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Recall that an n-by-n generalized matrix ring is defined in terms of sets of
rings {Ri }n

i=1, (Ri , R j )-bimodules {Mi j } and bimodule homomorphisms θi jk :
Mi j ⊗R j M jk → Mik , where the set of diagonal matrix units {Eii } form
a complete set of orthogonal idempotents. Moreover, an arbitrary ring with a
complete set of orthogonal idempotents {ei }n

i=1 has a Peirce decomposition which
can be arranged into an n-by-n generalized matrix ring Rπ which is isomorphic
to R. In this paper, we focus on the subclass Tn of n-by-n generalized matrix
rings with θi j i = 0 for i �= j . Tn contains all upper and all lower generalized
triangular matrix rings. The triviality of the bimodule homomorphisms motivates
the introduction of three new types of idempotents called the inner Peirce, outer
Peirce and Peirce trivial idempotents. These idempotents are our main tools and
are used to characterize Tn and define a new class of rings called the n-Peirce
rings. If R is an n-Peirce ring, then there is a certain complete set of orthogonal
idempotents {ei }n

i=1 such that Rπ ∈ Tn . We show that every n-by-n generalized
matrix ring R contains a subring S which is maximal with respect to being in Tn
and S is essential in R as an (S, S)-bisubmodule of R. This allows for a useful
transfer of information between R and S. Also, we show that any ring is either an
n-Peirce ring or for each k > 1 there is a complete set of orthogonal idempotents
{ei }k

i=1 such that Rπ ∈ Tk . Examples are provided to illustrate and delimit our
results.

Keywords: idempotent; generalized matrix ring; formal matrix ring; Morita
Context; Peirce trivial; annihilator; bimodule; essential; ideal extending

AMS Subject Classifications: 16S50; 15A33; 16D20; 16D70

1. Introduction

Throughout this paper all rings are associative with a unity and modules are unital unless
explicitly indicated otherwise.

Given a complete set of orthogonal idempotents, {ei }n
i=1, of a ring R, we can form a

group direct sum,

R = e1 Re1 ⊕ · · · ⊕ e1 Ren ⊕ e2 Re1 ⊕ · · · ⊕ e2 Ren ⊕ · · · ⊕ en Re1 ⊕ · · · ⊕ en Ren,

∗Corresponding author. Email: gfb1127@louisiana.edu
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Linear and Multilinear Algebra 2003

called the Peirce decomposition of R. This decomposition can be arranged into an n-by-n
square array, called Rπ , with

Rπ =

⎡
⎢⎢⎢⎢⎣

e1 Re1 e1 Re2 · · · e1 Ren

e2 Re1 e2 Re2
. . .

...
...

. . .
. . . en−1 Ren

en Re1 · · · en Ren−1 en Ren

⎤
⎥⎥⎥⎥⎦ .

The array Rπ forms a ring, where addition is componentwise and multiplication is the usual
row-column matrix multiplication. Moreover, there is a ring isomorphism h : R → Rπ

defined by h(x) = [ei xe j ] for all x ∈ R. Observe that the ei Rei are rings with unity and
the ei Re j are (ei Rei , e j Re j )-bimodules. Note that the bimodule product ei Re j · e j Rek ,
arising in the row-column multiplication, may be thought of as a bimodule homomorphism
θi jk : ei Re j ⊗e j Re j e j Rek → ei Rek determined by the multiplication of R.

The above discussion motivates the following well-known definition:
an n-by-n generalized (or formal) matrix ring R is a square array

R =

⎡
⎢⎢⎢⎢⎣

R1 M12 · · · M1n

M21 R2
. . .

...
...

. . .
. . . Mn−1,n

Mn1 · · · Mn,n−1 Rn

⎤
⎥⎥⎥⎥⎦

where each Ri is a ring, each Mi j is an (Ri , R j )-bimodule and there exist (Ri , Rk)-bimodule
homomorphisms θi jk : Mi j ⊗R j M jk → Mik for all i, j, k = 1, . . . , n (with Mii = Ri ).
For mi j ∈ Mi j and m jk ∈ M jk , mi j m jk denotes θi jk(mi j ⊗ m jk). The homomorphisms
θi jk must satisfy the associativity relation: (mi j m jk)mk� = mi j (m jkmk�) for all mi j ∈
Mi j , m jk ∈ M jk, mk� ∈ Mk� and all i, j, k, � = 1, . . . , n. Observe that θi i i is determined
by the ring multiplication in Ri , while θi j j and θ j jk are determined by the bimodule scalar
multiplications. Further information on generalized matrix rings can be found in [1].

With these conditions, addition on R is componentwise and multiplication on R is row-
column matrix multiplication. A Morita context is a 2-by-2 generalized matrix ring. An
n-by-n generalized upper (lower) triangular matrix ring is a generalized matrix ring with
Mi j = 0 for j < i (Mi j = 0 for i < j). Note that {Eii ∈ R | Eii is the matrix with 1 ∈ Ri

in the (i, i)-position and 0 elsewhere, i = 1, . . . , n} is a complete set {Eii }n
i=1 of orthogonal

idempotents in the above constructed generalized matrix ring R.
The foregoing observations allow us to consider a generalized matrix ring in two ways:

(1) given a ring R and a complete set of orthogonal idempotents, {ei }n
i=1, then Rπ is an

‘internal’ representation of R as a generalized matrix ring in terms of substructures
of R; whereas

(2) given collections {Ri }, {Mi j }, and {θi jk}, we construct a new ring from these
‘external’ components via the generalized matrix ring notion.

An important problem in the study of generalized matrix rings is: given a collection of
rings {Ri | i = 1, . . . , n} and bimodules {Mi j | i, j = 1, . . . , n, i �= j, and each Mi j is an
(Ri , R j )− bimodule} determine the θi j i (i �= j) and the θi jk (i, j, k distinct) to produce an
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2004 P.N. Ánh et al.

n-by-n generalized matrix ring. We can simplify this problem by trivializing the θi jk in the
following three ways (note that for n = 2, all three conditions coincide):

(I) Define θi j i = 0, for all i �= j .
(II) Define θi jk = 0, for all i, j, k pairwise distinct.

(III) Define θi jk = 0, for all i �= j and j �= k (I and II combined).

Two questions immediately arise:

(A) Are there significant examples of generalized matrix rings with trivialized θi jk?
(B) How can the theory of generalized matrix rings with trivialized θi jk be used to gain

insight into the theory of arbitrary generalized matrix rings?

In this paper, we consider the class of n-by-n (n > 1) generalized matrix rings satisfying
condition (I) (i.e. θi j i = 0, for all i �= j).

We denote this class of rings by Tn.

For each generalized matrix ring R,
we use R to denote the ring in Tn which has the same corresponding Ri ,Mi j , θi jk

as R, except that for all i �= j the homomorphisms θi j i are taken to be 0 in R.
Thus R and R are the same ring if and only if R ∈ Tn . Note that the classes of n-by-n

generalized upper and lower triangular matrix rings form significant proper subclasses of
Tn (see Question A). Further examples are provided throughout this paper.

Observe that the triviality of the θi j i motivates three new types of idempotents which
appear in the internal (Peirce decomposition) generalized matrix ring representation of a
ring in T2. For e = e2 ∈ R,

(1) e is inner Peirce trivial if eR(1 − e)Re = 0;
(2) e is outer Peirce trivial if (1 − e)ReR(1 − e) = 0;
(3) e is Peirce trivial if e is both inner and outer trivial.

In [2] Peirce introduced the concept of an idempotent, and so we are naming certain
idempotents and rings in this paper in his honour. These idempotents provide the main tools
in our investigations; in particular, they are used to characterize the class Tn and the class
of n-Peirce rings.

In Section 3, we develop the basic properties of the inner (outer) Peirce trivial idempo-
tents. Moreover we show that if R is a subring of a ring T and S is the subring of T generated
by R and a subset E of inner or outer Peirce trivial idempotents of T, then there is a useful
transfer of information between R and S, e.g. R is strongly π -regular or has classical Krull
dimension n if and only if so does S (Theorems 3.13, 3.14 and 3.16).

In Section 4, we begin by showing that, for a ring R with a complete set {ei }n
i=1 of

orthogonal idempotents, Rπ ∈ Tn if and only if each ei is inner Peirce trivial (Theorem
4.2).

Next, let R be a generalized n-by-n matrix ring and take

D(R) = {[ri j ] ∈ R | ri j = 0 for all i �= j}
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Linear and Multilinear Algebra 2005

and

D(R)− = {[ri j ] ∈ R | rii = 0 for all i = 1, . . . , n}.
We obtain that if R ∈ Tn then D(R)− � R such that (D(R)−)n = 0 and D(R) is ring

isomorphic to R/(D(R)−) (Proposition 4.4).
The transfer of various ring properties (e.g. semilocal, bounded index, having a polyno-

mial identity) between R and D(R) is considered when R ∈ Tn . In Theorem 4.12 (one of the
main results of the paper) we show that every n-by-n generalized matrix ring has subrings
S maximal with respect to being in Tn such that S is essential in R as an (S, S)-bimodule.
This fact allows for a two-step transfer of information from D(R) to S (Theorem 3.16) and
from S to R (Theorem 4.12 and Corollary 4.14).

