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Abstract. Let G =
[

A M
N B

]
be a generalized matrix algebra defined by the Morita context

(A,B,A MB,B NA,ΦMN ,ΨNM) . In this article we mainly study the question of whether there exist

the so-called “proper” Jordan derivations for the generalized matrix algebra G . It is shown that

if one of the bilinear pairings ΦMN and ΨNM is nondegenerate, then every antiderivation of G

is zero. Furthermore, if the bilinear pairings ΦMN and ΨNM are both zero, then every Jordan

derivation of G is the sum of a derivation and an antiderivation. Several constructive examples

and counterexamples are presented.

1. Introduction

Let us begin with the definition of generalized matrix algebras given by a Morita

context. Let R be a commutative ring with identity. A Morita context consists of two

R -algebras A and B , two bimodules AMB and BNA , and two bimodule homomor-

phisms called the pairings ΦMN : M⊗
B

N −→ A and ΨNM : N⊗
A

M −→ B satisfying the

following commutative diagrams:

M⊗
B

N⊗
A

M ΦMN⊗IM
//

IM⊗ΨNM

��

A⊗
A

M

∼=

��
M⊗

B
B ∼=

// M

and N⊗
A

M⊗
B

N ΨNM⊗IN
//

IN⊗ΦMN

��

B⊗
B

N

∼=

��
N⊗

A
A ∼=

// N .

Let us write this Morita context as (A,B,A MB,B NA,ΦMN ,ΨNM) . If (A,B,A MB, BNA,

ΦMN ,ΨNM) is a Morita context, then the set
[

A M

N B

]
=

{[
a m

n b

]
a ∈ A,m ∈M,n ∈ N,b ∈ B

}
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form an R -algebra under matrix-like addition and matrix-like multiplication, where

We assume that at least one of the two bimodules M and N is distinct from zero. Such

an R -algebra is called a generalized matrix algebra of order 2 and is usually denoted

by G =
[

A M
N B

]
. This kind of algebra was first introduced by Morita in [20], where the

author investigated Morita duality theory of modules and its applications to Artinian

algebras.

Let R be a commutative ring with identity, A be a unital algebra over R and

Z (A) be the center of A . Recall that an R -linear mapping Θd from A into itself

is called a derivation if Θd(ab) = Θd(a)b + aΘd(b) for all a,b ∈ A . Further, an R -

linear mapping ΘJord from A into itself is called a Jordan derivation if ΘJord(a
2) =

ΘJord(a)a + aΘJord(a) for all a ∈ A . Every derivation is obviously a Jordan derivation.

The inverse statement is not true in general. Those Jordan derivations which are not

derivations are said to be proper. An R -linear mapping Θantid from A into itself is

called an antiderivation if Θantid(ab) = Θantid(b)a + bΘantid(a) for all a,b ∈ A .

In 1957 Herstein [10] proved that every Jordan derivation from a prime ring of

characteristic not 2 into itself is a derivation. This result has been generalized to differ-

ent rings and algebras in various directions (see e.g. [1, 3, 4, 6, 9, 11, 13, 14, 17, 21, 24]

and references therein). Zhang and Yu [24] showed that every Jordan derivation on a tri-

angular algebra is a derivation. Xiao and Wei [21] extended this result to the higher case

and obtained that any Jordan higher derivation on a triangular algebra is a higher deriva-

tion. Johnson [12] considered a more challenging question for which Banach algebras

A there are no proper Jordan derivations from A into an arbitrary Banach A-bimodule

M . It turned out that this is true for some important classes of algebras (in particular,

for the algebra of all n×n complex matrices). Motivated by Johnson’s work, Benkovic

investigated the structure of Jordan derivations from the upper triangular matrix alge-

bra Tn(R) into its bimodule and proved that every Jordan derivation from Tn(R) into

its bimodule is the sum of a derivation and an antiderivation. Recently, Li, Xiao and

Wei [15, 16, 22] jointly studied linear mappings of generalized matrix algebras, such

as derivations, Lie derivations, commuting mappings and semi-centralizing mappings.

Our main purpose is to develop the theory of linear mappings of triangular algebras to

the case of generalized matrix algebras, which has a much broader background. People

pay much less attention to linear mappings of generalized matrix algebras, to the best

of our knowledge there are fewer articles dealing with linear mappings of generalized

matrix algebras except for [2, 15, 16, 22].

The problem that we address in this article is to study whether there exist proper

Jordan derivations for generalized matrix algebras. The outline of this article is as

follows. The second section presents two basic examples of generalized matrix algebras

which we will revisit later. In the third section we describe the general form of Jordan

derivations and antiderivations on generalized matrix algebras. We observe that any

antiderivation on a class of generalized matrix algebra is zero (see Proposition 3.10).

Furthermore, it is shown that every Jordan derivation on another class of generalized

matrix algebras is the sum of a derivation and an antiderivation (see Theorem 3.11).
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2. Examples of generalized matrix algebras

We have presented many examples of generalized matrix algebras in [16], such

as standard generalized matrix algebras and quasi-hereditary algebras, generalized ma-

trix algebras of order n , inflated algebras, upper and lower triangular matrix algebras,

block upper and lower triangular matrix algebras, nest algebras. For later discussion

convenience, we have to give another two new generalized matrix algebras.

