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We study the interplay between the polynomial identities 
[. . . [[x1, x2], x3], . . . , xq+1] = 0, [x1, y1][x2, y2] · · · [xq, yq ] = 0
and [[x1, y1], [x2, y2]] = 0 in general, and in certain matrix 
algebras, which are closely related to structural matrix 
algebras, in particular. We show that if such a matrix algebra 
A satisfies the identity [[x1, y1], [x2, y2]] = 0 (in particular, if 
A satisfies the identity [[x1, x2], x3] = 0), then A satisfies the 
identity [x1, y1][x2, y2] = 0, and we prove a decomposition 
theorem for such subalgebras of upper triangular matrix 
algebras satisfying the Engel condition, and hence for such 
Lie nilpotent subalgebras.
An in depth analysis of the maximum dimension of a 
subalgebra of the full n × n matrix algebra Mn(F ) over a 
field F satisfying the identity [x1, y1] [x2, y2] · · · [xq, yq ] = 0
(as obtained in [5]) leads to a more detailed formula for this 
maximum dimension, as well to a precise way of obtaining 
a class of examples of F -subalgebras of Mn(F ) having 
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this dimension, and finally to determining exactly when a 
simplified version of the mentioned formula can be used.

© 2017 Elsevier Inc. All rights reserved.

1. Notation

Throughout this paper, R, J(R) and F denote a (not necessarily commutative) ring 
with identity, its Jacobson radical, and a field, respectively, and [x, y] = xy− yx denotes 
the additive commutator of elements x, y ∈ R.

For a positive integer n, we use Mn(R) for the full matrix ring of all n × n matrices 
over R, and In for the n × n identity matrix. By ei,j we denote the matrix with 1 in 
position (i, j) and 0 elsewhere, and by Ai,j (or (A)i,j in case of possible confusion) the 
entry of a matrix A in position (i, j). We use Un(R) for the subring of Mn(R) comprising 
all the upper triangular matrices, and U�

n(R) for the subring of Un(R) consisting of all 
the matrices A in Un(R) with constant main diagonal, i.e., A1,1 = · · · = An,n for every 
A ∈ U�

n(R).
If R is commutative, then Mn(R) is an R-algebra, and the mentioned subrings are 

R-subalgebras.

2. Introduction

Various known results about, and many kinds of rings and algebras satisfying, the 
polynomial identities (PIs)

[. . . [[x1, x2], x3], . . . , xq+1] = 0, [x1, y1][x2, y2] · · · [xq, yq] = 0

and [[x1, y1], [x2, y2]] = 0
(1)

have been the inspiration for this paper.
Firstly, the identity

[x1, y1] [x2, y2] · · · [xq, yq] = 0 (2)

features prominently in numerous papers, e.g., [10], [1], [5] and [13]. Mal’tsev proved 
in [10] that all the polynomial identities of Uq(F ) are consequences of only one identity, 
namely the identity in (2). For an explicit form of a finite set of generators of an ideal 
of identities of the algebra U�

q (R) over a commutative integral domain R, see [11].
Secondly, a Cayley–Hamilton trace identity for 2 × 2 matrices over Lie solvable (of 

index 2) rings was obtained in [13], where the R-subalgebra U�
3
(
U�

3 (R)
)

of U�
9 (R) (for 

any commutative ring R) was exhibited as an example of an algebra satisfying the 
(Lie solvable of index 2) identity [[x1, y1], [x2, y2]] = 0, but neither the (Lie nilpotent 
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of index 2) identity [[x1, x2], x3] = 0, nor the identity [x1, y1][x2, y2] = 0 (see (2) with 
q = 2).

Thirdly, the maximum dimension of an F -subalgebra of Mn(F ) satisfying the identity 
in (2) was studied in [5]. The examples of such F -subalgebras of Mn(F ) mentioned in [5]
reminds one very strongly, in at least two ways, of the typical examples of F -subalgebras 
of Mn(F ) in [17] with maximum dimension satisfying the (Lie nilpotent of index q) 
identity

[. . . [[x1, x2], x3], . . . , xq+1] = 0. (3)

The first resemblance is the fact that both classes of F -subalgebras of Mn(F ) are, 
modulo the blocks on the main diagonal, structural matrix algebras, in the sense that one 
has total freedom in the blocks in the “strictly upper triangular part”, which constitutes 
the Jacobson radical.

The second similarity is the fact that the algebras in [17] are subalgebras of the 
algebras in [5], “hinting” or “suggesting” that the identity in (3) may perhaps imply the 
identity in (2) for such F -subalgebras of Mn(F ).

It is vitally important here to stress the fact that for the R-subalgebra U�
3
(
U�

3 (R)
)

of 
U�

9 (R) mentioned earlier one does not have total freedom in the strictly upper triangular 
blocks, in the sense that the entries in some positions in these blocks are “linked” or 
“tied” to one another; stated equivalently, even as far as the strictly upper triangular 
blocks in U�

3
(
U�

3 (R)
)

are concerned, U�
3
(
U�

3 (R)
)
, contrary to the mentioned examples 

in [5] and [17], is not a structural matrix algebra.
In Section 3 the mentioned examples, together with other examples, are used to study 

in detail the interplay between the three identities in (1) in general. The resemblance 
mentioned above is pursued in Section 4, where these identities are studied in structural 
matrix algebras and in certain F -subalgebras of Mn(F ) having the “structural” form as 
far as the Jacobson radical is concerned. A decomposition theorem for such F -subalgebras 
of Un(F ) satisfying the Engel condition (which is a weaker condition than Lie nilpotency) 
as a direct sum of F -subalgebras of the form U�

ni
(F ) is proved in Section 5.

We devote Section 6 to a thorough analysis of precisely constructing the examples 
of F -subalgebras of Mn(F ) satisfying the identity in (2). This gives rise to a more 
detailed formula for the maximum dimension of an F -subalgebra of Mn(F ) satisfying 
the identity in (2). Another upper, more simplified, bound for the maximum dimension of 
an F -subalgebra of Mn(F ) satisfying the identity in (2) was obtained in [5]. In Section 7
we determine exactly when these two upper bounds coincide, and we conclude the paper 
by stating an open problem in Section 8.