In the remainder of this section, we introduce the notion of an ideal extending ring and
use Theorem 4.12 and its consequences to show how this notion passes from a ring A to
certain generalized matrix rings which are overrings of the n-by-n upper triangular matrix
ring over A. Thus Theorem 4.12 and its corollaries provide answers to Question B.

The n-Peirce rings are introduced and investigated in Section 5. A ring R is a

1-Peirce ring

if 0 and 1 are the only Peirce trivial idempotents in R. Inductively, for a natural number
n > 1, we say a ring R is an

n-Peirce ring

if there is a Peirce trivial idempotent e such that eRe is an m-Peirce ring for some 1 ≤ m < n
and (1 − e)R(1 − e) is an (n − m)-Peirce ring.

In Theorem 5.7, we show that an n-Peirce generalized matrix ring is in Tn (n > 1) and
that if R has a complete set {ei }n

i=1 of orthogonal idempotents such that each ei Rei is a
1-Peirce ring, then R is a k-Peirce ring for some 1 ≤ k ≤ n. Example 5.2 shows that the
class of n-Peirce rings is a proper subclass of Tn for n > 1, and that any n-by-n generalized
upper triangular matrix ring with prime diagonal rings is an n-Peirce ring. The class of
n-Peirce rings has an advantage over Tn in that for n > 1, an n-Peirce ring has a complete
set {ei }n

i=1 of orthogonal idempotents such that each ei Rei is a 1-Peirce ring. In Theorem
5.11, it is also shown that if R has DCC on {ReR | e is a Peirce trivial idempotent}, then R
is an n-Peirce ring for some n.

As indicated in Definition 3.1, the inner (outer) Peirce trivial idempotents can be defined
in a ring without a unity. Hence, many of the results in this paper can be modified to hold
in rings without a unity.

2. Notation and terminology

(1) R is Abelian – means every idempotent is central.
(2) B(R),P(R) and J (R) denote the central idempotents of R, the prime radical of R

and the Jacobson radical of R, respectively.
(3) S�(R) = {e = e2 ∈ R | Re = eRe}, Sr (R) = {e = e2 ∈ R | eR = eRe}.
(4) Cen(R) is the center of R.
(5) U(R) is the group of units of R.
(6) < − >R is the subring of R generated by −, and (−)R is the ideal of R generated

by −.
(7) X � R means X is an ideal of R.
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2006 P.N. Ánh et al.

(8) r A(B) and �A(B) denote the right and left annihilator of B in A, respectively.
(9) Z and Zn denote the ring of integers and the ring of integers modulo n, respectively.

(10) Z+ means the positive integers.

3. Basic properties of Peirce trivial idempotents

Definition 3.1 Let R be a ring, not necessarily with a unity, and let e = e2 ∈ R. We say
e is inner Peirce trivial (respectively, outer Peirce trivial) if exye = exeye (respectively,
xey + exeye = xeye + exey) for all x, y ∈ R. If e is both inner and outer Peirce trivial,
we say e is Peirce trivial.

For a ring R with a unity, e is inner (respectively, outer) Peirce trivial if and only if
eR(1 − e)Re = {0} (respectively, (1 − e)ReR(1 − e) = {0}); moreover, e is inner Peirce
trivial if and only if f = 1 − e is outer Peirce trivial. Let

Pit(R),Pot(R) and Pt(R)

denote the set of all inner Peirce trivial idempotents, all outer Peirce trivial idempotents and
all Peirce trivial idempotents of R, respectively. Note that B(R) ⊆ Pt (R).

Example 3.2 Inner and outer Peirce trivialities are independent properties of idempotents.
Let R1 = Z, R2 = Z/8Z = Z8,M12 = Z4,M21 = Z2, together with tensor products
M12 ⊗R2 M21 ∼= Z2 �→ 0 ∈ R1 and M21 ⊗R1 M12 ∼= Z2 ∼= 4R2, respectively. Then

in R =
[

R1 M12
M21 R2

]
the elements e =

[
1 0
0 0

]
and f =

[
0 0
0 1

]
are idempotents.

Moreover, e is inner Peirce trivial, but not outer Peirce trivial, and f is outer Peirce trivial,
but not inner Peirce trivial.

Proposition 3.3 Let R =
[

R1 M12
M21 R2

]
∈ T2 and assume α =

[
e m
n f

]
∈ R.

(1) Then α = α2 if and only if e = e2, f = f 2, em + m f = m and ne + f n = n.
(2) If α = α2 and e and f are central idempotents, then α ∈ Pt(R). In particular, if

R1 and R2 are commutative, then Pt(R) = {α ∈ R | α = α2}.

Proof The proof is a straightforward calculation using Definition 3.1. �

Note that Proposition 3.3(2) is, in general, not true when R ∈ Tn for n > 2 (see Example
3.9).

As a consequence of Definition 3.1, one has the following descriptions:

Lemma 3.4 For e2 = e ∈ R the following claims are equivalent:

(1) e is inner Peirce trivial.
(2) e�R(e) = eR(1 − e) is a right ideal of R.
(3) r R(e)e = (1 − e)Re is a left ideal of R.
(4) e f ge = e f ege for all idempotents f, g ∈ R.
(5) h : R → eRe, defined by h(x) = exe, is a surjective ring homomorphism.
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Linear and Multilinear Algebra 2007

(6) eRt Re = 0 for all t ∈ R such that ete = 0.
(7) ReR ⊆ �R((1 − e)Re).

Proof We show implication (4) ⇒ (1); the remaining implications are routine. For any
x, y ∈ R simple computation shows f := e−ex+exe = e f = f 2 and g := e−ye+eye =
ge = g2, whence one has by assumption e+exye−exeye = e f ge = e f ege = e, implying
exye = exeye. Therefore e is inner Peirce trivial. �

Lemma 3.5 For e2 = e ∈ R the following claims are equivalent:

(1) e is outer Peirce trivial.
(2) e�R(e) = eR(1 − e) is a left ideal of R.
(3) r R(e)e = (1 − e)Re is a right ideal of R.
(4) f eg + e f ege = f ege + e f eg for all idempotents f, g ∈ R.

Proof Again, we show the implication (4) ⇒ (1); the remaining implications are routine.
For any x, y ∈ R simple computation shows f := e + xe − exe = f e = f 2 and
g := e + ey − eye = eg = g2, whence one has by assumption f eg + e f ege = f g + e =
f ege + e f eg = f + g. Therefore we have the equality e + (e + xe − exe)(e + ey − eye) =
e + xe − exe + e + ey − eye, from which one can obtain, after simplification, that e is outer
Peirce trivial. �

Corollary 3.6 For e2 = e ∈ R the following claims are equivalent:

(1) e is Peirce trivial.
(2) e�R(e) = eR(1 − e) is an ideal of R.
(3) r R(e)e = (1 − e)Re is an ideal of R.
(4) e, 1 − e ∈ Pit(R).

From the above results, one can see that if R is semiprime, then Pit(R) = Pot(R) =
Pt(R) = B(R).

Lemma 3.7 Let e, f ∈ R such that e = e2 and f = f 2.

(1) e ∈ Pit(R) implies e f e = (e f e)2, (e f )2 = (e f )3 and ( f e)2 = ( f e)3.
(2) e ∈ Pt(R) implies f e f = ( f e f )2.
(3) e, f ∈ Pit(R) implies e f e, f e f ∈ Pit(R).
(4) If R is a generalized matrix ring and [ei j ] ∈ Pit(R) (resp. Pot(R),Pt(R)), then

eii ∈ Pit(Ri ) (resp. Pot(Ri ),Pt(Ri )).

Proof This proof is routine. �

Lemma 3.8 Let c, e ∈ R such that c = c2 and e = e2.

(1) e ∈ Pit(R) if and only if Pit(eRe) = eRe ∩ Pit(R).
(2) Pt(R) ∩ cRc ⊆ Pt(cRc).
(3) Assume I � R. Then Pit(I ) = I ∩ Pit(R).
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Proof

(1) Clearly, eRe ∩ Pit(R) ⊆ Pit(eRe). Assume e ∈ Pit(R), c ∈ Pit(eRe) and
x, y ∈ R. Then cxyc = c(exye)c = c((exe)(eye))c = c(exe)c(eye)c = cxcyc.
Thus eRe ∩ Pit(R) = Pit(eRe). Conversely, assume eRe ∩ Pit(R) = Pit(eRe).
Since e ∈ Pit(eRe), then e ∈ Pit(R).