2.1. Generalized matrix algebras from smash product algebras

Let H be a finite dimensional Hopf algebra over a field K with comultiplica-

tion ∆ : H −→ H
⊗

H , counit ε : H −→ K and antipode S : H −→ H . Clearly, S

is bijective. Moreover, the space of left integrals
∫

H l = {x ∈ H|hx = ε(h)x,∀h ∈ H}
is one-dimensional. We substitute the “sigma notation” for ∆ in the present article.

Now assume that A is an H -module algebra, that is, A is a K -algebra which is a left

H -module, such that

(1) h · (ab) = ∑
(h)

(h1 ·a)(h2 ·b) and

(2) h ·1A = ε(h)1A .

for all h ∈ H,a,b ∈ A . Then the smash product algebra A#H is defined as follows, for

any a,b ∈ A,h,k ∈ H :

(1) as a K -space, A#H = A⊗H . We write a#h for the element a⊗h

(2) multiplication is given by (a#h)(b#k) = ∑
(h)

a(h1 ·b)#h2k .

The invariants subalgebra of H on A is the set AH = {x ∈ A|h ·x = ε(h)x,∀h ∈H} . A

is a left A#H -module in the standard way, that is

a#h→ b = a(h ·b)

for all a,b ∈ A and h ∈H . For a given t ∈
∫

l , then th ∈
∫

l for all h ∈H . Since
∫

l is

one-dimensional, there exists α ∈ H∗ such that th = α(h)t for all h ∈ H . It is easy to

see that α is multiplicative, and it is a group-like element of H∗ . Hence

hα = α → h = ∑
(h)

α(h2)h1, ∀h ∈ H

defines an automorphism on H . Thus A is a right A#H -module via

a← b#h = S−1hα · (ab), ∀a ∈ A,b#h ∈ A#H.

The close relationship between A#H and AH enables us to formalize the following

generalized matrix algebra. Now A is a left (or right) AH -module simply by left (or
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right) multiplication. Simultaneously, A is also a left (or right) A#H -module. Thus

M =AH AA#H and N =A#H AAH , together with the mappings

ΨNM : A⊗AH A−→ A#H defined by ΨNM(a,b) = (a#t)(b#1)

ΦMN : A⊗A#H AH −→ AH defined by ΦNM(a,b) = t · (ab)

give rise to a new generalized matrix algebra

GSPA =

[
AH M

N A#H

]
.

We refer the reader to [19] about the basic properties of GSPA .

2.2. Generalized matrix algebras from group algebras

Let A be an associative algebra over a field K and G be a finite group of automor-

phisms acting on A . The fixed ring AG of the action G on A is the set {a ∈ A|ag = a,

∀g∈G} . The skew group algebra A∗G is the set of all formal sums ∑g∈G agg, ag ∈ A .

The addition operation is componentwise and the multiplication operation is defined

distributively by the formula

ag ·bh = abg−1

gh

for all a,b ∈ A and g,h ∈ G . Clearly, A is a left and right AG -module. A can also

be viewed as a left or right A ∗G-module as follows: for any x = ∑g∈G agg ∈ A ∗G

and a ∈ A , we define x · a = ∑g∈G agag−1
and a · x = ∑g∈G(aag)

g
. Then we obtain a

generalized matrix algebra

GGA =

[
AG M

N A∗G

]
,

where M =AG AA∗G and N =A∗G AAG . The bilinear pairings ΦMN and ΨNM can be

established via
ΦMN : A⊗A∗G A−→ AG

(x,y) 7−→ ∑
g∈G

(xy)g

and
ΨNM : A⊗AG A−→ A∗G

(x,y) 7−→ ∑
g∈G

xyg−1

g.

3. Jordan derivations of generalized matrix algebras

Let G be a generalized matrix algebra of order 2 based on the Morita context

(A,B,A MB,B NA,ΦMN ,ΨNM) and let us denote it by

G :=

[
A M

N B

]
.
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Here, at least one of the two bimodules M and N is distinct from zero. The main aim

of this section is to show that any Jordan derivation on a class of generalized matrix

algebras is the sum of a derivation and an antiderivation. Our motivation originates from

the following several results. Benkovic [1] proved that every Jordan derivation from the

algebra of all upper triangular matrices into its bimodule is the sum of a derivation and

an antiderivation. Ma and Ji [18] extended this result to the case of generalized Jordan

derivations and obtained that every generalized Jordan derivation from the algebra of all

upper triangular matrices into its bimodule is the sum of a generalized derivation and an

antiderivation. Zhang and Yu in [24] showed that every Jordan derivation on a triangular

algebra is a derivation. Therefore, it is appropriate to describe and characterize Jordan

derivations of G . Note that the forms of derivations and Lie derivations of G were

given in [16].