3. Pertinent examples involving the three polynomial identities

In this section we want to present some facts which show occurring relations between 
certain F -subalgebras of Mn(F ) which will be the main object of our interest in Section 4. 
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Our approach is directly related to some well known examples and should be seen as 
justification for the development of the sequel.

Define inductively the Lie central and Lie derived series of R as follows:

C0(R) = R, Cq+1(R) = [Cq(R), R] (central series),

D0(R) = R, Dq+1(R) = [Dq(R),Dq(R)] (derived series).

We say that R is Lie nilpotent (respectively, Lie solvable) of index q (for short, R is Lnq; 
respectively, R is Lsq) if Cq(R) = 0 (respectively, Dq(R) = 0). It is evident that R is Lnq

or Lsq if and only if R satisfies the corresponding polynomial identities, and that if R
is Lnq, then R is Lsq, or, for short, Lnq ⇒ Lsq; in particular,

Ln2 ⇒ Ls2. (4)

By [18, Theorem 2.2], for any integer q ≥ 3, if a ring R is Lnq, then

Cq−1(R) · Cq−1(R) = 0. (5)

However, the m-generated (m ≥ 4) Grassmann algebra

E(m) = F 〈v1, . . . , vm : vivj + vjvi = 0 for all 1 ≤ i ≤ j ≤ m〉

over a field F (with 4 �= 0) is used in [18, Remark 2.3] to show that (5) is not true for q = 2, 
i.e., although the m-generated (m ≥ 4) Grassmann algebra satisfies the Lie nilpotent of 
index 2 identity [[x1, x2], x3] = 0, it does not satisfy the identity [x1, y1][x2, y2] = 0.

If a ring R satisfies the identity in (2) for some q ≥ 1, then we say that R is Dq (this 
identity is studied extensively by Domokos in [5]). In the above vein, it follows trivially 
that if R is D2m , then R is Lsm+1; in particular,

D2 ⇒ Ls2. (6)

It is worth noting (see [18, Proposition 2.1(1)] or [8]) that if a ring is Ln2, then, 
although it need not be D2, it does satisfy the weaker identity [x1, y1][x1, y2] = 0.

On the other hand, we draw the reader’s attention to the fact that the identity 
[[x1, y1], [x1, y2]] = 0 implies the “seemingly stronger” (Lie solvable of index 2) iden-
tity [[x1, y1], [x2, y2]] = 0 (see [13, page 2582]).

For our purposes, we want to see the k-generated (k ≥ 4) Grassmann algebra, first 
of all, as showing that if an algebra is Ln2, then it is not necessarily D2, or for short, in 
general,

Ln2 � D2. (7)
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Observe that the 2 ×2 upper triangular F -algebra U2(F ) is D2, but it is not Ln2, and 
so, for F -algebras A, we also have, in general,

D2 � Ln2. (8)

Moreover, note that it is even possible for an F -subalgebra A of U�
n(F ) to be D2

(and hence Ls2) without A being Ln2. To wit, let A = U�
4 (F ). By [17, Remark 33] the 

maximum dimension of an Ln2 F -subalgebra of Mn(F ) is exactly 
⌊
n2

3

⌋
+ 1, which, for 

n = 4, is equal to 6. On the other hand, A is an F -algebra of the type on page 157 in [5]
(see also (2) in Example 1 below), with q = 2, and so A is D2. However, dimF (A) = 7, 
and so being an F -subalgebra of M4(F ), A is not Ln2. Hence, the answer to Question 2 
in [17, Section 9], relating to [17, Theorem 24], is no.

As far as (7) is concerned, we now consider the following typical examples of 
F -subalgebras of Mn(F ) which are Lnq−1, considered in [17], and typical examples of 
F -subalgebras of Mn(F ) which are Dq, considered in [5].

Example 1. Let n ≥ 1 and let n1, n2, . . . , nq be positive integers such that n1+· · ·+nq = n, 
for some q ≤ n. For these integers we consider two classes of F -subalgebras. Firstly, we 
work with the F -subalgebra

A = FIn +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣
A1 A(1,2) · · · A(1,q)

0 A2
. . .

...
...

. . . . . . A(q−1,q)
0 · · · 0 Aq

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9)

of U�
n(F ), where for every i, Ai = Mni

({0}), and A(j,k) = Mnj×nk
(F ) for all j and k

such that 1 ≤ j < k ≤ q. The class of algebras A is considered in [17], where they are 
called algebras of n ×n matrices over F of type (n1, n2, . . . , nq). They are basic examples 
of F -subalgebras of Mn(F ) which are Lnq−1. In fact, if

n1 = n2 = · · · = nq−r =
⌊
n

q

⌋
, and nq−r+1 = · · · = nq =

⌊
n

q

⌋
+ 1

where, from the Division Algorithm, r is the (unique) non-negative integer in the equa-
tion

n = q

⌊
n

q

⌋
+ r, 0 ≤ r < q, (10)

then A is an Lnq−1 F -subalgebra of Mn(F ) with maximum dimension.
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Now, we consider the F -subalgebra

D =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣
D1 D(1,2) · · · D(1,q)

0 D2
. . .

...
...

. . . . . . D(q−1,q)
0 · · · 0 Dq

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11)

of Mn(F ), where Di is a commutative F -subalgebra of Mni
(F ) for every i, and as before, 

Dj,k = Mnj×nk
(F ) for all j and k such that 1 ≤ j < k ≤ q. These F -algebras D (see [5]) 

are Dq (see (2)). In Section 6 we provide detailed (more detailed than in [5]) results 
of how, using D, one can obtain F -subalgebras of Mn(F ) of this form with maximum 
dimension.

Now, let

A′ = FIn1+n2 +
[
A1 A(1,2)
0 A2

]
⊆ U�

n1+n2
(F ),

where A1, A2 and A(1,2) are the matrices appearing in (9). It is easy to see that A′ is a 
commutative F -subalgebra of Mn1+n2(F ) (and hence A′ is Lnq and Dq for every q ≥ 1), 
and so by referring to D, we conclude that A, apart from being Lnq−1, as mentioned 
earlier, is also Dq−1.

For the special case q = 3, the typical F -subalgebra A of Mn(F ) considered above 
is Ln2, and by the foregoing arguments, A is also D2. This shows that, as far as these 
particular F -subalgebras A of Mn(F ) are concerned, the situation seems to differ from 
the general case (7), as the mentioned m-generated Grassmann algebra shows.