(2) The proof of this part is straightforward.
(3) Clearly, I ∩ Pit(R) ⊆ Pit(I ). Let f ∈ Pit(I ) and x, y ∈ R. Then f xy f =

f (( f x)(y f )) f = f ( f x) f (y f ) f = f x f y f . Therefore Pit(I ) = I ∩ Pit(R). �

Example 3.9 In general, for c ∈ Pt(R), Pt(R) ∩ cRc � Pt(cRc). Let R be the 3-by-3
upper triangular matrix ring over a ring A with e = E22 ∈ R and c = E22 + E33. Then
c ∈ Pt(R) and e ∈ Pt(cRc), but e �∈ Pot(R). Thus, Pt(R) ∩ cRc � Pt(cRc).

In [3] (also see [4,5]), it is shown that a ring R has a generalized triangular matrix form
if and only if it has a set of left (or right) triangulating idempotents. Such a set is an ordered
complete set of orthogonal idempotents which are contructed from S�(R) and Sr (R).

Our next result and results from Sections 4 and 5 show that Pit(R) and Pt(R) can
be used to naturally extend the notion of a generalized triangular matrix ring. Moreover,
the inherent symmetry in the definitions of Pit(R) and Pt(R) frees us from the ‘ordered’
condition on sets of idempotents when characterizing these natural extensions.

Proposition 3.10

(1) Sl(R) ∪ Sr (R) ⊆ Pt(R).
(2) Let {e1, . . . , en} be a set of left or right triangulating idempotents of R. Then

{e1, . . . , en} ⊆ Pit(R).

Proof

(1) This part is immediate from the definitions.
(2) From [3, p. 560 and Corollary 1.6] and Lemma 1.8, each ei ∈ Pit(R). �

From Proposition 3.10, B(R) ⊆ Sl(R) ∪ Sr (R) ⊆ Pt(R) ⊆ Pit(R) (Pot(R)). If R is
semiprime these containment relations become equalities by Lemmas 3.4 and 3.5.

Example 3.11 Let A be a ring whose only idempotents are 0 and 1.Assume 0 �= X, Y � A.
Using Proposition 3.3 we obtain:

(1) Let R =
[

A X
0 A

]
. Then Sl(R) ∪ Sr (R) = Pt(R) = {e | e = e2 ∈ R}.

(2) Let R =
[

A X
Y A

]
and XY = 0 = Y X . Then Sr (R) = Sl(R) = {0, 1} �

Pt(R) = {e | e = e2 ∈ R}.
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Linear and Multilinear Algebra 2009

(3) Let B be a subring of A with X � B and R =
[

A X
A/X B

]
. Then Sr (R) =

Sl(R) = {0, 1} � Pt(R) = {e | e = e2 ∈ R}.

We conclude Section 3 by showing in the next results (3.12–3.16) that given a base ring
R, an overring T, and a set E contained in Pit(T ) ∪ Pot(T ), there is a significant transfer
of information between R and S, where S is the subring of T generated by R and E . These
results indicate the importance of the inner and outer Peirce trivial idempotents.

Let S be an overring of R. We consider the following properties between prime ideals
of R and S (see [6, pp. 295–296] or [7, p.292]).

(1) Lying over (LO). For any prime ideal P of R, there exists a prime ideal Q of S such
that P = Q ∩ R.

(2) Going up (GO). Given prime ideals P1 ⊆ P2 of R and Q1 of S with P1 = Q1 ∩ R,
there exists a prime ideal Q2 of S with Q1 ⊆ Q2 and P2 = Q2 ∩ R.

(3) Incomparable (INC). Two different prime ideals of S with the same contraction in
R are not comparable.

Lemma 3.12 Let T be a ring, R a subring of T,

EP = {e = e2 ∈ T | e + P(T ) is central in T/P(T )},
and S = 〈R ∪ E〉T , where ∅ �= E ⊆ EP Then:

(1) Pit(T ) ∪ Pot(T ) ⊆ EP .
(2) If K is a prime ideal of S, then R/(K ∩ R) ∼= S/K .
(3) LO, GU and INC hold between R and S.

Proof

(1) This part follows from Lemmas 3.4 and 3.5.
(2) and (3). The proof of these parts is similar to that in [8, Lemma 2.1] or [6, Lemma

8.3.26]. �

Recall that a ring R is strongly π -regular if for each x there is a positive integer n
(depending on x) such that xn ∈ xn+1 R.

Theorem 3.13 Let C be a property of rings such that a ring A has property C if and
only if every prime factor of A has property C. Assume T is a ring, R is a subring of T and
S := 〈R ∪ E〉T , where ∅ �= E ⊆ EP , with EP as in Lemma 3.12. Then R has property C if
and only if S has property C. In particular, R is strongly π -regular if and only if S is strongly
π -regular.

Proof Assume R has property C and K is a prime ideal of S. From Lemma 3.12(2),
R/(K ∩ R) is a prime ring, and so R/(K ∩ R) has property C. Hence S/K has property C.
Therefore S has property C.

Conversely, assume S has property C and P is a prime ideal of R. From Lemma 3.12(3),
LO holds between R and S. So there exists a prime ideal Q of S such that Q ∩ R = P . By
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Lemma 3.12(2), R/P = R/(Q ∩ R) ∼= S/Q. Hence R/P has property C. Therefore R has
property C.

From [9], a ring A is stronglyπ -regular if and only if every prime factor of A is a strongly
π -regular ring. �

See [10] for the definition of a special radical. Observe that the prime, Jacobson and nil
radicals are included in the collection of special radicals.

Theorem 3.14 Let R be a subring of a ring T, ∅ �= E ⊆ EP , and S = 〈R ∪ E〉T . Then:

(1) ρ(R) = ρ(S) ∩ R, where ρ is any special radical.
(2) The classical Krull dimensions of both S and R are equal.
(3) If S is a von Neumann regular ring, then so is R.

Proof Using Lemma 3.12, the proof is similar to [8, Theorem 2.2] or
[6, Theorem 8.3.28]. �

Lemma 3.15 Let T ∈ Tn (n > 1) and

Ek = {[ti j ] ∈ T | tk j ∈ Mkj for j �= k, tkk = 1 ∈ Tk and all other entries are zero}.
Then ∪n

k=1Ek ⊆ Pit(T ).

Proof The proof of this result is a routine but tedious application of Definition 3.1. �

Theorem 3.16 Let T ∈ Tn (n > 1), R = D(T ) and E = ∪n
k=1Ek (as in Lemma 3.15).

Then:

(1) 〈R ∪ E〉T = S = T .
(2) R has property C (as in Theorem 3.13) if and only if T has property C.
(3) ρ(R) = ρ(T ) ∩ R.
(4) The classical Krull dimension of both R and T are equal.

Proof Use Lemmas 3.12 and 3.15 and Theorems 3.13 and 3.14. �

This result extends [11, Corollary 3.6].

4. Characterization of Tn

Lemma 4.1 Let {e1, . . . , en} be a complete set of orthogonal idempotents of R.

(1) ei ∈ Pit(R) if and only if ei Re j Rei = 0 for all j �= i .
(2) e j ∈ Pot(R) if and only if ei Re j Rek = 0 for all i �= j and k �= j .
(3) {e1, . . . , en} ⊆ Pot(R) if and only if {e1, . . . , en} ⊆ Pt(R).

Proof (3) follows obviously from (1) and (2). Furthermore, (1) and (2) are immediate
consequences of the definition of Peirce trivial idempotents by observing
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0 = ei R(1 − ei )Rei = ei R

⎛
⎝∑

j �=i

e j

⎞
⎠ Rei =

∑
j �=i

ei Re j Rei ⇔ ∀ j �= i ei Re j Rei = 0,

and

0 = (1 − e j )Re j R(1 − e j ) = ⊕i �= j �=kei Re j Rek ⇔ ∀i �= j �= k ei Re j Rek = 0. �

Lemma 4.1 shows remarkably that inner and outer Peirce trivial idempotents behave
quite differently when they are considered together as a complete set of idempotents although
their definition seems very symmetric! Lemma 4.1 shows clearly the equivalence of the first
three statements in the next result.

Theorem 4.2 Let {e1, . . . , en} be a complete set of orthogonal idempotent elements of
R. The following conditions are equivalent:

(1) Rπ ∈ Tn.
(2) ei Re j Rei = 0, for all i �= j .
(3) {e1, . . . , en} ⊆ Pit(R).
(4) D(Rπ )− is a right ideal of Rπ .

Proof (3) ⇔ (4) Let X = D(Rπ )−. Observe that the (i, i)-position of X Rπ is∑
k �=i ei Rk Rei = ei R(1−ei )Rei ; and the (i, j)-position of X Rπ is

∑
k �=i, k �= j ei Rek Re j ⊆

ei Re j . Therefore X Rπ ⊆ X if and only if each ei ∈ Pit(R). �

Observe that from Lemma 3.4 and Theorem 4.2, any property that is preserved by a
surjective ring homomorphism passes from a ring in Tn to its diagonal rings.