PROPOSITION 3.1. [16, Proposition 4.2] An additive mapping Θd from G into

itself is a derivation if and only if it has the form

Θd

([
a m

n b

])
=

[
δ1(a)−mn0−m0n am0−m0b + τ2(m)
n0a−bn0 + ν3(n) n0m+ nm0 + µ4(b)

]
, (⋆1)

∀

[
a m

n b

]
∈ G ,

where m0 ∈M,n0 ∈ N and

δ1 :A−→ A, τ2 :M −→M, ν3 :N −→ N, µ4 :B−→ B

are all R -linear mappings satisfying the following conditions:

(1) δ1 is a derivation of A with δ1(mn) = τ2(m)n + mν3(n);

(2) µ4 is a derivation of B with µ4(nm) = nτ2(m)+ ν3(n)m;

(3) τ2(am) = aτ2(m)+ δ1(a)m and τ2(mb) = τ2(m)b + mµ4(b);

(4) ν3(na) = ν3(n)a + nδ1(a) and ν3(bn) = bν3(n)+ µ4(b)n.

PROPOSITION 3.2. An additive mapping ΘJord from G into itself is a Jordan

derivation if and only if it is of the form

ΘJord

([
a m

n b

])
=

[
δ1(a)−mn0−m0n + δ4(b) am0−m0b + τ2(m)+ τ3(n)
n0a−bn0 + ν2(m)+ ν3(n) µ1(a)+ n0m+ nm0 + µ4(b)

]
, (⋆2)

∀

[
a m

n b

]
∈ G ,

where m0 ∈M,n0 ∈ N and

δ1 :A−→ A, δ4 :B−→ A, τ2 :M −→M, τ3 :N −→M,

ν2 :M −→ N, ν3 :N −→ N µ1 :A−→ B µ4 :B−→ B

are all R -linear mappings satisfying the following conditions:
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(1) δ1 is a Jordan derivation on A and δ1(mn) =−δ4(nm)+ τ2(m)n + mν3(n);

(2) µ4 is a Jordan derivation on B and µ4(nm) =−µ1(mn)+ nτ2(m)+ ν3(n)m;

(3) δ4(b
2) = 2δ4(b) = 0 for all b ∈ B and µ1(a

2) = 2µ1(a) = 0 for all a ∈ A;

(4) τ2(am) = aτ2(m)+δ1(a)m+mµ1(a) and τ2(mb) = τ2(m)b+mµ4(b)+δ4(b)m;

(5) ν3(bn) = bν3(n)+ µ4(b)n + nδ4(b) and ν3(na) = ν3(n)a + nδ1(a)+ µ1(a)n;

(6) τ3(na) = aτ3(n) , τ3(bn) = τ3(n)b, nτ3(n) = 0 , τ3(n)n = 0;

(7) ν2(am) = ν2(m)a, ν2(mb) = bν2(m) , mν2(m) = 0 , ν2(m)m = 0.

Proof. Suppose that the Jordan derivation ΘJd is of the form

ΘJord

([
a m

n b

])
=

[
δ1(a)+ δ2(m)+ δ3(n)+ δ4(b) τ1(a)+ τ2(m)+ τ3(n)+ τ4(b)
ν1(a)+ ν2(m)+ ν3(n)+ ν4(b) µ1(a)+ µ2(m)+ µ3(n)+ µ4(b)

]
,

for all [ a m
n b ] ∈ G , where δ1,δ2,δ3,δ4 are R -linear mappings from A,M,N,B to A ,

respectively; τ1,τ2 , τ3,τ4 are R -linear mappings from A,M,N,B to M , respectively;

ν1,ν2,ν3,ν4 are R -linear mappings from A,M,N,B to N , respectively; µ1,µ2,µ3,µ4

are R -linear mappings from A,M,N,B to B , respectively.

For any G ∈ G , we will intensively employ the Jordan derivation equation

ΘJord(G
2) = GΘJord(G)+ ΘJord(G)G. (3.1)

Taking G =
[

a 0
0 0

]
into (3.1) we have

ΘJord(G
2) =

[
δ1(a

2) τ1(a
2)

ν1(a
2) µ1(a

2)

]
(3.2)

and

GΘJord(G)+ ΘJord(G)G =

[
aδ1(a)+ δ1(a)a aτ1(a)

ν1(a)a 0

]
. (3.3)

By (3.2) and (3.3) we know that δ1 is a Jordan derivation of A ,

τ1(a
2) = aτ1(a), ν1(a

2) = ν1(a)a (3.4)

and

µ1(a
2) = 0. (3.5)

for all a ∈ A . Similarly, putting G =
[

0 0
0 b

]
in (3.1) gives

ΘJord(G
2) =

[
δ4(b

2) τ4(b
2)

ν4(b
2) µ4(b

2)

]
(3.6)

and

GΘJord(G)+ ΘJord(G)G =

[
0 τ4(b)b

bν4(b) bµ4(b)+ µ4(b)b

]
. (3.7)
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Combining (3.6) with (3.7) yields that µ4 is a Jordan derivation of B ,

τ4(b
2) = τ4(b)b, ν4(b

2) = bν4(b) (3.8)

and

δ4(b
2) = 0. (3.9)

for all b ∈ B .