In fact, the m-generated Grassmann algebra also shows that an Ln2 F -subalgebra of 
a full matrix algebra over F need not be D2, as is evident from the following example.

Example 2. Since E(m) is a 2m-dimensional vector space over F , it follows that the 
F -algebra of all linear transformations of E(m) is isomorphic to the full matrix algebra 
M2m(F ). Also, the map a 
→ La, a ∈ E(m), is a monomorphism, where La is the “left 
multiplication” linear transformation La(x) = ax, x ∈ E(m). (See, also, [12].)

On a positive note, for a large class of R-subalgebras of Mn(R), R any commutative 
ring, we will show in Section 4 that the implication Ln2 ⇒ D2 does hold.

Example 3. By [13, Corollary 2.2], for any commutative ring R, the subring U�
3 (U�

3 (R))
of U�

9 (R) is Ls2, but it is neither Ln2 nor D2, and so we have, in general,

Ls2 � Ln2 or D2. (12)
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At this stage we point out that there is an error in the sentence preceding [13, Theo-
rem 2.1], where the authors attempt to show that if R is a non-commutative ring, then 
U�

3 (R) is not D2. Namely, the authors consider e2,2 as an element of U�
3 (R), which is not 

true. All the other results in [13] are correct, and fortunately the resulting gap in [13]
can be fixed by showing that, for an arbitrary ring R (not necessarily commutative), 
U�

3 (U�
3 (R)) is not D2. This can be done as follows:

For e1,2, e2,3, I3 ∈ U�
3 (R) consider the matrices

X =

⎡
⎢⎣ e1,2 0 0

0 e1,2 0
0 0 e1,2

⎤
⎥⎦ , Y =

⎡
⎢⎣ e2,3 0 0

0 e2,3 0
0 0 e2,3

⎤
⎥⎦

U =

⎡
⎢⎣ 0 I3 0

0 0 0
0 0 0

⎤
⎥⎦ , V =

⎡
⎢⎣ 0 0 0

0 0 I3
0 0 0

⎤
⎥⎦

in U�
3 (U�

3 (R)). Then

[X,Y ] [U, V ] =

⎡
⎢⎣ 0 0 e1,3

0 0 0
0 0 0

⎤
⎥⎦ �= 0

(with e1,3 ∈ U�
3 (R)).

4. The polynomial identities in structural and related R-subalgebras of Mn(R), 
R a commutative ring

In this section we will consider structural R-subalgebras of Mn(R), R a commutative 
ring, and R-subalgebras of Mn(R) such that their Jacobson radicals are ‘structural’.

A structural matrix ring over a (not necessarily commutative) ring R is a subring of 
full the matrix ring Mn(R) consisting of all matrices having zero in certain prescribed 
positions and any elements of R in the other positions. To be more precise, recall that 
the class of structural matrix rings or incidence rings has been studied extensively, see 
for example, [3], [4], [9], [16], [19] and [20]. For a reflexive and transitive binary relation 
θ on the set {1, 2, ..., n}, the structural matrix subring Mn(θ, R) of Mn(R) is defined as 
follows:

Mn(θ,R) = {A ∈ Mn(R) | Ai,j = 0 if (i, j) /∈ θ}.

Note that if, for any ordered pair (i, j), there is a matrix A in a structural matrix ring 
Mn(θ, R) such that Ai,j �= 0, then Rei,j ⊆ Mn(θ, R), i.e.,

πi,j

(
Mn(θ,R)

)
�= {0} ⇒ Rei,j ⊆ Mn(θ,R) (13)
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(here πi,j is the natural projection onto the (i, j)-entry). It can be shown (see [3, 
page 1386] or [16, page 5604]) that, for some k, there are positive integers n1, . . . , nk

such that n1 + · · · + nk = n and Mn(θ, R) is (isomorphic to) a block(ed) triangular 
matrix ring ⎡

⎢⎢⎢⎢⎢⎣
Mn1(R) Mn1×n2(X(1,2)) · · · Mn1×nk

(X(1,k))

0 Mn2(R)
. . .

...
...

. . . . . . Mnk−1×nk
(X(k−1,k))

0 · · · 0 Mnk
(R)

⎤
⎥⎥⎥⎥⎥⎦ , (14)

where X(i,j) = {0} or X(i,j) = R for all i, j with 1 ≤ i < j ≤ k. (See also [4].) By, e.g., 
[20, Theorem 2.7],

J
(
Mn(θ,R)

) ∼=
⎡
⎢⎢⎢⎢⎢⎣
Mn1

(
J(R)

)
Mn1×n2(X(1,2)) · · · Mn1×nk

(X(1,k))

0 Mn2

(
J(R)

) . . .
...

...
. . . . . . Mnk−1×nk

(X(k−1,k))
0 · · · 0 Mnk

(
J(R)

)

⎤
⎥⎥⎥⎥⎥⎦ ,

implying that the quotient ring Mn(θ, R)/J
(
Mn(θ, R)

)
is (isomorphic to) a direct sum 

of full matrix rings:

Mn(θ,R)/J
(
Mn(θ,R)

) ∼= Mn1

(
R/J(R)

)
⊕ · · · ⊕Mnk

(
R/J(R)

)
. (15)

At this point we note that complete block triangular matrix rings Mn(θ, F ) over a 
field F (that is the case when X(i,j) = F for all i, j with 1 ≤ i < j ≤ k in the block 
triangular matrix ring Mn(θ, R) above) feature prominently in [6], where it is proved 
that Id

(
Mn(θ, F )

)
= Id

(
Mn1(F )

)
· · · Id

(
Mnk

(F )
)
. Here, Id(A) denotes the set of all 

polynomial identities of A (for an algebra A), which is a two-sided ideal of the free 
(associative) algebra F 〈X〉 of polynomials in the non-commuting indeterminates x ∈ X

(for a set X). In fact, Id(A) is an ideal invariant under all endomorphisms of F 〈X〉.
Considering (6) and (12), and observing that U�

3
(
U�

3 (R)
)

in Example 3 is not a struc-
tural subring of M9(R), we prove now that the converse of (6) holds for the class of 
structural matrix rings over a commutative ring. In the light of (4) this shows that the 
implication Ln2 ⇒ D2 holds for this class of matrix rings.