Corollary 4.3 Let R be an n-by-n generalized matrix ring. Then the following condi-
tions are equivalent:

(1) R ∈ Tn.
(2) Let [ai j ], [bi j ] ∈ R with [ci j ] = [ai j ][bi j ]. Then cii = aii bii for all i and j .
(3) {Eii ∈ R | i = 1, . . . , n} ⊆ Pit(R).

Thus Tn is exactly the class of n-by-n generalized matrix rings in which the diagonal
entries of the product of two matrices is completely determined by the corresponding entries
of the diagonals of the factor matrices.

Note that the idempotents in a generalized matrix ring are not characterized. However,
for R ∈ Tn , e = e2 ∈ R if and only if e = [ei j ], where eii = e2

i i and ei j = ∑n
k=1 eikek j for

i �= j .

Proposition 4.4 Assume {e1, . . . , en} is a complete set of orthogonal idempotents of R,
and X = D(Rπ )−.

(1) If {e1, . . . , en} ⊆ Pit(R), then Xn = 0 and ⊕n
i=1 Ri is a homomorphic image of

Rπ with kernel X, where Ri = ei Rei .
(2) If {e1, . . . , en} ⊆ Pt(R), then X2 = 0.
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Proof

(1) Observe that the (i, j)-position of Xn−1 is a sum of terms where each term is
an element of ei Reα1 Reα2 R · · · eαn−2 Re j where αk ∈ {1, . . . , n} − {i, j}. Since
{e1, . . . , en} ⊆ Pit(R), it follows that Xn = 0. The second part follows from
Lemma 3.4(5) and Theorem 4.2.

(2) This part follows from Lemma 4.1(2). �

For more details on nilpotent elements and ideals in this context, see [12].

Example 4.5 Let A be a ring and X, Y � A such that X2 ⊆ Y . Take

R =
⎡
⎣ A X Y

X A X
Y X A

⎤
⎦ .

Then routine calculation yields:

(1) E22 ∈ Pt(R) if and only if X2 = 0.
(2) {E11, E22, E33} ⊆ Pit(R) if and only if X2 = 0 = Y 2.
(3) {E11, E22, E33} ⊆ Pt(R) if and only if X2 = 0 = Y 2 and XY = 0 = Y X .

For an illustration of (2) and (3), let B be a ring and A = B[x, y]/(x2, y2) and A =
B[x, y]/(x2, y2, xy), respectively.

The next three results (4.6–4.8) indicate a transfer of important ring properties between
D(R) and R ∈ Tn .

Corollary 4.6 Let R ∈ Tn (n > 1). Then D(R) satisfies each of the following condi-
tions if and only if R does so:

(1) semilocal,
(2) semiperfect,
(3) left (or right) perfect,
(4) semiprimary,
(5) bounded index (of nilpotence).

Proof Observe that if R satisfies any of (1)–(5), then so does eRe for each e = e2 ∈ R.
Hence, if R satisfies any of (1)–(5), then so does D(R).

Conversely, first assume that D(R) is semilocal. From Proposition 4.4(1) we have
that D(R)− � R, R/(D(R)−) ∼= D(R) and D(R)− ⊆ J (R). Therefore, R/J (R) ∼=
(R/(D(R)−))/(J (R)/(D(R)−)) ∼= D(R)/J (D(R)) is semisimple artinian. Thus R is
semilocal. Parts (2)–(4) are proved similarly. Now assume D(R) has bounded index k, and
let v be a nilpotent element of R. Then v = d + x where d ∈ D(R) and x ∈ D(R)− and
vm = 0. Then 0 = vm = dm + y where y ∈ D(R)−. So dm = −y ∈ D(R)−. Hence d
is nilpotent, so dk = 0. Then vk = dk + w = w ∈ D(R)−. Hence vkn = 0. Thus R has
bounded index less than or equal to kn. �

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
St

el
le

nb
os

ch
] 

at
 0

6:
26

 1
3 

Ju
ly

 2
01

6 



Linear and Multilinear Algebra 2013

Corollary 4.6(3) extends [11, Corollary 3.8]. In [13], the authors determine several
generalizations of the condition that a ring satisfies a polynomial identity. With these
generalizations they were able to extend classical theorems by Armendariz and Steenberg,
Fisher, Kaplansky, Martindale, Posner and Rowen. Two of these generalizations are: (1) a
ring R is an almost PI-ring if every prime factor ring of R is a PI-ring; (2) R is an instrinsically
PI-ring if every nonzero ideal contains a nonzero PI-ideal of R.

Corollary 4.7 Let R ∈ Tn (n > 1). Then:

(1) D(R) satisfies a PI if and only if R does so.
(2) If D(R) is commutative, then R satisfies (xy − yx)n = 0 for all x, y ∈ R.
(3) D(R) is almost PI if and only if R is almost PI.
(4) If D(R) is intrinsically PI, then R is instrinsically PI.

Proof

(1) Since subrings of a PI-ring are PI-rings, if R is a PI-ring then so is D(R). Conversely,
assume D(R) is a PI-ring which satisfies the PI p. Then R satisfies pn .

(2) This part follows from (1).
(3) and (4). By Proposition 4.4 we have D(R)− � R, R/(D(R)−) ∼= D(R) and

(D(R)−)n = 0. Now (3) follows from [13, Theorem 1.6(i)], and (4) follows from
[13, Theorem 1.6(ii)]. �

Let R be an n-by-n generalized matrix ring, and let

UT(R) and LT(R)

be the n-by-n upper and lower generalized triangular matrix rings, respectively, formed
from R. Our next result shows that elements of Tn are subdirect products of generalized
triangular matrix rings.

Proposition 4.8 Let R ∈ Tn (n > 1). Then there is a ring monomorphism
ψ : R → UT(R)× LT(R) such that R is a subdirect product of UT(R) and LT(R).

Proof Let [mi j ] ∈ R. Define ψ([mi j ]) = ([ai j ], [bi j ]) where

ai j =
{

mi j , for j ≥ i
0, elsewhere,

and

bi j =
{

mi j , for i ≥ j
0, elsewhere.

A routine argument yields that ψ is a ring monomorphism and that R is a subdirect product
of UT(R) and LT(R). �

Definition 4.9 Let R be an n-by-n generalized matrix ring. Let Rla denote the lower
annihilating subring
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2014 P.N. Ánh et al.
⎡
⎢⎢⎢⎢⎣

R1 M12 · · · M1n

r M21
(M12) ∩ �M21

(M12) R2
. . .

...
...

. . .
. . . Mn−1,n

r Mn1
(M1n) ∩ �Mn1

(M1n) · · · r Mn,n−1
(Mn−1,n) ∩ �Mn,n−1

(Mn−1,n) Rn

⎤
⎥⎥⎥⎥⎦

of R, and let Rua denote the upper annihilating subring

⎡
⎢⎢⎢⎢⎣

R1 r M12
(M21) ∩ �M12

(M21) · · · r M1n
(Mn1) ∩ �M1n

(Mn1)

M21 R2
. . .

...
...

. . .
. . . r Mn−1,n

(Mn,n−1) ∩ �Mn−1,n
(Mn,n−1)

Mn1 · · · Mn,n−1 Rn

⎤
⎥⎥⎥⎥⎦

of R.

Note that Rla and Rua are subrings of both R and R. Moreover, if R is the n-by-n matrix
ring over a ring A, then Rla and Rua are the n-by-n upper and lower triangular matrix rings
over A, respectively.

Example 4.10 Let A and B be rings. Let R =
[

A × B A × {0}
A × B A × B

]
. Then Rla =[

A × B A × {0}
{0} × B A × B

]
, and Rua =

[
A × B {0}
A × B A × B

]
.

Lemma 4.11 Let R be an n-by-n generalized matrix ring. Then Cen(R) = Cen(R) =
{[ci j ] ∈ R | ci j = 0 if i �= j, cii ∈ Cen(Ri ) for all i, and cii mi j = mi j c j j for all mi j ∈
Mi j if i �= j}.

Proof First show the result holds when n = 2. For the n-by-n case, block the matrix ring
into a 2-by-2 generalized matrix ring and use induction. �

Let S be a subring of a ring R. It is well known (see [14, p. 26]) that the (S, S)-bimodule
structure of S and R is equivalent to the right T-module structure of S and R, respectively,
where T = Sop ⊗Z S, with Sop denoting the opposite ring of S.

The next three results (4.12–4.14) indicate the transfer of significant information be-
tween an n-by-n generalized matrix ring and certain subrings which are maximal with
respect to being in Tn .

In particular, Theorem 4.12 shows that for any ring R with a complete set of orthogonal
idempotents {ei }n

i=1 (n > 1) there are subrings S containing {ei }n
i=1 which are maximal

with respect to Sπ being in Tn and ST is right essential in RT , where T = Sop ⊗Z S.
Moreover, this result and its consequences provide a connection between the structure of
an arbitrary generalized matrix ring and the structure of rings in Tn (see Question B in the
introduction).