Let us choose G =
[

0 m
0 0

]
in (3.1) . Then

ΘJord(G
2) =

[
0 0

0 0

]
(3.10)

and

GΘJord(G)+ ΘJord(G)G =

[
mν2(m) mµ2(m)+ δ2(m)m

0 ν2(m)m

]
. (3.11)

The relations (3.10) and (3.11) jointly imply that

mν2(m) = 0, ν2(m)m = 0 (3.12)

and

δ2(m)m+ mµ2(m) = 0 (3.13)

for all m ∈M . Likewise, if we choose G =
[

0 0
n 0

]
, then

ΘJord(G
2) =

[
0 0

0 0

]
(3.14)

and

GΘJord(G)+ ΘJord(G)G =

[
τ3(n)n 0

nδ3(n)+ µ3(n)n nτ3(n)

]
. (3.15)

It follows from (3.14) and (3.15) that

nτ3(n) = 0, τ3(n)n = 0 (3.16)

and

µ3(n)n + nδ3(n) = 0 (3.17)

for all n ∈ N . Let us consider G =
[

1 m
0 0

]
in (3.1) and set τ1(1) = m0 and ν1(1) = n0 .

Since δ1 is a Jordan derivation of A , δ1(1) = 0. Moreover, (3.5) implies that µ1(1) =
0. Therefore

ΘJord(G
2) =

[
δ2(m) m0 + τ2(m)

n0 + ν2(m) µ2(m)

]
. (3.18)

On the other hand, from (3.12) and (3.13) we have that

GΘJord(G)+ ΘJord(G)G =

[
2δ2(m)+ mn0 m0 + τ2(m)

n0 + ν2(m) n0m

]
. (3.19)
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By (3.18) and (3.19) we arrive at

δ2(m) =−mn0 and µ2(m) = n0m (3.20)

for all m ∈M . Let us take G =
[

1 0
n 0

]
in (3.1) . Applying (3.16) and (3.17) leads to

µ3(n) = nm0 and δ3(n) =−m0n (3.21)

for all n∈ N . Furthermore, if we choose G =
[

1 0
0 b

]
in (3.1) , then it follows from (3.8)

and (3.9) that 2δ4(b) = 0,

ν4(b) =−bn0 and τ4(b) =−m0b (3.22)

for all b ∈ B . Taking G =
[

a 0
0 1

]
into (3.1) and using (3.4) and (3.5) we obtain

2µ1(a) = 0,

τ1(a) = am0 and ν1(a) = n0a (3.23)

for all a ∈ A . Let us put G = [a m
0 0 ] in (3.1) . Then the relations (3.5) , (3.19) and

(3.23) imply that

ΘJord(G
2) =

[
δ1(a

2)+ δ2(am) a2m0 + τ2(am)
n0a2 + ν2(am) n0am

]
. (3.24)

On the other hand, by the relations (3.4) , (3.12) , (3.13) , (3.20) and (3.23) we get

GΘJord(G)+ ΘJord(G)G

=

[
aδ1(a)+ δ1(a)a + amn0 a2m0 + aτ2(m)+ δ1(a)m+ mµ1(a)

n0a2 + ν2(m)a n0am

]
.

(3.25)

Combining (3.24) with (3.25) yields ν2(am) = ν2(m)a and

τ2(am) = aτ2(m)+ δ1(a)m+ mµ1(a)

for all a∈ A,m∈M . Similarly, taking G =
[

a 0
n 0

]
into (3.1) gives τ3(na) = aτ3(n) and

ν3(na) = ν3(n)a + nδ1(a)+ µ1(a)n

for all n ∈ N,a ∈ A . Let us choose G =
[

0 m
0 b

]
in (3.1) . We will get ν2(mb) = bν2(m)

and

τ2(mb) = τ2(m)b + mµ4(b)+ δ4(b)m

for all m∈M,b∈B . Putting G =
[

0 0
n b

]
in (3.1) and employing the same computational

approach we conclude that τ3(bn) = τ3(n)b and ν3(bn) = bν3(n)+ µ4(b)n + nδ4(b)
for all b ∈ B,n ∈ N . Finally, let us set G =

[
0 m
n 0

]
in (3.1) . We have that δ1(mn) =

−δ4(nm)+ τ2(m)n + mν3(n) and µ4(nm) = −µ1(mn)+ nτ2(m)+ ν3(n)m for all m ∈
M,n ∈ N .

If ΘJord has the form (⋆2) and satisfies conditions (1)− (7) , the assertion that

ΘJord is a Jordan derivation of G will follow from direct computations. We complete

the proof of this proposition.