Theorem 4. Let A be a structural matrix subring of Mn(R), R a commutative ring. 
Without loss of generality, we may assume that A is a block triangular matrix ring as 
in (14). If A satisfies the polynomial identity [[x1, y1], [x2, y2]] = 0 (in particular, if A is 
Ln2), then A ⊆ Un(R) and A satisfies the identity [x1, y1][x2, y2] = 0.

Proof. We first show that A ⊆ Un(R). By (15), there are positive integers n1, . . . , nk

such that n1 + · · · + nk = n and
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A/J(A) = Mn1

(
R/J(R)

)
⊕ · · · ⊕Mnk

(
R/J(R)

)
.

Assuming that A is Ls2, then so is A/J(A), which implies that n1 = · · · = nk = 1
(otherwise [[e1,1, e1,2], [e2,2, e2,1]] = e1,1 − e2,2 �= 0). Hence, A ⊆ Un(R), and so

[A,A] ⊆ J(A), (16)

which means that there is nothing to prove for n = 1, 2.
Next, let A be an Ls2 structural matrix subring of Un(R) for some n ≥ 3, and assume 

by induction that the result is true for Ls2 structural matrix subrings of Uk(R), k < n.
Since every matrix A in A is upper triangular, there are an (n − 1) × (n − 1) upper 

triangular matrix A and a 1 × (n − 1) matrix NA such that

A =
[
A1,1 NA

0 A

]
(17)

It is not hard to see that

A := {A : A ∈ A} (18)

is an Ls2 structural subring of Un−1(R), and so by the induction hypothesis A is D2. 
Hence, for A, B, C, D ∈ A, it follows from the induction hypothesis that

[A,B] [C,D] =
[

0 N[A,B][C,D]

0
[
A,B

] [
C,D

] ] =
[

0 N[A,B][C,D]

0 0

]
.

Suppose that for some A, B, C, D ∈ A we have N[A,B][C,D] �= 0, which means that 
A is not D2. Then (N[A,B][C,D])1,t �= 0 for some t such that 1 ≤ t ≤ n − 1, i.e., 
([A,B] [C,D])1,t+1 �= 0 (keep in mind that N[A,B][C,D] is a 1 × (n − 1) matrix, and 
[A,B] [C,D] is an n × n matrix). Since

(N[A,B][C,D])1,t =
t+1∑
s=1

[A,B]1,s · [C,D]s,t+1 ,

it follows from (16) that

(N[A,B][C,D])1,t =
t∑

s=2
[A,B]1,s · [C,D]s,t+1 �= 0. (19)

Since A is assumed to be Ls2, we clearly have

N[C,D][A,B] = N[A,B][C,D], (20)
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and so

(N[C,D][A,B])1,t = (N[A,B][C,D])1,t �= 0. (21)

Let C ′ and D′ be the matrices obtained form C and D, respectively, such that

(C ′)i,t+1 = (D′)i,t+1 = 0 for i = 1, . . . , t, (22)

and all other entries in C ′ and D′ are the same as in C and D, respectively. As A is 
structural, it follows that C ′, D′ ∈ A. Consequently, by (22), for any s = 2, . . . , t we have

[C ′, D′]s,t+1 =
(

t∑
z=1

C ′
s, zD

′
z,t+1

)
+ C ′

s,t+1D
′
t+1,t+1

−
(

t∑
w=1

D′
s,wC

′
w,t+1

)
−D′

s,t+1C
′
t+1,t+1 = 0.

Thus

(N[A,B][C′,D′])1,t =
t∑

s=2
[A,B]1,s · [C ′, D′]s,t+1 = 0. (23)

On the other hand,

(N[C′,D′][A,B])1,t =
t∑

s=2
[C ′, D′]1,s · [A,B]s,t+1 ,

and for any s = 2, . . . , t we have

[C ′, D′]1,s = (C ′D′ −D′C ′)1,s =
s∑

g=1
(C ′

1,gD
′
g,s −D′

1,gC
′
g,s)

=
s∑

g=1
(C1,gDg,s −D1,gCg,s) = [C,D]1,s .

Thus,

(N[C′,D′][A,B])1,t = (N[C,D][A,B])1,t. (24)

As A is Ls2, we have, by (20),

N[A,B][C′,D′] −N[C′,D′][A,B] = 0;

in particular,



L. van Wyk, M. Ziembowski / Linear Algebra and its Applications 533 (2017) 235–257 245
(N[A,B][C′,D′])1,t − (N[C′,D′][A,B])1,t = 0,

which together with (23) and (24) gives

(N[A,B][C,D])1,t = 0.

This contradicts (21). �
Analyzing the proof of Theorem 4 it is clear that we use only the fact that J(A) has 

the ‘structural’ property. (In this regard, see also [2], where structural matrix bimodules 
are studied.) Therefore we propose the following:

Definition 5. An R-subalgebra A of Un(R), R a commutative ring, is said to have struc-
tural Jacobson radical if, whenever πi,j(A) �= {0} for i < j, then Rei,j ⊆ A.

Therefore we have another class of matrix rings for which the implication Ln2 ⇒ D2

holds:

Corollary 6. If R is a commutative ring and A is an Ls2 (in particular, if A is an Ln2) 
R-subalgebra of Un(R) with structural Jacobson radical, then A is D2.

For the class of all F -subalgebras of Un(F ) with structural Jacobson radical, Corol-
lary 6 and the property of the 2 ×2 upper triangular F -algebra U2(F ) mentioned between 
(7) and (8) can be summarized as follows as far as (4) and (6)–(8) are concerned:

D2 ⇔ Ls2

Ln2 ⇒ Ls2 (and D2)

D2 � Ln2.

With respect to the property of the 2 ×2 upper triangular F -algebra U2(F ) mentioned 
between (7) and (8), and the crucial role played by the Jacobson radical, being structural 
in Corollary 6, the above summary gives rise to the following question for subrings 
(obviously not structural) of upper triangular matrix rings:

Question 7. Does there exist a subring of Un(R) (for some ring R) which is Ln2 but 
not D2?