Theorem 4.12 Let R be an n-by-n generalized matrix ring, and S denotes either Rla or
Rua.
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(1) S is a subring of R maximal with respect to being in Tn.
(2) Let 0 �= y ∈ R. Then either 0 �= syE j j ∈ S or 0 �= Eii yt ∈ S for some

s, t, Eii , E j j ∈ S.
(3) Every nonzero (S, S)-bisubmodule of R has nonzero intersection with S. Thus every

nonzero ideal of R has nonzero intersection with S, and ST is right essential in RT

where T = Sop ⊗Z S.
(4) Cen(R) = Cen(Rla) ∩ Cen(Rua) ⊆ Cen(D(R)).
(5)

U(R) = {u + x | u ∈ U(D(R)) and x ∈ D(R)−}, and
U(S) = {u + y | u ∈ U(D(R)) and y ∈ D(S)−} ⊆ U(R).

Proof

(1) Suppose that there is a subring Y of R such that S is properly contained in Y. Assume
S = Rla. Then there exists y ∈ Y with an entry yi j for some i, j with i > j such
that yi j �∈ r Mi j

(M ji )∩�Mi j
(M ji ). Then either yi j �∈ �Mi j

(M ji ), or yi j ∈ �Mi j
(M ji )

but yi j �∈ r Mi j
(M ji ).

If yi j �∈ �Mi j
(M ji ), there exists k ∈ M ji such that yi j k �= 0. Let t be the n-by-n

matrix with k in the ( j, i)-position and zero elsewhere. Then t ∈ S ⊆ Y , and so
0 �= yt ∈ Y . However, since 0 �= yi j k ∈ Mi j M ji ∈ Ri , we have that Y �∈ Tn .
If yi j ∈ �Mi j

(M ji ) but yi j �∈ r Mi j
(M ji ), then there exsits h ∈ M ji such that

hyi j �= 0. Let s be the n-by-n matrix with h in the ( j, i)-position and zero elsewhere.
Then s ∈ S ⊆ Y , and so 0 �= sy ∈ Y . However, since 0 �= hyi j ∈ M ji Mi j ∈ R j , it
follows that Y �∈ Tn .
Therefore S is a subring of R maximal with respect to being in Tn . The argument
when S = Rua is similar.

(2) Again let S = Rla and 0 �= y ∈ R. If y ∈ S, we are finished. So assume y �∈ S.
Then as in part (1) there exists an entry yi j of y for some i, j with i > j such that
yi j �∈ r Mi j

(M ji )∩�Mi j
(M ji ).As in part (1), we obtain s, t ∈ S. Then 0 �= syE j j ∈ S

or 0 �= Eii yt ∈ S. The argument when S = Rua is similar.
(3) This part is a consequence of (2).
(4) This part follows from Lemma 4.11.
(5) By Proposition 4.4(1), D(R)− � R such that (D(R)−)n = 0. Let u ∈ D(R) and

x ∈ D(R)−. Then (u + x)(u−1 + x) = 1+ux + xu−1 + x2. But ux + xu−1 + x2 ∈
D(R), hence (u + x)(u−1 + x) = w where w ∈ U(R). Therefore u + x ∈ U(R).
Now assume v ∈ U(R). Then there exist d ∈ D(R) and y ∈ D(R)− such that
v = d + y. So 1 = dv−1 + yv−1. Hence dv−1 = 1 − yv−1. Since yv−1 ∈
D(R)−, dv−1 ∈ U(R). So d ∈ U(R). Therefore U(R) = {u + x | u ∈ U(D(R))
and x ∈ D(R)−}.
The remainder of the proof is due to the above argument and the fact that S is a
subring of R and R. �

Note that if n = 2, then in Theorem 4.12(2), there is no need for the Eii and E j j .
QUESTION: When is U(R) generated by U(Rla) ∪ U(Rua)?

Corollary 4.13 Let R be an n-by-n generalized matrix ring, S denotes Rla or Rua and
T = Sop ⊗Z S. Then:
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(1) S is maximal among subrings Y of R for which {Eii }n
i=1 ⊆ Pit(R).

(2) The sum of the minimal ideals of S equals Soc(ST ) = Soc(RT ).
(3) The uniform dimension of S SS equals the uniform dimension of S RS equals the

uniform dimension of ST equals the uniform dimension of RT .

Proof

(1) This part is a consequence of Theorems 4.2 and 4.12.
(2) and (3). These parts are consequences of Theorem 4.12(3). �

Our next result demonstrates that useful information can be transferred from the diagonal
rings Ri of a generalized matrix ring R to R itself via Theorems 3.16 and 4.12. Recall from
[15,16] that an n-by-n (n > 1) matrix ring over a strongly π -regular ring is not, in general,
a strongly π -regular ring.

Corollary 4.14 Let R be an n-by-n generalized matrix ring, and S = Rla or Rua. If
D(R) is strongly π -regular, then for each 0 �= y ∈ R either:

(1) y ∈ S, in which case yn ∈ yn+1S ⊆ yn+1 R for some positive integer n; or
(2) y �∈ S, in which case either 0 �= syE j j ∈ S and (syE j j )

m ∈ (syE j j )
m+1S ⊆

(syE j j )
m+1 R, or 0 �= Eii yv ∈ S and (Eii yv)k ∈ (Eii yv)k+1S ⊆ (Eii yv)k+1 R

for some s, v, Eii , E j j ∈ S and positive integers k,m, n.

Proof The proof follows from Theorems 3.16 and 4.12(2). �

Thus if D(R) is strongly π -regular, then R is ‘almost’ strongly π -regular.
Next we introduce the notion of an ideal extending ring. The ideal extending condition

is shown to be a Morita invariant. Moreover, it is shown that important classes of rings
have this property. For example, the semiprime quasi-Baer rings are ideal extending, so this
insures that every semiprime ring has a hull which is ideal extending (see Proposition 4.16).
The class of semiprime quasi-Baer rings includes the local multiplier C∗-algebras which
means that every C∗-algebra can be embedded into its local multiplier C∗-algebra which is
an ideal extending ring.

As applications of the results in 4.12–4.14 we show in 4.16–4.21 that the ideal extending
property transfers from a ring A to a certain type of overring of A which is in Tn .

Let X and Y be both left or both right ideals of a ring R with X ⊆ Y . Then X is ideal
essential in Y if for each 0 �= I � R such that I ⊆ Y , then 0 �= X ∩ I . Note that if R is a
semiprime ring and X, Y � R with X ⊆ Y , then X is ideal essential in Y if and only if X
is right or left essential in Y.

Definition 4.15 We say R is ideal extending if for each X � R there is an e ∈ B(R) such
that X is ideal essential in eR.

Note that every nonzero ideal of R is ideal essential in R if and only if B(R) = {0, 1}
and R is ideal extending. Some immediate examples of ideal extending rings are: R is a
prime ring, R is an Abelian (i.e. every idempotent is central) right extending ring (e.g. R
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is a direct sum of commutative uniform rings (see [17])), or R =
[

A M
0 A

]
where A is a

prime ring and M � A.
The next result shows that the class of ideal extending rings is quite extensive. See [6,8]

for undefined terminology.

Proposition 4.16 Assume R is a semiprime ring. Then:

(1) R is ideal extending if and only if R is quasi-Baer if and only if RR is FI-extending.
(2) R has an ideal extending hull.

Proof

(1) See [18, Theorem 4.7] or [6, Theorem 3.2.37].
(2) This part follows from (1) and [8, Theorem 3.3] or [6, Theorem 8.3.17]. �

From Proposition 4.16 it follows that every von Neumann algebra and every local
multiplier algebra of a C∗-algebra are ideal extending as rings (see [19] and [8, pp. 345–
347] or [6, pp. 380–407]).

Theorem 4.17

(1) Let {Ri |i ∈ I } be a set of rings. Then �i∈I Ri is ideal extending if and only if each
Ri is so.

(2) The ideal extending property is a Morita invariant.

Proof

(1) The proof of this part is routine.
(2) Assume that R is ideal extending. Then a straightforward argument shows that

R is ideal extending if and only if the ring of n-by-n matrices over R is ideal
extending. Let e be a full idempotent of R (i.e. ReR = R) and 0 �= K � eRe. Then
RK R is ideal essential in cR for some c ∈ B(R). Hence K ⊆ ec(eRe), where
ec ∈ B(eRe). Let 0 �= X � eRe such that X ⊆ ec(eRe). Then RX R ⊆ cR, so
0 �= Y = RX R ∩ RK R. If eY e �= 0, there exists y ∈ Y such that 0 �= eye =
	rαxαsα = 	tβkβvβ , where rα, sα, tβ, vβ ∈ R, xα ∈ X and kβ ∈ K . So xα = exαe
and kβ = ekβe. Hence 0 �= eye = 	erα(exαe)sαe = 	etβ(ekβe)vβe ∈ X ∩ K .

