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An example in Szigeti and van Wyk [J. Szigeti and L. van Wyk, Subrings
which are closed with respect to taking the inverse, J. Algebra 318 (2007),
pp. 1068–1076] suggests that Dedekind finiteness may play a crucial role in
a characterization of the structural subrings Mn(�,R) of the full n� n
matrix ring Mn(R) over a ring R, which are closed with respect to taking
inverses. It turns out that Mn(�,R) is closed with respect to taking inverses
in Mn(R) if all the equivalence classes with respect to �\ ��1, except
possibly one, are of a size less than or equal to p (say) and Mp(R) is
Dedekind finite. Another purpose of this article is to show that Mn(�,R) is
Dedekind finite if and only if Mm(R) is Dedekind finite, where m is the
maximum size of the equivalence classes (with respect to �\ ��1). This
provides a positive result for the inheritance of Dedekind finiteness by a
matrix ring (albeit not a full matrix ring) from a smaller (full) matrix ring.

Keywords: Dedekind finite ring; invertibility; structural matrix ring

AMS Subject Classifications: 15A09; 15A30; 16S50; 16U60

1. Introduction

A ring R is called Dedekind finite (or von Neumann finite, or weakly 1-finite, or
affine finite, or directly finite, or inverse symmetric) if whenever ab¼ 1 (a, b2R),
then ba¼ 1. If the full m�m matrix ring Mm(R) is Dedekind finite, then R is called
weakly m-finite in [2]. It is well known that left Noetherian rings and polynomial
identity rings (PI-rings) are Dedekind finite. We also note that a reversible ring R
(xy¼ 0 implies that yx¼ 0 for all x, y2R) is Dedekind finite [1]. Reduced rings are
examples of reversible rings.

The Dedekind finiteness of Mm(R) implies that the Dedekind finiteness of Mn(R)
for any integer n with n�m. Full matrix rings often inherit properties of the base ring
R, for example, being a left Noetherian ring or a PI-ring. On the other hand, Mn(R)
does not inherit Dedekind finiteness from Mm(R) if n4m. The simplest case of m¼ 1
and n¼ 2 was considered in [2,9].

In this article, we study the structural subring Mn(�,R) of Mn(R) determined by a
quasi-order � on the set {1, 2, . . . , n}. The class of structural matrix rings has been
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studied extensively (see, e.g. [3,4,11]). Based on results by Kaplansky–Amitsur and
Rasmyslov–Kemer–Braun, it was shown in [10] that if the base ring R ofMn(�,R) is a
PI-ring, then Mn(�,R) is closed with respect to taking inverses in Mn(R). An example
of an invertible 2� 2 upper triangular matrix A with entries from any non-Dedekind
finite ring R was also given such that A�1 is not upper triangular.

This example suggests that Dedekind finiteness may play a crucial role in a
characterization of structural subrings of Mn(R), which are closed with respect to
taking inverses. Indeed, we prove that Mn(�,R) is closed with respect to taking
inverses in Mn(R) if all the equivalence classes with respect to �\ ��1, except possibly
one, are of a size less than or equal to p (say) and Mp(R) is Dedekind finite. As a
consequence, we obtain the main results in [10] including the above-mentioned
sufficient one. Another purpose of this article is to show that Mn(�,R) is Dedekind
finite if and only if Mm(R) is Dedekind finite, where m is the maximum size of the
equivalence classes (with respect to �\ ��1). This provides a positive result for the
inheritance of Dedekind finiteness by a matrix ring (albeit not a full matrix ring)
from a smaller (full) matrix ring.

It should be noted that every structural matrix ring is an intersection of
conjugates of a complete blocked triangular matrix ring [5]. Hence in order to study
the closure of a structural matrix ring with respect to taking inverses, it suffices to
consider complete blocked triangular matrix rings. However, in our development
matrices are considered as functions instead of rectangular arrays, which allows us to
obtain direct and rather condensed proofs.