5. Decomposition of certain F -subalgebras of Un(F )

Recall (see, for example, [14]) that a ring R is said to satisfy the Engel condition of 
index m if the identity
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[. . . [[x,
m times︷ ︸︸ ︷

y], y], . . . , y] = 0,

holds in R. Obviously, any Lnm ring satisfies the Engel condition of index m. A ring R is 
said to satisfy the Engel condition if it satisfies the Engel condition of index m for some 
m ∈ N. It is shown in [17, Proposition 6] that every idempotent in a ring satisfying the 
Engel condition is central.

Now let A be an Ln2 structural F -subalgebra of Mn(F ). Without loss of generality, we 
may assume that A is a block triangular matrix F -algebra as in (14), with R = F . Then 
by Theorem 4, A ⊆ Un(F ). As A is structural, we have Fek,k ⊆ A for all k, k = 1, . . . , n. 
Since ek,k is an idempotent, by [17, Proposition 6], it is central. If πi,j(A) �= {0} for some 
i < j, then again the fact that A is structural ensures that ei,j ∈ A, and so we have 
ei,j = ei,iei,j = ei,jei,i = 0; a contradiction. (We note that one can also show that 
ei,j /∈ A if i < j, without using the Engel condition. To wit, if ei,j ∈ A for some 
i < j, then [ei,i, [ei,i, ei,j ]] = ei,j �= 0, contradicting the assumption that A is Ln2.) Thus 
πi,j(A) = {0} for all 1 ≤ i < j ≤ n, and so

A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣
a1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 an

⎤
⎥⎥⎥⎥⎦ : ai ∈ F for all i

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

i.e., A comprises precisely the n × n diagonal matrices over F .
We have proved the following result:

Proposition 8. Let A be a structural matrix F -subalgebra of Mn(F ). Without loss of 
generality, we may again assume that A is a block triangular matrix F -algebra as in 
(14), with R = F . If A is Ln2, then A ∼= Fn.

The above proposition together with Example 1 and Corollary 6 justify studying the 
structure of F -subalgebras of Un(F ) with structural Jacobson radical:

Theorem 9. If A is an F -subalgebra of Un(F ) (for some n ≥ 1) with structural Jacobson 
radical such that A satisfies the Engel condition (in particular, if A is Lie nilpotent) 
then, for some q ≥ 1, A is a direct sum

A = A1 ⊕ · · · ⊕ Aq =

⎡
⎢⎢⎢⎢⎣
A1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 A

⎤
⎥⎥⎥⎥⎦

n1
...
...
n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

n

q q
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of F -subalgebras Ai of U�
ni

(F ) with structural Jacobson radicals, for some ni ≥ 1, i =
1, 2, . . . , q, such that n1 + · · · + nq = n.

Proof. For n = 1 there is nothing to prove, since then we can take q = 1 and n1 = 1. 
Hence, let n ≥ 2, and suppose the result is true for all k < n. Let A ∈ A be as in (17), 
and let A be as in (18). Then it follows readily that A is an F -subalgebra of Un−1(F )
satisfying the Engel condition, and A has structural Jacobson radical (verification of the 
latter: 1 < i < j and πi,j(A) �= {0} ⇒ πi,j(A) �= 0 ⇒ Feij ⊆ A ⇒ Feij ⊆ A). By the 
induction hypothesis there is a q ≥ 1 and ni ≥ 1, i = 1, . . . , q, such that

A = A1 ⊕ · · · ⊕ Aq

for some F -subalgebras Ai of U�
ni

(F ) with structural Jacobson radicals, and n1 + · · · +
nq = n − 1.

First consider the case q = 1, in which case A is an F -subalgebra of U�
n−1(F ) with 

structural Jacobson radical. Then In−1 ∈ A. If A1,1 = 1 for every A ∈ A such that 
A = In−1, then A ⊆ U�

n(F ). Otherwise, there is an A′ ∈ A, with A′
1,1 �= 1, such that 

A′ = In−1, i.e.,

A′ =
[
A′

1,1 NA′

0 In−1

]
.

As A has structural Jacobson radical, we have that

[
0 NA′

0 0

]
∈ A,

and so e11 = (A′
1,1 − 1)−1(A′

1,1 − 1)e11 = (A1,1 − 1)−1(A′ − NA′ − In) ∈ A, implying 
that

Fe11 ⊆ A. (25)

If π1,j(A) �= {0} for some j, 2 ≤ j ≤ n, then e1j ∈ A, since A has structural 
Jacobson radical. As e11 is an idempotent in A, it follows from [17, Proposition 6] that 
e11 is central, and so e1,j = e1,1e1,j = e1,je1,1 = 0; a contradiction. We conclude that 
π1,j(A) = {0} for all j = 2, . . . , n, and so by (25),

A = F ⊕A =
[
F 0
0 A

]
=
[
U�

1 (F ) 0
0 A

]

(with A ⊆ U�
n−1(F ) and 1 + (n − 1) = n).



248 L. van Wyk, M. Ziembowski / Linear Algebra and its Applications 533 (2017) 235–257
Next, consider the case q ≥ 2. Then, since A = A1⊕· · ·⊕Aq ⊆ U�
n1

(F ) ⊕· · ·⊕U�
nq

(F ), 
every matrix A in A can be viewed as

A =
[
Ã MA

0 B

]
,

where Ã, B and MA are (n1 + 1) × (n1 + 1), (n2 + n3 + · · ·+ nq) × (n2 + n3 + · · ·+ nq)
and (n1 + 1) × (n2 + n3 + · · · + nq) matrices, respectively. Here, as in (17), we have

Ã =
[
A11 NÃ

0 Ã

]
,

with A11 ∈ F, Ã ∈ A1 and B ∈ A2 ⊕ · · · ⊕ Aq. (Note that A11 = Ã1,1 and that the last 
n1 rows of MA comprises only zeroes.)

Assume first that A11 = 1 for every A ∈ A such that Ã = In1 . Then

A =
[
In1+1 0

0 0

]
∈ A.

Therefore, if π1,j(A) �= {0} for some j > n1 + 1, then e1j ∈ A, as before. As A is an 
idempotent in A, and hence central, we get e1j = Ae1j = e1jA = 0; a contradiction. We 
conclude that π1,j(A) = {0} for all j > n1 + 1, i.e.