From now on, we always assume in this section that M is faithful as a left A-

module and also as a right B-module, but no any constraint conditions concerning the

bimodule N . Then we have the following:
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COROLLARY 3.3. Let G be a 2 -torsion free generalized matrix algebra over the

commutative ring R . An additive mapping ΘJord form G into itself is a Jordan deriva-

tion of G if and only if it has the form

ΘJord

([
a m

n b

])
=

[
δ1(a)−mn0−m0n am0−m0b + τ2(m)+ τ3(n)

n0a−bn0 + ν2(m)+ ν3(n) n0m+ nm0 + µ4(b)

]
, (⋆3)

∀

[
a m

n b

]
∈ G ,

where m0 ∈M,n0 ∈ N and

δ1 :A−→ A, τ2 :M −→M, τ3 :N −→M,

ν2 :M −→ N, ν3 :N −→ N µ4 :B−→ B

are all R -linear mappings satisfying conditions

(1) δ1 is a derivation on A and δ1(mn) = τ2(m)n + mν3(n);

(2) µ4 is a derivation on B and µ4(nm) = nτ2(m)+ ν3(n)m;

(3) τ2(am) = aτ2(m)+ δ1(a)m and τ2(mb) = τ2(m)b + mµ4(b);

(4) ν3(na) = ν3(n)a + nδ1(a) and ν3(bn) = bν3(n)+ µ4(b)n;

(5) τ3(na) = aτ3(n) , τ3(bn) = τ3(n)b, nτ3(n) = 0 , τ3(n)n = 0;

(6) ν2(am) = ν2(m)a, ν2(mb) = bν2(m) , mν2(m) = 0 , ν2(m)m = 0.

Proof. Let ΘJord be a Jordan derivation of G . Then ΘJord has the form of (⋆2)
and satisfies all additional conditions (1)− (7) of Proposition 3.2. Since G is a 2-

torsion free generalized matrix algebra, δ4 = 0 and µ1 = 0 by condition (3) of Propo-

sition 3.2. Condition (3) of Proposition 3.2 vanishes in the present case. Condition (4)
of Proposition 3.2 correspondingly becomes

τ2(am) = aτ2(m)+ δ1(a)m

and

τ2(mb) = τ2(m)b + mµ4(b).

Clearly, we only need to prove that δ1 is a derivation of A and that µ4 is a derivation

of B . Then for arbitrary elements a1,a2 ∈ A , we have

τ2(a1a2m) = a1a2τ2(m)+ δ1(a1a2)m (3.26)

and
τ2(a1a2m) = a1τ2(a2m)+ δ1(a1)a2m

= a1a2τ2(m)+ a1δ1(a2)m+ δ1(a1)a2m.

(3.27)
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Combining (3.26) and (3.27) gives

δ1(a1a2)m = a1δ1(a2)m+ δ1(a1)a2m. (3.28)

Note that M is faithful as left A-module. Relation (3.28) implies that

δ1(a1a2) = a1δ1(a2)+ δ1(a1)a2

for all a1,a2 ∈ A . So δ1 is a derivation of A . Similarly, we can show that µ4 is a

derivation of B .

Conversely, if an additive mapping ΘJord of G is of the form (⋆3) and satisfies

all additional conditions (1)− (6) , then the fact that is a Jordan derivation of G will

follow form direct computations.

In view of Herstein’s result and recent intensive works [1, 3, 4, 6, 12, 17, 18, 23,

21, 24], the following question is at hand.

QUESTION 3.4. Is each Jordan derivation on a generalized matrix algebra G a

derivation, or equivalently, do there exist proper Jordan derivations on generalized ma-

trix algebras?

The following counterexample provides an explicit answer to the above question.

It is shown that Jordan derivations of generalized matrix algebras need not be deriva-

tions. Equivalently, there indeed exist proper Jordan derivations on certain generalized

matrix algebras.

EXAMPLE 3.5. Let A be a commutative unital R -algebra and let

G =

{[
a11 a12

a21 a22

]
ai j ∈ A

}

be a generalized matrix algebra of order 2. For arbitrary X = [a11 a12
a21 a22

] ∈ G , Y =[
b11 b12
b21 b22

]
∈ G , we define the sum X +Y as usual. The multiplication XY is given

by the rule

XY =

[
a11b11 a11b12 + a12b22

a21b11 + a22b21 a22b22

]
. (♠)

Such kind of generalized matrix algebras are called trivial generalized matrix algebras.

That is, the bilinear pairings ΦAA = ΨAA = 0 are both zero. Let us establish an R -linear

mapping

ΓJord : G −→ G
[

a11 a12

a21 a22

]
−→

[
0 a12 + a21

a12−a21 0

]
, ∀

[
a11 a12

a21 a22

]
∈ G .

By straightforward computations, we know that ΓJord is a Jordan derivation of G , but

not a derivation.
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On the other hand, we can also define two R -linear mappings

Θ1 : G −→ G
[

a11 a12

a21 a22

]
−→

[
0 a12

−a21 0

]
, ∀

[
a11 a12

a21 a22

]
∈ G

and
Θ2 : G −→ G

[
a11 a12

a21 a22

]
−→

[
0 a21

a12 0

]
, ∀

[
a11 a12

a21 a22

]
∈ G .