2. Invertibility and Dedekind finiteness

For finite sets U and V a matrix of size U�V over a unitary ring R is a function
A :U�V!R, and for the non-empty subsets U0 �U and V0 �V the U0 �V0

submatrix of A is simply the restricted function A �U0 �V0. The addition of U�V
matrices is coordinatewise, and the product of a matrix A of size U�V and a matrix
B of size V�W is the following U�W matrix:

ðABÞðu,wÞ ¼
X
v2V

Aðu, vÞBðv,wÞ,

where (u,w)2U�W and V is finite. If V ¼ {Tk j 1� k� d} is a partition of V, then
for the subsets U0 �U and W0 �W we have

AB�U0 �W0 ¼
X
T2V

A�U0 � Tð Þ B�T�W0ð Þ:

Let MU�V (R) denote the set of all U�V matrices over the ring R. The zero matrix
of size U�V is denoted by 0U�V. If U¼V, then IV�V stands for the identity
matrix in MV�V (R). If ��V�V is a quasi-order (i.e. reflexive and transitive relation
on V ), then

MV�Vð�,RÞ ¼ fA2MV�VðRÞ j Aði, j Þ ¼ 0 for all ði, j Þ 2 ðV� V Þ n �g

is the structural subring of MV�V (R) determined by �. Now �\ ��1 is an equivalence
relation on V and � induces a partial order relation �� on the set V/�\ ��1 of
equivalence classes.

222 S. Foldes et al.
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LEMMA 2.1 If A2MV�V (�,R), B2MV�V (R), BA¼ IV�V and T � is a minimal

element of the finite poset (V/�\ ��1,��), then A �U�T �¼ 0U�T �,

B�T � � T �ð Þ A�T � � T �ð Þ ¼ IT ��T � and B�U� T �ð Þ A�T � � T �ð Þ ¼ 0U�T � ,

where U¼V nT �.

Proof The minimality of T � and U\T �¼ ø ensures that (U�T �)\ �¼ ø. Now

A �U�T �¼ 0U�T � is a consequence of A2MV�V (�,R). Since {T
�,U} is a partition

of V, we have

IT ��T � ¼ IV�V�T
� � T � ¼ BA�T � � T �

¼ B�T � � T �ð Þ A�T � � T �ð Þ þ B�T � �Uð Þ A�U� T �ð Þ

¼ B�T � � T �ð Þ A�T � � T �ð Þ

and

0U�T � ¼ IV�V�U� T � ¼ BA�U� T �

¼ B�U� T �ð Þ A�T � � T �ð Þ þ B�U�Uð Þ A�U� T �ð Þ

¼ B�U� T �ð Þ A�T � � T �ð Þ: g

We note that the following dual of Lemma 2.1 also holds.

LEMMA 2.2 If A2MV�V (�,R), B2MV�V (R), AB¼ IV�V and T �� is a maximal

element of the finite poset (V/�\ ��1, ��), then A �T ���W¼ 0T ���W,

A�T �� � T ��ð Þ B�T �� � T ��ð Þ ¼ IT ���T ��

and

A�T �� � T ��ð Þ B�T �� �Wð Þ ¼ 0T ���W,

where W¼V nT ��.

THEOREM 2.3 Let � be a quasi-order on V such that V/�\ ��1¼ {T1,T2, . . . ,Td} has

d elements and

T1j j � T2j j � � � � � Td�1j j ¼ p � Tdj j:

If Mp(R) is Dedekind finite,A2MV�V (�, R), B2MV�V (R) and AB¼BA¼ IV�V,

then B2MV�V (�,R), and so MV�V (�,R) is closed with respect to taking inverses

in MV�V (R).

Proof We prove that B2MV�V (�,R) by using induction on the number of elements

of V/�\ ��1.
If jV/�\ ��1j ¼ 1, then V/�\ ��1¼ {V}, �¼V�V and B2MV�V (R)¼

MV�V (�,R) obviously holds.
Assume that our claim holds for all matrices of sizeU�U and for all quasi-orders

#�U�U with the properties jU/#\#�1j ¼ d and jT j � p for all T2U/#\#�1

except possibly one. Now let

V=� \ ��1 ¼ fTk j 1 � k � dþ 1g
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be a dþ 1� 2 element set and fix a pair (i, j)2 (V�V ) n �. We have i2Ts and j2Tr

for some unique indices 1� r, s� dþ 1, r 6¼ s. Take a maximal element T �� and a
minimal element T � in the finite poset (V/�\ ��1,��) such that Ts��T

�� and
T ���Tr. Since T ��¼T � would imply that Ts��Tr, which is in contradiction with
(i, j) =2 �, we deduce that T �� 6¼T �. Thus either jT ��j � p or jT �j � p.

Case 1 If jT �j � p, then i2T � would imply that (i, j)2 �, a contradiction. It follows
that i2U, where U¼V nT �.