A = Ã ⊕ A2 ⊕ · · · ⊕ Aq,

with Ã := {Ã : A ∈ A} ⊆ U�
n1+1(F ).

Next, if there is an A ∈ A with A11 �= 1 such that

Ã =
[
A11 NÃ

0 In1

]
,

then an adaptation of the foregoing arguments readily shows that

A = F ⊕A1 ⊕ . . .⊕Aq

(with 1 + n1 + · · · + nq = n). �
Now, we want to show that Theorem 9 is not longer true if we consider subrings of 

upper triangular matrix algebras over a field F which are not F -subalgebras.

Example 10. Let R and C denote the fields of real and complex numbers, respectively. 
Consider the subring
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A :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a b c 0 0 0
0 a d 0 0 0
0 0 a 0 0 0
0 0 0 a e f

0 0 0 0 a g

0 0 0 0 0 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

: a, b, c, d, e, f, g ∈ C

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

of U6(C), where for any a ∈ C by a we denote the conjugate of a. Note that A is not a 
C-subalgebra of the C-algebra U6(C), but it is obviously an R-subalgebra of U6(C). It 
has structural Jacobson radical, since

J(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 C C 0 0 0
0 0 C 0 0 0
0 0 0 0 0 0
0 0 0 0 C C

0 0 0 0 0 C

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

Also A is Lie nilpotent of index 2, as can be verified directly. However, A /∈ U�
6 (C), 

and A is not direct sum of (at least two) subrings as in Theorem 9. In fact, A is an 
indecomposable ring, because it can be easily shown that 0 and 1 are the only central 
idempotents of A (in fact, the only idempotents of A).

It is noteworthy that even a commutative indecomposable subring of Un(F ) with 
structural Jacobson radical need not be in U�

n(F ), as the subring

⎧⎪⎨
⎪⎩
⎡
⎢⎣ a 0 b

0 a 0
0 0 a

⎤
⎥⎦ : a, b ∈ C

⎫⎪⎬
⎪⎭

of U3(C) shows.

6. The maximum dimension of an F -subalgebra of Mn(F ) satisfying the identity 
[x1, y1] [x2, y2] · · · [xq, yq] = 0

As mentioned earlier, one of the main motivations for this paper is Domokos’s pa-
per [5], which deals with the identity in (2). The main result in [5] is the following:

Theorem 11. Let F be a field, and A a finite dimensional Dq F -algebra. If M is a finitely 
generated faithful module over A, then

dimF (M) ≥
√

dimF (A) − q
1
2 − 1

4q
. (26)
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In the proof of the above theorem in [5] Domokos shows, firstly, that for the considered 
F -algebra A, the following, also very interesting for us, inequality holds for some positive 
integers n1, . . . , nq such that n1 + · · · + nq = dimF (M):

dimF (A) ≤ 1
2dimF (M)2 + q −

q∑
i=1

(
n2
i

2 −
⌊
n2
i

4

⌋)
. (27)

As presented at the end of [5], the inequality in (27) is sharp, and so, since (26) can be 
written as

dimF (A) ≤ q + (1
2 − 1

4q )dimF (M)2, (28)

we have

1
2dimF (M)2 + q −

q∑
i=1

(
(n∗

i )2

2 −
⌊

(n∗
i )2

4

⌋)
≤ q + (1

2 − 1
4q )dimF (M)2 (29)

for any q-tuple (n∗
1, . . . , n

∗
q) (with n∗

1 + · · ·+ n∗
q = dimF (M)) for which the inequality in

(27) is sharp. In Section 7 we will explore when the two upper bounds in (29) for a Dq

F -subalgebra of Mn(F ) are equal.
For any n1, . . . , nq such that n1+ · · ·+nq = n, an F -subalgebra A of Mn(F ) satisfying 

(2) is constructed in [5], with

dimF (A) = q +
q∑

i=1

⌊
n2
i

4

⌋
+
∑

1≤i<j≤q

ninj . (30)

Taking M = Fn, the right hand side in (27) takes the form

1
2 (n1 + · · · + nq)2 + q −

q∑
i=1

(
n2
i

2 −
⌊
n2
i

4

⌋)
, (31)

which clearly equals the expression in (30), and so the mentioned sharpness follows.
In [5] the considered n1, . . . , nq are mentioned as existing numbers which guarantee 

that 1
2dimF (M)2 + q −

∑q
i=1

(
n2
i

2 −
⌊
n2
i

4

⌋)
is as large as possible, and obviously such a 

sequence n1, . . . , nq with this property exists. However, unfortunately [5] does not reveal 
how to directly and precisely find these ni’s. We now proceed to show how to do it by 
working with M = Fn.

In order to find the ni’s, i = 1, 2, . . . , q, with n1+· · ·+nq = n, such that the dimension 
of the algebra A is a maximum, it follows from (31) that we need to maximize

f(n1, . . . , nq) := 1
2
(
n2 − n2

1 − · · · − n2
q

)
+ q +

q∑⌊
n2
i

4

⌋
. (32)
i=1
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We claim that the maximum can be obtained by choosing the ni’s in such a way that

|ni − nj | ≤ 1 (33)

for all 1 ≤ i, j ≤ q. Indeed, suppose without loss of generality that

n2 − n1 > 1, (34)

and replace n1 and n2 in (32) by n1 + 1 and n2 − 1, respectively. Then, for T :=
f(n1 + 1, n2 − 1, n3, . . . , nq), we have

T = 1
2

(
n2 − (n1 + 1)2 − (n2 − 1)2 − n2

3 − · · · − n2
q

)
+

+ q +
⌊

(n1 + 1)2

4

⌋
+
⌊

(n2 − 1)2

4

⌋
+

q∑
i=3

⌊
n2
i

4

⌋
.

With S := f(n1, n2, . . . , nq) one obtains

T − S = n2 − n1 − 1 +
⌊

(n1 + 1)2

4

⌋
−
⌊

(n1)2

4

⌋
+

+
⌊

(n2 − 1)2

4

⌋
−
⌊

(n2)2

4

⌋
.