It is easy to see that Θ1 is a derivation of G and Θ2 is an anti-derivation of G . There-

fore ΓJord is the sum of the derivation Θ1 and the anti-derivation Θ2 .

As a matter of fact, there exist some generalized matrix algebras whose multipli-

cation satisfies the rule (♠) . Let R ′ be an associative ring with identity and Z (R ′)

be its center. Let us consider the usual 2× 2 matrix ring
[

R′ R′

R′ R′

]
. It will become a

generalized matrix algebra under the usual addition and the following multiplication

rule [
a c

d b

][
e g

h f

]
=

[
ae + sch ag + c f

de + bh sdg + b f

]
,

where s ∈Z (R ′) . A trivial generalized matrix algebra arises in the case of s = 0. The

usual 2×2 matrix ring is produced when s = 1.

In view of Example 3.5 and our main motivation, we now begin to describe the

forms of anti-derivations on the generalized matrix algebra G . As we will see below,

Example 3.5 can be lifted and extracted to a more general conclusion.

PROPOSITION 3.6. An additive mapping Θantid from G into itself is an antideriva-

tion if and only if it has the form

Θantid

([
a m

n b

])
=

[
0 am0−m0b + τ3(n)

n0a−bn0 + ν2(m) 0

]
, (⋆4)

∀

[
a m

n b

]
∈ G ,

where m0 ∈M,n0 ∈ N and

τ3 :N −→M, ν2 :M −→ N

are R -linear mappings satisfying the following conditions:

(1) [a,a′]m0 = 0 , m0[b,b′] = 0 , n0[a,a′] = 0 , [b,b′]n0 = 0 for all a′ ∈ A,b′ ∈ B;

(2) m0n = 0 , nm0 = 0 , mn0 = 0 , n0m = 0;

(3) τ3(na) = aτ3(n) , τ3(bn) = τ3(n)b, nτ3(n
′) = 0 , τ3(n)n′ = 0 for all n′ ∈ N;
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(4) ν2(am) = ν2(m)a, ν2(mb) = bν2(m) , mν2(m
′) = 0 , ν2(m)m′ = 0 for all m′ ∈

M .

Proof. Suppose that the Jordan derivation Θantid is of the form

Θantid

([
a m

n b

])
=

[
δ1(a)+ δ2(m)+ δ3(n)+ δ4(b) τ1(a)+ τ2(m)+ τ3(n)+ τ4(b)
ν1(a)+ ν2(m)+ ν3(n)+ ν4(b) µ1(a)+ µ2(m)+ µ3(n)+ µ4(b)

]
,

for all [ a m
n b ] ∈ G , where δ1,δ2,δ3,δ4 are R -linear mappings from A,M,N,B to A ,

respectively; τ1,τ2 , τ3,τ4 are R -linear mappings from A,M,N,B to M , respectively;

ν1,ν2,ν3,ν4 are R -linear mappings from A,M,N,B to N , respectively; µ1,µ2,µ3,µ4

are R -linear mappings from A,M,N,B to B , respectively.

For any G1,G2 ∈ G , we will intensively employ the antiderivation equation

Θantid(G1G2) = Θantid(G2)G1 + G2Θantid(G1). (3.29)

Taking G1 =
[

a 0
0 0

]
and G2 =

[
a′ 0
0 0

]
into (3.29) yields

Θantid(G1G2) =

[
δ1(aa′) τ1(aa′)
ν1(aa′) µ1(aa′)

]
(3.30)

and

Θantid(G2)G1 + G2Θantid(G1) =

[
δ1(a

′)a + a′δ1(a) a′τ1(a)
ν1(a

′)a 0

]
. (3.31)

It follows from (3.30) with (3.31) that δ1 is an antiderivation of A , µ1 = 0 and

ν1(aa′) = ν1(a
′)a (3.32)

for all a,a′ ∈A . Let us set a′= 1 in (3.32) and denote ν1(1) by n0 . Then ν1(a) = n0a.

Furthermore, (3.32) implies that n0aa′= n0a′a for all a,a′ ∈A , that is, n0[a,a′] = 0 for

all a,a′ ∈ A . If we denote τ1(1) by m0 , then we obtain τ1(a) = am0 and [a,a′]m0 = 0

for all a,a′ ∈ A .

Let us choose G1 =
[

0 0
0 b

]
and G2 =

[
0 0
0 b′

]
in (3.29) . By the same computational

approach we conclude that µ4 is an antiderivation of B , δ4 = 0 and

τ4(b) = τ4(1)b, ν4(b) = bν4(1), τ4(1)[b,b′] = 0, [b,b′]ν4(1) = 0 (3.33)

for all b,b′ ∈ B . We claim that τ4(1) = −m0 . In fact, this can be obtained by taking

G1 =
[

0 0
0 1

]
and G2 =

[
1 0
0 0

]
in (3.29) . Likewise, we assert that ν4(1) =−n0 . Thus the

relation (3.33) becomes

τ4(b) =−m0b, ν4(b) =−bn0, m0[b,b′] = 0, [b,b′]n0 = 0

for all b,b′ ∈ B .