Now assume eY e = 0. Since e is full, 1 = 	a j eb j for some a j , b j ∈ R. Let 0 �= w ∈ Y.
Thenw = 1w1 = (	a j eb j )w(	a j eb j ) . So there exists j1, j2 such that a j1 eb j1wa j2 eb j2 �=
0, otherwise w = 0, a contradiction. Hence eb j1wa j2 e �= 0, contrary to eY e = 0. Thus
eRe is ideal extending. By [20, Corollary 18.35], the ideal extending property is a Morita
invariant. �

Proposition 4.18 Let R be an n-by-n generalized matrix ring and S = Rla.
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(1) If S X S ≤ S RS and X ∩ S is ideal essential in eS, for some e ∈ Sr (S), then X
essential in eR as an (S, S)-bisubmodule.

(2) If S is an ideal extending ring, then for each X � R there is an e ∈ B(S) such that
X is ideal essential in eR.

Proof

(1) Assume (1 − e)X �= 0. Since 1 − e ∈ S�(S), (1 − e)X is an (S, S)-bisubmodule
of R. By Theorem 4.12(3), 0 �= (1 − e)X ∩ S ⊆ X ∩ S ⊆ eS, a contradiction.
Then X ⊆ eR. Let 0 �= SYS ≤ S RS such that Y ⊆ eR and Y ∩ X = 0. Hence
0 �= Y ∩ S ⊆ eS and Y ∩ S � S, a contradiction.

(2) This part is a consequence of (1). �

Example 4.19

(1) This example illustrates Proposition 4.18(1).

Let R =
[

Z × Z4 Z × 2Z4
Z × {0} Z × Z

]
, and let S = Rla. Then S =

[
Z × Z4 Z × 2Z4

{0} × {0} Z × Z

]
.

Take X =
[ {0} × {0} {0} × {0}

{0} × {0} {0} × 2Z

]
� R and e =

[
(0, 0) (0, 0)
(0, 0) (0, 1)

]
. Then e ∈

Sr (S) and S X S is essential as an (S, S)-bisubmodule of eR. Note that e �∈ B(S).
(2) This example shows that in Proposition 4.18(2), S cannot be replaced by D(R). Let

R =
[

Z4 2Z4
0 Z4

]
(note that R = S = Rla). Then D(R) is a commutative selfin-

jective ring, hence it is ideal extending. However B(R) = {0, 1}, but

[
2Z4 0

0 0

]

and

[
0 2Z4
0 0

]
are ideals of R whose intersection is zero. Therefore R is not ideal

extending.

Lemma 4.20 If A is an ideal extending ring, then R is ideal extending where R is the
n-by-n upper triangular matrix ring over A.

Proof Let X � R. Then

X =

⎡
⎢⎢⎢⎣

X11 X12 · · · X1n

0 X22 X2n
...

. . .
. . .

...

0 · · · 0 Xnn

⎤
⎥⎥⎥⎦ ,

where each Xi j � A, Xii ⊆ Xi,i+1 ⊆ · · · ⊆ Xin and Xii ⊆ Xi−1,i ⊆ · · · ⊆ X1i for all
1 ≤ i ≤ n. Observe e ∈ B(R) if and only if e = c1R , for some c ∈ B(A). There exists
f ∈ B(A) such that X1n is ideal essential in f A. Then a routine argument shows that X is
ideal essential in ( f 1R)R. �

The following corollary is an application of Proposition 4.18 (hence of Theorem 4.12).
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Corollary 4.21 Let A be a ring and R the n-by-n generalized matrix ring of the form

R =

⎡
⎢⎢⎢⎣

A A · · · A
X21 A · · · A
...

. . .
. . .

...

Xn1 · · · Xn,n−1 A

⎤
⎥⎥⎥⎦ ,

where Xi j = A for i ≤ j, Xi j � A for j < i, X j1 ⊆ X j2 ⊆ · · · ⊆ X jn and Xni ⊆
Xn−1,i ⊆ · · · ⊆ X1i , for all 1 ≤ i ≤ n and 1 ≤ j ≤ n. Then A is ideal extending if and
only if R is ideal extending.

Proof (⇒)Assume A is ideal extending. Observe that Rla is the n-by-n upper triangular
matrix ring over A. By Lemma 4.20, Rla is ideal extending. From Proposition 4.18(2), R is
ideal extending.

(⇐)Assume R is ideal extending. Let X � A and Y the set of n-by-n matrices over X.
Then Y � R. So there exists e ∈ B(R) such that Y is ideal essential in eR and e = c1R

where c ∈ B(A). Then X is ideal essential in cA. Therefore A is ideal extending. �

Assume R is ring isomorphic to Rm and to Rn , where Rm is an m-by-m generalized
matrix ring, and Rn is an n-by-n generalized matrix ring, with 0 < m < n. One may
naturally ask:

(1) If Rm ∈ Tm , must Rn ∈ Tn?
(2) If Rn ∈ Tn , must Rm ∈ Tm?

The following example shows that, in general, neither question has an affirmative
answer.

Example 4.22 Let A be a ring.

(1) Let

R =
⎡
⎣ A A A

A A A
0 0 A

⎤
⎦ .

Then R �∈ T3, because E22 �∈ Pit(R) by Theorem 4.2.

Let R1 =
[

A A
A A

]
, M12 =

[
A
A

]
, M21 = [0 0] and R2 = A. Then R ∼=[

R1 M21
M21 R2

]
∈ T2.

(2) Let

R =

⎡
⎢⎢⎣

A A A A
0 A 0 0
0 A A A
0 A 0 A

⎤
⎥⎥⎦ .
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Then R ∈ T4.

Let R1 =
[

A A
0 A

]
,M12 =

[
A A
0 0

]
, M21 =

[
0 A
0 A

]
and R2 =

[
A A
0 A

]
.

Then R ∼=
[

R1 M12
M21 R2

]
�∈ T2, since M12 M21 �= 0.

Proposition 4.23 Let R be a ring with a complete set {ei }n
i=1 (n > 1) of orthogonal

idempotents. If {ei }n
i=1 ⊆ Pt(R), then any partition of Rπ into an m-by-m block form is in

Tm where m ≤ n.

Proof The proof is straightforward. �

Note that in Proposition 4.23 if n = 3, then we can replace Pt(R) with Pit(R).
QUESTION: Let R be a ring with a complete set {ei }n

i=1 (n > 1) of orthogonal idempotents.
What are necessary and sufficient conditions so that any partition of Rπ into m-by-m block
form is in Tm for 1 < m ≤ n?

5. n-Peirce rings

Definition 5.1 Aring R is called a 1-Peirce ring if Pt(R) = {0, 1}, with 0 �= 1. Inductively,
for a natural number n > 1, a ring R is called an n-Peirce ring if there is an e ∈ Pt(R) such
that eRe is an m-Peirce ring for some 1 ≤ m < n and (1 − e)R(1 − e) is an (n − m)-Peirce
ring.

Example 5.2

(1) If RR is indecomposable or R is prime, then R is 1-Peirce. In fact, if R is semiprime
then R is 1-Peirce if and only if R is indecomposable (as a ring).

(2) If R is an n-by-n generalized upper (lower) triangular matrix ring with 1-Peirce
diagonal rings, then R is a n-Peirce ring.

(3) If R has a complete set of n orthogonal primitive idempotents which are Peirce
trivial, then R is an n-Peirce ring (e.g. see Example 4.5(3)).

(4) Example 4.5(2) is a 3-Peirce ring that has a complete set of three primitive idem-
potents which are inner Peirce trivial but not all of them are Peirce trivial.

(5) Let I be an infinite index set, for each i ∈ I let Ai be a ring with only trivial

idempotents, and A = �i∈I Ai . Assume R =
[

A X
0 X

]
, where X is a nonzero

ideal of A. Then R is in T2, but R is not an n-Peirce ring for any positive integer n.

From Example 5.2(5) and Theorem 5.7, we see that the class of n-Peirce n-by-n gener-
alized matrix rings is a proper subclass of the class Tn for n > 1. Also, due to the symmetry
of Peirce idempotents (i.e. e ∈ Pt(R) if and only if 1 − e ∈ Pt(R)) the class of n-Peirce
rings exhibits better behavior than Tn with respect to finiteness conditions.

Theorem 5.3 Let R be a ring. Then either:

(1) R is a 1-Peirce ring;
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(2) R is an n-Peirce ring for n > 1, and for each k ∈ Z+ with 1 < k ≤ n there exists a
complete set of orthogonal idempotents, {ei }k

i=1, such that Rπ ∈ Tk; or
(3) for each integer k with k > 1, there exists a complete set of orthogonal idempotents,

{ei }k
i=1, such that Rπ ∈ Tk .