We consider the following three possible cases:

1. n1 = 2k1 + 1, n2 = 2k2 + 1: By (34), k2 − k1 ≥ 1, since k2 and k1 are integers. Now,

T − S = 2k2 − 2k1 − 1 +
⌊

4k2
1 + 8k1 + 4

4

⌋
−
⌊

4k2
1 + 4k1 + 1

4

⌋

+
⌊

4k2
2

4

⌋
−
⌊

4k2
2 + 4k2 + 1

4

⌋
= 2k2 − 2k1 − 1 + k2

1 + 2k1 + 1 − k2
1 − k1 + k2

2 − k2
2 − k2

= k2 − k1 ≥ 1.

2. n1 is odd and n2 is even, or vice versa: Similar calculations as in case (1) show that 
T − S ≥ 1.

The last case produces a slightly different outcome.

3. n1 = 2k1, n2 = 2k2: By (34) we have k2 − k1 ≥ 1. Again, routine calculations yield

T − S = k2 − k1 − 1 ≥ 0.
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Consequently, if n2 − n1 = 2 (i.e. if k2 − k1 = 1), then T = S. We have thus proved (33)
and the following result.

Lemma 12. If n1 and n2 are positive integers such that n2 − n1 > 1, then

n2 − n1 − 1 +
⌊

(n1 + 1)2

4

⌋
−
⌊

(n1)2

4

⌋
+
⌊

(n2 − 1)2

4

⌋
−
⌊

(n2)2

4

⌋
≥ 0,

and equality holds if and only if n1 and n2 are both even and n2 − n1 = 2.

We are now in a position to strengthen the condition in (33).

Lemma 13. If n1, . . . , nq are positive integers with n1 + · · ·+ nq = n and 1 ≤ q ≤ n, and 

if |ni − nj | ≤ 1 for all i and j, then q − r of the ni’s are equal to 
⌊
n
q

⌋
, and the other r

ni’s are equal to 
⌊
n
q

⌋
+ 1, where r is the (unique) non-negative integer obtained in (10).

Proof. If ni <
⌊
n
q

⌋
(respectively, ni >

⌊
n
q

⌋
) for all i, then 

∑q
i=1 ni < q

⌊
n
q

⌋
< q(nq ) = n

(respectively, 
∑q

i=1 ni ≥ q
(⌊

n
q

⌋
+ 1
)
> q(nq ) = n), and so we conclude that

ni� =
⌊
n

q

⌋
(35)

for some i�.
Next, if nj ≤

⌊
n
q

⌋
− 1 for some j, then nk ≥

⌊
n
q

⌋
+ 1 for some k, otherwise again ∑q

i=1 < n. But then nk − nj ≥ 2; a contradiction. Consequently, ni ≥
⌊
n
q

⌋
for all i, and 

therefore ni ∈
{⌊

n
q

⌋
,
⌊
n
q

⌋
+ 1
}

for all i. Let

I :=
{
i : ni =

⌊
n

q

⌋
+ 1, 1 ≤ i ≤ q

}
.

By (35), |I| < q, and so, since

n =
q∑

i=1
ni = (q − |I|)

⌊
n

q

⌋
+ |I|

(⌊
n

q

⌋
+ 1
)

= q

⌊
n

q

⌋
+ |I|,

and 0 ≤ |I| < q, we conclude that |I| = r. �
The foregoing results prove:

Theorem 14. Let 1 ≤ q ≤ n, and let n = q
⌊
n
q

⌋
+ r, 0 ≤ r < q. Then

1
2

(
n2 − (q − r)

⌊
n

q

⌋2
− r

(⌊
n

q

⌋
+ 1
)2
)

+
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+ q + (q − r)

⎢⎢⎢⎢⎣
⌊
n
q

⌋2
4

⎥⎥⎥⎥⎦+ r

⎢⎢⎢⎢⎣
(⌊

n
q

⌋
+ 1
)2

4

⎥⎥⎥⎥⎦
is the precise sharp upper bound for the dimension of a Dq F -subalgebra of Mn(F ), which 
can be obtained by choosing q − r commutative subalgebras of M⌊n

q

⌋(F ) of dimension ⌊⌊
n
q

⌋2
4

⌋
+ 1 and r commutative subalgebras of M⌊n

q

⌋
+1(F ) of dimension 

⌊(⌊
n
q

⌋
+1
)2

4

⌋
+ 1

on the diagonal blocks for the F -algebra presented in (11) in Example 1 (see also [5, 
page 157]).

Observe that if q = 1 (in which case r = 0), then the above formula yields 1 +
⌊
n2

4

⌋
, 

which, of course, is the commutative case (see [7] or [15]).

Remark 15. The arguments leading up to Lemma 13 show that the numbers n1, n2, . . . , nq

for the F -algebras Mni
(F ) on the diagonal blocks of the F -algebra in Theorem 14 can, 

without loss of generality, be chosen as follows:

n1, . . . , nq−r :=
⌊
n

q

⌋
, and nq−r+1, . . . , nq :=

⌊
n

q

⌋
+ 1.

However, case (3) above (see the three cases preceding Lemma 13) shows that if we view 
the numbers n1, . . . , nq as a q-tuple (n1, . . . , nq), and if we assume that ni ≤ nj for all i
and j such that i ≤ j, then such a q-tuple, for a given n, q and r as in (10), need not be 
unique. In fact we have the following possibilities:

1. 
⌊
n
q

⌋
is odd: In this case both 

⌊
n
q

⌋
− 1 and 

⌊
n
q

⌋
+ 1 are even, and 

(⌊
n
q

⌋
+ 1
)
−(⌊

n
q

⌋
− 1
)

= 2. Hence any pair (ni, nj) =
(⌊

n
q

⌋
,
⌊
n
q

⌋)
with 1 ≤ i < j ≤ q − r can 

be replaced by 
(⌊

n
q

⌋
− 1,
⌊
n
q

⌋
+ 1
)
, because case (3) above shows that changing this 

new pair back to 
(⌊

n
q

⌋
,
⌊
n
q

⌋)
does not change the right hand side of (32). Therefore we 

conclude that there are 
⌊
q−r
2
⌋
+ 1 distinct sets {n1, . . . , nq−r, nq−r+1, . . . , nq} giving the 

maximum dimension in Theorem 14. It is easy to see that this set is unique if and only 
if r = q − 1.