Putting G1 =
[

1 0
0 0

]
and G2 =

[
0 m
0 0

]
in (3.29) and using the fact µ1 = 0 gives

Θantid(G1G2) =

[
δ2(m) τ2(m)
ν2(m) µ2(m)

]
(3.34)
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and

Θantid(G2)G1 + G2Θantid(G1) =

[
δ2(m)+ mn0 0

ν2(m) 0

]
. (3.35)

Combining (3.34) with (3.35) leads to

mn0 = 0, τ2 = 0, µ2 = 0

for all m ∈M . Interchanging G1 and G2 we will get

δ2 = 0, n0m = 0

for all m ∈M .

If we take G1 =
[

1 0
0 0

]
and G2 =

[
0 0
n 0

]
into (3.29) , then

Θantid(G1G2) =

[
0 0

0 0

]
(3.36)

and

Θantid(G2)G1 + G2Θantid(G1) =

[
δ3(n) 0

ν3(n) 0

]
. (3.37)

will follow from the fact δ1(1) = 0. By (3.36) and (3.37) we obtain that

δ3 = 0, ν3 = 0. (3.38)

Interchanging G1 and G2 again yields

µ3 = 0, m0n = 0 (3.39)

for all n∈ N . In order to get nm0 = 0, we only need to put G1 =
[

0 0
0 1

]
and G2 =

[
0 0
n 0

]

in (3.29) .

Taking G1 =
[

0 0
n 0

]
and G2 =

[
a 0
0 0

]
into (3.29) and applying (3.38) and (3.39)

we arrive at

Θantid(G1G2) =

[
0 τ3(na)
0 0

]
. (3.40)

The fact µ1 = 0 and (3.39) imply that

Θantid(G2)G1 + G2Θantid(G1) =

[
0 aτ3(n)
0 0

]
. (3.41)

The relations (3.40) and (3.41) jointly show that τ3(na) = aτ3(n) for all a∈ A,n∈ N .

Likewise, if we choose G1 =
[

0 0
0 b

]
and G2 =

[
0 0
n 0

]
in (3.29) , then τ3(bn) = τ3(n)b

for all b ∈ B,n ∈ N . The equalities ν2(am) = ν2(m)a and ν2(mb) = bν2(m) can be

obtained by analogous discussions and the details are omitted here.

Let us consider G1 =
[

0 0
n 0

]
and G2 =

[
0 0
n′ 0

]
in (3.29) . Then we get nτ3(n

′) = 0

and τ3(n)n′ = 0 for all n,n′ ∈N . Putting G1 =
[

0 m
0 0

]
and G2 =

[
0 m′

0 0

]
in (3.29) yields

mν2(m
′) = 0 and ν2(m)m′ = 0 for all m,m′ ∈M .
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Taking G1 =
[

0 m
0 0

]
and G2 = [ a m

0 0 ] into (3.29) , then we get δ1(a)m = 0 for all

a ∈ A,m ∈M . Putting G1 =
[

0 m
0 b

]
and G2 =

[
0 m
0 0

]
in (3.29) gives mµ4(b) = 0 for all

b ∈ B,m ∈M . It follows from the faithfulness of M that δ1 = 0 and µ4 = 0.

Conversely, suppose that Θantid is of the form (⋆4) and satisfies conditions (1)−
(4) . Then the fact that Θantid is a antiderivation of G will follow by direct computa-

tions.

Let us next observe the antiderivations of a class of generalized matrix algebras.

DEFINITION 3.7. Let G =
[

A M
N B

]
be a generalized matrix algebra originating

from the Morita context (A,B,A MB, BNA,ΦMN ,ΨNM) . The bilinear form ΦMN : M⊗
B

N −→ A (resp. ΨNM : N⊗
A

M −→ B) is called nondegenerate if for any 0 6= m ∈ M

and 0 6= n ∈ N , ΦMN(m,N) 6= 0 and ΦMN(M,n) 6= 0 (resp. ΨNM(n,M) 6= 0 and

ΨNM(N,m) 6= 0).

EXAMPLE 3.8. Let H be a finite dimensional Hopf algebra over a filed K and

A be an H -module algebra. Let AH be the invariant subalgebra of H on A , and A#H

be the smash product algebra of A and H . We now consider the generalized matrix

algebra

GSPA =

[
AH M

N A#H

]

defined in Example 2.1, where M =AH AA#H and N =A#H AAH . Suppose that M is a

faithful right (or left) A#H -module. By [7, Proposition 2.13] we know that the bilinear

form ΦMN will be nondegenerate. In this case, we easily check that there is indeed no

nonzero antiderivations on GSPA .

EXAMPLE 3.9. Let K be a field and A be an associative algebra over K . Let G

be a group and A∗G be the skew group algebra over K . Suppose that AG is the fixed

ring of the action G on A . We now revisit the generalized matrix algebra

GGA =

[
AG M

N A∗G

]

in Example 2.2, where M =AG AA∗G and N =A∗G AAG . For an arbitrary element n∈ N ,

we define

n⊥ = {m ∈M|ΨNM(n,m) = 0} .