Proof Observe that {0, 1} ⊆ Pt(R), and {0, 1} = Pt(R) if and only if R is a 1-Peirce ring.
If {0, 1} �= Pt(R) (i.e. R is not 1-Peirce), then there exists {e1, 1−e1} ⊆ Pt(R)\{0, 1}. By
Theorem 4.2, Rπ ∈ T2. Now if at least one of e1 Re1 or (1 − e1)R(1 − e1) is not 1-Peirce,
say e1 Re1, then there exists e2 ∈ Pt(e1 Re1)\{0, e1}. By Lemma 3.8, {e2, e1 − e2} ⊆
Pt(e1 Re1) ⊆ Pit(e1 Re1) = e1 Re1 ∩ Pit(R) ⊆ Pit(R). Hence {e2, e1 − e2, 1 − e1} is a
complete set of orthogonal idempotents contained in Pit(R). By Theorem 4.2, Rπ ∈ T3.
If at least one of e2 Re2, (e1 − e2)R(e1 − e2), or (1 − e1)R(1 − e1) is not 1-Peirce, then
either this inductive process will terminate in n steps for some n ∈ Z+ yielding condition
(2) or it will continue indefinitely yielding condition (3). �

Note that in Example 4.22(2), R has a 2-by-2 block form which is not in T2. Observe that
one can show that E11 ∈ Pt(R), so R is not 1-Peirce. Surprisingly, Theorem 5.3 predicts
that there is a 2-by-2 block form for R which is in T2. Indeed, R can be partitioned into
another 2-by-2 block form which is in T2 by taking R1 to be a 1-by-1 matrix and R2 to be
a 3-by-3 matrix (i.e. this corresponds to taking e1 = E11 and 1 − e1 = E22 + E33 + E44
in the proof of Theorem 5.3).

Proposition 5.4 Let 0 �= e = e2 ∈ R such that eRe is a 1-Peirce ring, c ∈ Pt(R),
c1 ∈ Pt(cRc), 0 �= cec and c1ec1 �= 0. Then:

(1) ece = e = ec1e.
(2) cecRcec is a 1-Peirce ring.

Proof (1) By Lemma 3.7, 0 �= cec = (cec)2 = c(ece)c. Thus ece �= 0. From Lemma
3.8(1), c1 ∈ Pit(R). So, by Lemma 3.7, c1ec1 = (c1ec1)

2 = c1(ec1e)c1. Hence ec1e �= 0.

Claim 1. ece ∈ Pit(eRe).
Let x, y ∈ eRe. By Lemma 3.7, ece = (ece)2. Consider (ece)x(e − ece)y(ece) =
e(c[exe(1 − c)eye]c)e = e0e = 0, because c ∈ Pt(R) ⊆ Pit(R). Thus ece ∈
Pit(eRe).
Claim 2. ece ∈ Pt(eRe).
Consider (e−ece)xecey(e−ece) = e[(1−c)execeye(1−c)]e = e0e = 0, because
c ∈ Pot(R). Thus ece ∈ Pot(eRe). Hence 0 �= ece ∈ Pt(eRe). Since eRe is
1-Peirce, ece = e.
Claim 3. ec1e ∈ Pit(eRe).
From above, c1 ∈ Pit(R). Let x, y ∈ eRe. Then ec1ex(e−ec1e)yec1e = e[c1xe(1−
c1)eyc1]e = 0. Hence ec1e ∈ Pit(eRe).
Claim 4. ec1e ∈ Pt(eRe).
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Since e = ece, we have

(e − ec1e)xec1ey(e − ec1e) = (ece − ec1e)xc1 y(ece − ec1e)

= e(c − c1)exc1 ye(c − c1)e

= e[(c − c1)(cxc)c1(cyc)(c − c1)]e = 0,

because c1 ∈ Pt(cRc) ⊆ Pot(cRc). Thus ec1e ∈ Pt(eRe). Since eRe is a 1-Peirce ring,
ec1e = e.

(2) Let 0 �= f ∈ Pt(cecRcec). Observe 0 �= f = c[ec f ce]c = c[e f e]c since
c ∈ Pt(R). So e f e �= 0.

Claim 5. e f e = (e f e)2.
Observe f = (cec) f = c(cec f ) = c f . Similarly, f = f c. Consider e f e = e( f cec f )e

= e f e f e = (e f e)2.
Claim 6. e f e ∈ Pit(eRe).
Let x, y ∈ eRe. By (1) e = ece, so

e f ex(e − e f e)ye f e = e f ex(ece − e f e)ye f e = e f exe(c − f )eye f e

= e( f c)exe(c − f )eye(c f )e

= e f [(cec)x(cec)(cec)(c − f )(cec)y(cec)] f e

= e f [(cec)x(cec) f (cec)(c − f )(cec)y(cec)] f e

= e f [(cec)x(cec) f (c − f )(cec)y(cec)] f e

= e f [(cec)x(cec)0(cec)y(cec)] f e

= 0,

since f ∈ Pt(cecRcec) ⊆ Pit(cecRcec).
Claim 7. e f e ∈ Pt(eRe).
Consider

(e − e f e)xe f ey(e − e f e) = (ece − e f e)x f y(ece − e f e)

= e(c − f )ex f ye(c − f )e

= ece(c − f )x f y(c − f )ece

= ecec(c − f )(cecxcec) f (cecycec)(c − f )ece

= e(cec − f )[(cecxcec) f (cecycec)](cec − f )e

= 0,

since f ∈ Pot(cecRcec). Thus e f e ∈ Pt(eRe). Hence e f e = e. So 0 �= f = cec f cec =
c(e f e)c = cec. Therefore cecRcec is a 1-Peirce ring. �

Observe that in Proposition 5.4 the conclusions ece = e and cecRcec is a 1-Peirce ring
do not need the conditions c1 ∈ Pt(cRc) and c1ec1 �= 0. Also, this result can be extended
under related hypotheses (e.g. e primitive and c ∈ Pit(R)).

Corollary 5.5 Let 0 �= e = e2 ∈ R such that eRe is a 1-Peirce ring and c ∈ Pt(R).
The following conditions are equivalent:

(1) cec �= 0.
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(2) ece = e.
(3) (1 − c)e(1 − c) = 0.

Proof

(1) ⇒ (2) This implication follows from Proposition 5.4.
(2) ⇒ (3) Since c ∈ Pt(R), e(1 − c)e = ece(1 − c)ece = 0. By Lemma 3.7(1),

(1 − c)e(1 − c) = [(1 − c)e(1 − c)]2 = (1 − c)e(1 − c)e(1 − c) = 0.
(3) ⇒ (1) Assume (1 − c)e(1 − c) = 0 and cec = 0. Then

e = (c + (1 − c))e(c + (1 − c))

= cec + ce(1 − c)+ (1 − c)ec + (1 − c)e(1 − c)

= ce(1 − c)+ (1 − c)ec.

So e = e2 = (ce(1 − c) + (1 − c)ec)2 = ce(1 − c)ce(1 − c) + ce(1 − c)ec
+ (1 − c)ece(1 − c)+ (1 − c)ec(1 − c)ec = 0, a contradiction. �

Corollary 5.6 Let {ei }n
i=1 be a complete set of nonzero orthogonal idempotents such

that each ei Rei is a 1-Peirce ring and 0 �= c ∈ Pt(R). Then:

(1) c = ∑
i∈J1

cei c and 1 − c = ∑
i∈J2

(1 − c)ei (1 − c), where cei c �= 0 for all i ∈ J1
and (1 − c)ei (1 − c) �= 0 for all i ∈ J2.

(2) |J1| + |J2| = n.
(3) {cei c | i ∈ J1} ∪ {(1 − c)ei (1 − c) | i ∈ J2} is a complete set of orthogonal

idempotents, where each cei cRcei c and each (1 − c)ei (1 − c)R(1 − c)ei (1 − c) is
a 1-Peirce ring.

Proof

(1) c = c1c = c
∑

i∈J1
ei c = ∑

i∈J1
cei c, and similarly, 1−c = ∑

i∈J2
(1−c)ei (1−c),

where J1 ∪ J2 ⊆ {1, . . . , n}.
(2) This part follows from Corollary 5.5.
(3) Note that 1 = c+1−c = ∑

i∈J1
cei c+∑

i∈J2
(1−c)ei (1−c). Also, (cei c)ce j c =

cei e j c = 0 for all i �= j , since c ∈ Pt(R). Similarly, [(1−c)ei (1−c)][(1−c)e j (1−
c)] = 0 for all i �= j . Moreover [(1−c)ei (1−c)][ce j c] = 0 = [cei c][(1−c)e j (1−
c)] for all i, j . By Lemma 3.7, cei c and (1 − c)ei (1 − c) are idempotents for all i .
From Proposition 5.4(2), each cei cRcei c and each (1−c)ei (1−c)R(1−c)ei (1−c)
is a 1-Peirce ring. �

Theorem 5.7

(1) If R is an n-Peirce ring (n > 1), then there is a complete set of orthogonal
idempotents {ei }n

i=1 ⊆ Pit(R) (hence Rπ ∈ Tn) such that every ei Rei is a 1-
Peirce ring.