2. 
⌊
n
q

⌋
is even: Now 

⌊
n
q

⌋
+ 1 is odd. Invoking similar arguments one sees that there 

are 
⌊
r
2
⌋
+1 distinct sets {n1, . . . , nq−r, nq−r+1, . . . , nq} yielding the mentioned maximum 

dimension. This set is unique in this case if and only if r ∈ {0, 1}.

At this point we want to stress that, in contrast to the above remarks, the correspond-
ing set {d1, . . . , dm+1} in [17, Section 7], giving an example of an Lm F -subalgebra of 
Mn(F ) of index m with maximum dimension, is unique.
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7. When do the two upper bounds coincide?

Next we compare the precise sharp upper bound b1 (say) in Theorem 14 with the 
integer upper bound b2 := q + �(1

2 − 1
4q )n2� (again using M = Fn) in (28). With 

n = q�n
q � + r, 0 ≤ r < q, and with t := �n

q �, we readily have

b1 = 1
2

(
(qt + r)2 − (q − r)t2 − r(t + 1)2)

)
+ q + (q − r)

⌊
t2

4

⌋
+ r

⌊
(t + 1)2

4

⌋

= 1
2q(q − 1)t2 + (q − 1)rt + 1

2r(r − 1)

+ q + (q − r)
⌊
t2

4

⌋
+ r

⌊
(t + 1)2

4

⌋
(36)

and

b2 = q +
⌊

2q − 1
4q (q2t2 + 2qtr + r2)

⌋
. (37)

We distinguish between when t is even and when t is odd.
(i) t even, say t = 2k: By (36) and (37),

b1 = 1
2q(q − 1)(4k2) + 2(q − 1)rk + 1

2r(r − 1)

+ q + (q − r)k2 + r(k2 + k)

= q + 2q2k2 − qk2 + (2q − 1)rk + 1
2r(r − 1),

and

b2 = q +
⌊

2q − 1
4q (4q2k2 + 4qkr + r2)

⌋

= q + 2q2k2 − qk2 + (2q − 1)kr +
⌊

2q − 1
4q r2

⌋
.

Hence, b1 = b2 if and only if ⌊
2q − 1

4q r2
⌋

= 1
2r(r − 1), (38)

which, considering that

(2q − 1)r2 = 1
r(r − 1)(4q) + (2qr − r2)
2
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and that 2qr − r2 = r(2q − r) ≥ 0 (keeping in mind that 0 ≤ r ≤ q − 1), implies that 
(38) holds if and only if 2qr − r2 < 4q, i.e. r2 − 2qr + 4q > 0. Since 0 ≤ r < q and 
x2 − 2qx + 4q = 0 for x = q ±

√
q(q − 4), we conclude that

(α) if q ∈ {1, 2, 3, 4}, then (38) holds for all r (i.e. r = 0, 1, . . . , q − 1);
(β) if q ≥ 5, then (38) holds if and only if r = 0, 1, . . . , 

⌊
q −
√
q(q − 4)

⌋
.

(ii) t odd, say t = 2k + 1: By (1) and (2),

b1 = 1
2q(q − 1)(4k2 + 4k + 1) + (q − 1)r(2k + 1) + 1

2r(r − 1)

+ q + (q − r)(k2 + k) + r(k2 + 2k + 1)

= q(2q − 1)(k2 + k) + 1
2q(q − 1) + (2q − 1)rk + qr + 1

2r(r − 1) + q

and

b2 = q +
⌊

2q − 1
4q

(
q2(4k2 + 4k + 1) + 2qr(2k + 1) + r2

)⌋

= q + q(2q − 1)(k2 + k) + (2q − 1)rk +
⌊

2q − 1
4q (q + r2)

⌋
.

Therefore, b1 = b2 if and only if

⌊
2q − 1

4q (q + r)2
⌋

= 1
2q(q − 1) + qr + 1

2r(r − 1)

= 1
2

(
(q + r)2 − (q + r)

)
,

(39)

which, considering that

(2q − 1)(q + r)2 = 1
2

(
(q + r)2 − (q + r)

)
(4q) + (q2 − r2)

and that q2 − r2 > 0 for r = 0, 1, . . . , q − 1, implies that (39) holds if and only if 
q2 − r2 < 4q, i.e.

r2 > q2 − 4q.

Noting that q2 − 4q < 0 for q = 1, 2, 3, that q2 − 4q = 0 for q = 4, that (q− 2)2 > q2 − 4q
and that

(q − 3)2 − q2 − 6q + 9 < q2 − 4q

if 2q > 9, we conclude that
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(α′) if q ∈ {1, 2, 3}, then (39) holds for all r, i.e., r = 0, 1, . . . , q − 1;
(β′) if q = 4, then (39) holds for all r > 0, i.e. r = 1, 2, . . . , q − 1;
(γ′) if q ≥ 5, then (39) holds if and only if r = q − 2 or q − 1.

We have thus proved

Proposition 16. The precise sharp upper bound in Theorem 14 for the maximum dimen-
sion of a Dq F -subalgebra of Mn(F ) equals the simplified upper bound q +

⌊
(1
2 − 1

4q )n2
⌋

for all n ≥ q ≥ 1 if and only if q ∈ {1, 2, 3}, and (i) ((α), (β)) and (ii) ((α′), (β′), (γ′))
give a complete characterization of the values of n for which the two upper bounds coin-
cide for every q ≥ 4.

8. Final remarks and an open problem

It is clear that the Ls2 F -subalgebra U�
3
(
U�

3 (F )
)

(see Example 3) of M9(F ) has 
dimension 16. It is even possible for a commutative F -subalgebra of M9(F ) to have 
dimension greater than 16; in fact, by [7] or [15] (see also [17]), the maximum dimension of 
a commutative F -subalgebra of M9(F ) is 21. Moreover, by Proposition 16, the maximum 
dimension of a D2 F -subalgebra of M9(F ) is 32. Such an F -algebra, which is Ls2 (and 
which can be constructed using Theorem 14) leads us to the following problem:

Problem 17. For a field F , does an Ls2 F -subalgebra of Mn(F ) (for some n) with di-
mension larger than the maximum dimension 2 +

⌊
3n2

8

⌋
(see, [1], [5] or Proposition 16) 

of a D2 F -subalgebra of Mn(F ) exist?
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