Using BA¼ IV�V, the application of Lemma 2.1 gives A �U�T �¼ 0U�T �,

B�T � � T �ð Þ A�T � � T �ð Þ ¼ IT ��T � and B�U� T �ð Þ A�T � � T �ð Þ ¼ 0U�T � :

The Dedekind finiteness of MT ��T �(R) is a consequence of jT �j � p. It follows that

A�T � � T �ð Þ B�T � � T �ð Þ ¼ IT ��T � ,

whence B �U�T �¼ 0U�T � follows. Thus, we have

IU�U ¼ IV�V�U�U ¼ BA�U�U

¼ B�U� T �ð Þ A�T � �Uð Þ þ B�U�Uð Þ A�U�Uð Þ ¼ B�U�Uð Þ A�U�Uð Þ

and

IU�U ¼ IV�V�U�U ¼ AB�U�U

¼ A�U�Uð Þ B�U�Uð Þ þ A�U� T �ð Þ B�T � �Uð Þ ¼ A�U�Uð Þ B�U�Uð Þ

is a consequence of A �U�T �¼ 0U�T �. Consider the quasi-order #¼ �\ (U�U ) on
the set U. Since

A�U�U2MU�Uð#,RÞ and U=# \ #�1 ¼ fTk j 1 � k � dþ 1,Tk 6¼ T �g,

the induction hypothesis ensures that B �U�U2MU�U(#,R).
If j2T �, then B �U�T �¼ 0U�T � implies that B(i, j)¼ 0. If j =2T �, then

(i, j)2U�U and (i, j) =2# imply that B(i, j)¼ 0. We have thus proved that
B2MV�V (�,R).

Case 2 If jT ��j � p, then j2T �� would imply that (i, j)2 �, a contradiction. It follows
that j2W, whereW¼V nT ��. Using AB¼ IV�V and Lemma 2.2, we can proceed in a
similar way as in Case 1 to get B2MV�V (�,R). g

Note that in the formulation of the above theorem, p¼ jTd�1j is the size of
(one of ) the second largest block(s) Td�1 in V/�\ ��1.

THEOREM 2.4 If A2MV�V (�,R), B2MV�V (R), BA¼ IV�V and MT�T (R) is
Dedekind finite for all T2V/�\ ��1, then AB¼ IV�V.

Proof We prove that AB¼ IV�V by using induction on the number of elements
of V/�\ ��1.

If jV/�\ ��1j ¼ 1, then V/�\ ��1¼ {V}, �¼V�V and the Dedekind finiteness of
MV�V (R) implies that AB¼ IV�V.

Assume that our claim holds for all matrices of size U�U and for all
quasi-orders #�U�U with jU/#\#�1j ¼ d. Now let

V=� \ ��1 ¼ fTk j 1 � k � dþ 1g

be a dþ 1� 2 element set, and take a minimal element T � in the finite poset
(V/�\ ��1,��).

224 S. Foldes et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
St

el
le

nb
os

ch
] 

at
 0

0:
22

 0
6 

M
ar

ch
 2

01
5 



The application of Lemma 2.1 gives A �U�T �¼ 0U�T �,

B�T � � T �ð Þ A�T � � T �ð Þ ¼ IT ��T � and B�U� T �ð Þ A�T � � T �ð Þ ¼ 0U�T � ,

where U¼V nT �. The Dedekind finiteness of MT ��T �(R) implies that

A�T � � T �ð Þ B�T � � T �ð Þ ¼ IT ��T � ,

whence B �U�T �¼ 0U�T � and

IU�U ¼ IV�V�U�U ¼ BA�U�U

¼ B�U� T �ð Þ A�T � �Uð Þ þ B�U�Uð Þ A�U�Uð Þ ¼ B�U�Uð Þ A�U�Uð Þ

follow. Consider the quasi-order #¼ �\ (U�U ) on the set U. In view of

A�U�U2MU�Uð#,RÞ and U=# \ #�1 ¼ fTk j 1 � k � dþ 1,Tk 6¼ T �g,

the induction hypothesis ensures that

A�U�Uð Þ B�U�Uð Þ ¼ IU�U:

Now

0T ��U ¼ IV�V�T
� �U ¼ BA�T � �U

¼ B�T � � T �ð Þ A�T � �Uð Þ þ B�T � �Uð Þ A�U�Uð Þ,

whence

0T ��U ¼ A�T � � T �ð Þ � 0T ��U � B�U�Uð Þ

¼ A�T � � T �ð Þ B�T � � T �ð Þ A�T � �Uð Þ B�U�Uð Þ

þ A�T � � T �ð Þ B�T � �Uð Þ A�U�Uð Þ B�U�Uð Þ

¼ A�T � �Uð Þ B�U�Uð Þ þ A�T � � T �ð Þ B�T � �Uð Þ ¼ AB�T � �U

can be derived. Using A �U�T �¼B �U�T �¼ 0U�T �, we obtain that

AB�U� T � ¼ A�U� T �ð Þ B�T � � T �ð Þ þ A�U�Uð Þ B�U� T �ð Þ ¼ 0U�T � ,

AB�T � � T � ¼ A�T � � T �ð Þ B�T � � T �ð Þ þ A�T � �Uð Þ B�U� T �ð Þ

¼ A�T � � T �ð Þ B�T � � T �ð Þ ¼ IT ��T �

and

AB�U�U ¼ A�U� T �ð Þ B�T � �Uð Þ þ A�U�Uð Þ B�U�Uð Þ

¼ A�U�Uð Þ B�U�Uð Þ ¼ IU�U:

Obviously,

AB�T � �U ¼ 0T ��U, AB�U� T � ¼ 0U�T �

and

AB�T � � T � ¼ IT ��T � , AB�U�U ¼ IU�U

imply that AB¼ IV�V. g

The following dual of Theorem 2.4 can be proved analogously.
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THEOREM 2.5 If A2MV�V (�,R), B2MV�V (R), AB¼ IV�V and MT�T (R) is

Dedekind finite for all T2V/�\ ��1, then BA¼ IV�V.

COROLLARY 2.6 Let � be a quasi-order on V such that V/�\ ��1¼ {T1,T2, . . . ,Td}

has d elements and

T1j j � T2j j � � � � � Td�1j j � Tdj j ¼ m:

If Mm(R) is Dedekind finite, A2MV�V (�,R), B2MV�V (R) and BA¼ IV�V,

then B2MV�V (�,R), and so MV�V (�,R) is closed with respect to taking (left)

inverses in MV�V (R).

Proof The Dedekind finiteness of MT�T (R) (for all T2V/�\ �
�1) is a consequence

of jT j �m. Thus the application of Theorem 2.4 gives that AB¼ IV�V. Since

p¼ jTd�1j �m, the ring Mp(R) is also Dedekind finite and we can use Theorem 2.3 to

obtain B2MV�V (�,R). g

The (right) dual of Corollary 2.6 also holds.

THEOREM 2.7 Let m� 1 be an integer and R an arbitrary ring. The following

conditions are equivalent:

(1) The ring Mm(R) of m�m matrices over R is Dedekind-finite.
(2) For every integer n� 1 and quasi-order � on V¼ {1, . . . , n} such that the

maximum size of the equivalence classes (with respect to �\ ��1) is m, the

structural matrix ring Mn(�,R) is closed with respect to taking inverses in

Mn(R).
(3) The ring of (m,m)-block upper triangular matrices over R is closed with respect

to taking inverses in M2m(R).

Proof (1)) (2): Let A2Mn(�,R) be invertible in Mn(R). If all the equivalence

classes of �\ ��1 are of size at most m, then A�12Mn(�,R) is an immediate

consequence of Corollary 2.6.
(2)) (3): Obvious.
(3)) (1): If XY¼ Im and YX 6¼ Im for some X,Y2Mm(R), then the 2m� 2m matrices

A ¼
Y Im � YX

0 X

� �
and B ¼

X 0

Im � YX Y

� �

are inverses of each other. However, A is (m,m)-block upper triangular while B

is not [10]. g

COROLLARY 2.8 If R is a left Noetherian ring or a PI-algebra over a central subring

C�Z(R), then the structural matrix ring Mn(�,R) is closed with respect to taking

inverses in Mn(R).

Proof For each integer m� 1 the matrix ring Mm(R) inherits the left Noetherian or

the PI property of the base ring R. Since a left Noetherian ring or a PI-algebra is

always Dedekind finite [7,8,10], we can apply Theorem 2.7. g

THEOREM 2.9 Let � be any quasi-order on V¼ {1, . . . , n} such that the maximum

size of the equivalence classes (with respect to �\ ��1) is m. Then Mn(�,R) is

Dedekind-finite if and only if Mm(R) is Dedekind-finite.

226 S. Foldes et al.
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Proof Any matrix X2Mm(R) can be viewed as a matrix inMn(�,R) by adding extra
1’s on the diagonal and zeros in the non diagonal entries. Thus the ‘only if ’ part is
straightforward.

Suppose Mm(R) is Dedekind-finite and let AB¼ In in Mn(�,R). Since jT j �m, the
ring MT�T (R) is Dedekind finite for all T2V/�\ ��1. Now Theorem 2.4 (or 2.5)
gives that BA¼ In. g

The following corollary is treated in [6] for the 2� 2 upper triangular case.

COROLLARY 2.10 If R is a Dedekind finite ring, then the ring UTn(R) of n� n upper
triangular matrices is Dedekind-finite.
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