Similarly, for an arbitrary element m ∈M , we define

m⊥ = {n ∈ N|ΨNM(n,m) = 0} .

Then n⊥ is a G-invariant right ideal of A contained in rA(n) , where rA(n) is the right

annihilator of n in A . Indeed, let m ∈ n⊥ and g ∈ G , then ΨNM(n,mg) = ΨNM(n,m ·
g) = ΨNM(n,m)g = 0. Hence n⊥ is G-invariant, the rest is obvious. Similarly, we can

show that m⊥ is a G-invariant left ideal of A contained in lA(m) , where lA(m) is the

left annihilator of m in A .
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In particular, if A is a semiprime K -algebra, then rA(n) 6= A and lA(m) 6= A .

This shows that the bilinear form ΨNM is nondegenerate. Furthermore, if we assume

that the module N is faithful as a left A∗G-module, then the bilinear form ΦMN will

be also nondegenerate. Indeed, let ΦMN(m,N) = 0 for some m ∈ M . Then, 0 = N ·
ΦMN(m,N) = ΨNM(N,m) ·N . By faithfulness and nondegeneracy of ΨNM we deduce

that m = 0. If one of the bilinear pairings ΦMN and ΨNM is nondegenerate, then there

is no nonzero antiderivations on GGA , which is similar to Example 3.8.

In order to ensure the semiprimeness of the K -algebra A and the nondegeneracy

of the bilinear forms ΦMN and ΨNM , A may be one of the following algebras:

(1) the quantized enveloping algebra Uq(sl2(K)) over the field K ,

(2) the quantum n×n matrix algebra Oq(Mn(K)) over the field K ,

(3) the quantum affine n -space Oq(K
n) over the field K ,

(4) the double affine Hecke algebra H̃ over the field K .

(5) the Iwasawa algebra ΩG over the finite field Fp .

In view of Proposition 3.6, Example 3.8 and Example 3.9 we immediately have

PROPOSITION 3.10. Let G be a generalized matrix algebra over the commuta-

tive ring R and Θantid be an R -linear mapping from G into itself. If one of the bilinear

forms ΦMN : M⊗
B

N −→ A and ΨNM : N⊗
A

M −→ B is nondegenerate, then Θantid is

an antiderivation of G if and only if Θantid = 0 .

We will end this section by investigating properties of Jordan derivations of gener-

alized matrix algebras with zero bilinear pairings. Such kind of generalized matrix al-

gebras draw our attention, which is due to Haghany’s work and Example 3.5. Haghany

in [8] studied hopficity and co-hopficity for generalized matrix algebras with zero bi-

linear parings. As you see in Example 3.5, those generalized matrix algebras exactly

have zero bilinear pairings.

THEOREM 3.11. Let G be a 2 -torsion free generalized matrix algebra over the

commutative ring R . If the bilinear pairings ΦMN and ΨNM are both zero, then

every Jordan derivation of G can be expressed as the sum of a derivation and an

antiderivation.

Proof. Let ΘJord be a Jordan derivation of G . By Corollary 3.3 we know that

ΘJord is of the form

ΘJord

([
a m

n b

])
=

[
δ1(a)−mn0−m0n am0−m0b + τ2(m)+ τ3(n)

n0a−bn0 + ν2(m)+ ν3(n) n0m+ nm0 + µ4(b)

]
, (⋆3)

∀

[
a m

n b

]
∈ G .
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It follows from Proposition 3.1 and Proposition 3.6 that there exist a derivation Θ′d and

an antiderivation Θ′antid such that

ΘJord

([
a m

n b

])
=

[
δ1(a)−mn0−m0n am0−m0b + τ2(m)
n0a−bn0 + ν3(n) n0m+ nm0 + µ4(b)

]
+

[
0 τ3(n)

ν2(m) 0

]

= Θ′d

([
a m

n b

])
+ Θ′antid

([
a m

n b

])

for all [a m
n b ] ∈ G . This shows that ΘJord can be expressed the sum of a derivation Θ′d

and an antiderivation Θ′antid , which is the desired result.

As direct consequences of Theorem 3.11 we have

COROLLARY 3.12. The Jordan derivation ΓJord constructed in Example 3.5 can

be expressed as the sum of a derivation Θ1 and an antiderivation Θ2 .

COROLLARY 3.13. Let R be a 2 -torsion free commutative ring with identity,

A,B be two unital R -algebras and M be a faithful A-B-bimodule. Suppose that TR

is the triangular algebra consisting of A,B and M . Then each Jordan derivation of

TR is the sum of a derivation and an antiderivation.

Clearly, TR is a generalized matrix algebra with zero pairings. In view of Theo-

rem 3.11, every Jordan derivation of TR can be written as the sum of a derivation and

an antiderivation.

Acknowledgements

The authors express their gratitude to Professor Peter Šemrl for his kind consid-
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