R), we
can lift W to an idempotent W of %, (R), i =1,...,k, and so, by
letting ./ be the subalgebra of %, (R) generated by (W™, ..., W™},
Lemma 4 implies that &/ = #,,(R). We thus conclude from Lemma 3 and
Lemma 4 that

COROLLARY 5. The set {Y®, Z® U®} is a set of idempotent generators
of the algebra %y(R), and {Y©@",Z®), U, UPY,..., U} is a set of
idempotent generators of %,.(R) for every n > 4.

If m" < m, then %,,(R) is a homomorphic image of %, (R) via i, . :
#,(R) - %, (R), with

a7 A A +1 Ay, m
" i Ay i1 A
m,m'
Ay v 1, m' +1 A +1,m
am,m
@ 7 Ay
o .
Ay o

We can now state our main result.
THEOREM 6. Let R be a commutative ring, and let m > 2.

(i)  The minimum number v = v(%,(R)) such that the m X m upper
triangular matrix algebra %, (R) over R can be generated as an R-algebra by v



614 KELAREV, VAN DER MERWE, AND VAN WYK

idempotents, is given by

[log, m] + 1, ifm=2,3,4;

v(#,(R)) = [log, m], ifm>=5.

(i)  The set {[5 1], [3 3]} is a set of idempotent generators of %,(R), and
g AY®, Z® UPY) is a set of idempotent generators of #,(R) for m =
3,...,8

(iii)y Form =9, a set of idempotent generators of %,(R) is given by

[logp m] [logp m] [logy m] [logp m] [logy m]
wz{.ogzn,lym({y@ ), Z@" gEh g™t g })

log, m] [log, m]—3

Proof. Since R is a homomorphic image of %, (R), it follows from
Theorem 2 that »(#%,,(R)) > [log, m] if m > 2. Hence, since [log, 5] = 3,
we conclude from Lemma 3, Corollary 5, and the fact that %,,(R) is a
homomorphic image of #,(R) if m' <m, that »(%,(R)) = [log, m] if
m > 5.

Next we consider the cases m = 3 or m = 4. By [4] or [2, Theorem 6]
every algebra generated by two idempotents satisfies the standard polyno-
mial identity

2 SIN(0) X 1) X200 @) %@y = O

gES,

of degree 4, with x,,...,x, noncommuting indeterminates. However,
%,(R) and %,(R) do not satisfy the mentioned polynomial identity, which
can be seen by using E{"Y, E{"Y, E{"Y, and E{"), m = 3,4. Therefore
Lemma 3 and Corollary 5 imply that v(#%,(R)) =3 =[log, m] + 1 if
m = 3,4.

The preceding two paragraphs and the paragraph preceding Theorem 6
also cater for (iii) and the second part of (ii). Finally, Z,(R) can be
generated by ¢, ,(Y®, Z®, U®}). Since iy ,(Y®) = 1, ), it follows that
%#,(R) is generated (as an R-algebra) by {[9 t],[} 9]}. Furthermore, %,(R)
cannot be generated by less than two idempotents. Indeed, every subalge-
bra & of %,(R) generated by less than 2 idempotents is commutative, and
so the argument preceding Theorem 2 shows that & is an R-module of
rank at most 2. However, %,(R) is an R-module of rank 3. |
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For example, for m = 10 the four idempotents

(1 0
1 1 O
0 0
0 1
1 0
1 1 ’
0 0
0 1
1 0
. l_
0 1 :
1 0 O
1 1
0 0
1 1
0 0 ’
0 1
1 0
0 1
. 1_
= :
0 O
1
0
1
0 ,
1
0
1
. 0_
1
1 O
1
1
1
1
1
1
0
- O_

generate %;,(R).
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We finally wish to mention that we have used MAGMA extensively
during this project.
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