(2) If a ring R has a complete set {ei }n
i=1 of orthogonal idempotents for some n ≥ 2 such

that every ei Rei is a 1-Peirce ring, then R is a k-Peirce ring for some 1 ≤ k ≤ n.
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Proof (1) We use strong induction on n. First, let R be a 2-Peirce ring. Then there is an
e ∈ Pt(R) such that eRe and (1−e)R(1−e) are 1-Peirce rings, and {e, 1−e} is a complete
set of orthogonal idempotents, with e, 1 − e ∈ Pit(R).

Next, consider a fixed n ≥ 2 and assume that for each k, 2 ≤ k ≤ n, if R is a k-Peirce
ring, then there is a complete set of orthogonal idempotents {ei }k

i=1 ⊆ Pit(R) such that
every ei Rei is a 1-Peirce ring. Now let R be an (n+1)-Peirce ring. Then there is a c ∈ Pt(R)
such that cRc is a k-Peirce ring for some k, 1 ≤ k < n + 1, and (1 − c)R(1 − c) is an
(n + 1 − k)-Peirce ring. Since k ≤ n and n + 1 − k ≤ n, and assuming for the moment that
2 ≤ k and 2 ≤ n +1−k, the induction hypothesis guarantees the existence of complete sets
of orthogonal idempotents {ei }k

i=1 ⊆ Pit(cRc) and { f j }n+1−k
j=1 ⊆ Pit((1 − c)R(1 − c)),

such that ei cRcei and f j (1 − c)R(1 − c) f j are 1-Peirce rings for every i and j . Since
c, 1 − c ∈ Pit(R), it follows from Lemma 3.8 that {ei }k

i=1, { f j }n+1−k
j=1 ⊆ Pit(R). Since

(cRc)((1 − c)R(1 − c)) = 0, we conclude that {ei }k
i=1 ∪ { f j }n+1−k

j=1 is an orthogonal set

of idempotents in Pit(R). Moreover,
∑k

i=1 ei + ∑n+1−k
j=1 f j = c + (1 − c) = 1, and

ei cRcei = ei Rei (since ei ∈ cRc) and f j (1 − c)R(1 − c) f j = f j R f j for every i and j .
Finally, we consider the case k = 1 or n + 1 − k = 1. Without loss of generality, let

k = 1, i.e. c ∈ Pit(R), cRc is a 1-Peirce ring and (1 − c)R(1 − c) is an n-Peirce ring.
Then we can proceed as in the previous paragraph with c ∈ Pit(R) and a complete set of
orthogonal idempotents { f j }n

j=1 ⊆ Pit((1−c)R(1−c)), and then the set {c, f1, . . . , fn} is
a complete set of orthogonal idempotents in Pit(R) such that cRc and f j R f j are 1-Peirce
rings for all j .

(2) We again use strong induction on n. Let R have a complete set of orthogonal
idempotents {e1, e2} such that each ei Rei is a 1-Peirce ring. If R is a 1-Peirce ring, then we are
done, since 1 ≤ 2. Otherwise there is a c ∈ Pt(R) such that c �∈ {0, 1}. Hence 1−c ∈ Pt(R)
and 1 − c �∈ {0, 1}. From Corollary 5.6, c = cei c for i ∈ {1, 2}. Without loss of generality,
assume i = 1. Then, again by Corollary 5.6, cRc = ce1cRce1c, (1 − c)R(1 − c) =
(1 − c)e2(1 − c)R(1 − c)e2(1 − c), and cRc and (1 − c)R(1 − c) are 1-Peirce rings.
Therefore R is a 2-Peirce ring.

Next assume that the result holds for a fixed n ≥ 2. Let R be a ring having a complete
set of orthogonal idempotents {ei }n+1

i=1 such that each ei Rei is a 1-Peirce ring. If R is a
1-Peirce ring, we are done. Otherwise there is a c ∈ Pt(R) such that c �∈ {0, 1}. Hence
1 − c ∈ Pt(R) and 1 − c �∈ {0, 1}. From Corollary 5.6, there exist J1, J2 ⊆ {1, . . . , n} and
complete sets of orthogonal idempotents {cei c | i ∈ J1} and {(1 − c)ei (1 − c) | i ∈ J2} for
cRc and (1 − c)R(1 − c), respectively. From the induction hypothesis, there exist positive
integers k1 and k2 such that 1 ≤ k1 ≤ |J1| and 1 ≤ k2 ≤ |J2| such that cRc is a k1-Peirce
ring and (1 − c)R(1 − c) is a k2-Peirce ring. Since |J1| + |J2| = n + 1, then R is k-Peirce
where k = k1 + k2 and 1 ≤ k ≤ n + 1. �

Corollary 5.8 Let {ei }n
i=1 ⊆ Pit(R) be a complete set of orthogonal idempotents such

that each ei Rei is a ki -Peirce ring for some positive integers ki . Then R is a k-Peirce ring
for some 1 ≤ k ≤ ∑n

i=1 ki .

Proof This result follows from Theorem 5.7. �
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From Theorem 5.7, R is an n-Peirce (n > 1) generalized matrix ring implies that R ∈ Tn ;
and if R has a complete set of n orthogonal primitive idempotents, then R is k-Peirce for
some k with 1 ≤ k ≤ n. Thus it is natural to ask: If R has a complete set of orthogonal
primitive idempotents {ei }n

i=1 ⊆ Pit(R) (hence Rπ ∈ Tn), must R be n-Peirce? Observe
that for n = 2, the question has an affirmative answer. Our next example provides a negative
answer, in general.

Example 5.9 Let

R =
⎡
⎣ A X2 X

X A X2

X2 X A

⎤
⎦ ,

where A is a ring such that 0 and 1 are the only idempotents of A; and 0 �= X � A such that
X �= X2, X2 �= X3 and X3 = 0. Then R ∈ T3, but R is a 1-Peirce ring. One can construct
such rings by letting B be a commutative ring, 0 �= P a prime ideal of B such that P �= P2

and P2 �= P3. Then take A = B/P3 and X = P/P3. In particular, let B = F[x] where F
is a field and P = x F[x].

Since X2 X = X X2 = 0, Corollary 4.3 yields R ∈ T3. To show that R is a 1-Peirce ring,
we first characterize all nontrivial idempotents of R. Let α ∈ R such that α �= 0 and α �= 1.
Then α = α2 if and only if

α =
⎡
⎣ e1 m12 m13

m21 e2 m23
m31 m32 e3

⎤
⎦

where m12,m23,m31 ∈ X2, m13,m21,m32 ∈ X, ei ∈ {0, 1} and the following equations
are satisfied:

e1m12 + m12e2 + m13m32 = m12

e1m13 + m13e3 = m13

m21e1 + e2m21 = m21

e2m23 + m23e3 + m21m13 = m23

m31e1 + e3m31 + m32m21 = m31

m32e2 + e3m23 = m32.

From the above conditions α must have one of the following six forms:

(i)

⎡
⎣ 1 m12 m13

m21 0 m23
m31 0 0

⎤
⎦ with m21m13 = m23;

(ii)

⎡
⎣ 0 m12 0

m21 1 m23
m31 m32 0

⎤
⎦ with m32m21 = m31;
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(iii)

⎡
⎣ 0 m12 m13

0 0 m23
m31 m32 1

⎤
⎦ with m13m32 = m12;

(iv)

⎡
⎣ 1 m12 m13

0 1 m23
m31 m32 0

⎤
⎦ with m13m32 = −m12;

(v)

⎡
⎣ 1 m12 0

m21 0 m23
m31 m32 1

⎤
⎦ with m32m21 = −m31;

(vi)

⎡
⎣ 0 m12 m13

m21 1 m23
m31 0 1

⎤
⎦ with m21m13 = −m23.

Now assume R is not a 1-Peirce ring. Then there exist c, 1− c ∈ Pt(R) such that 0 �= c
and c �= 1.

Then either c has a form of type (i), (ii) or (iii); or 1− c has such a form. Without loss of
generality, assume c has a form of type (i), (ii) or (iii). Then 1−c has a form of type (iv), (v)
or (vi). We show that no matrix of type (iv), (v) or (vi) is in Pot(R). Hence 1 − c �∈ Pt(R),
a contradition. Therefore R is a 1-Peirce ring.

Since X2 �= 0, there exist x, y ∈ X such that 0 �= xy.
Observe:
⎡
⎣ 0 m12 m13

m21 1 m23
m31 0 1

⎤
⎦ x E21

⎡
⎣ 1 −m12 −m13

−m21 0 −m23
−m31 0 0

⎤
⎦ yE13

⎡
⎣ 0 m12 m13

m21 1 m23
m31 0 1

⎤
⎦

= xyE23 �= 0;⎡
⎣ 1 m12 0

m21 0 m23
m31 m32 1

⎤
⎦ x E32

⎡
⎣ 0 −m12 0

−m21 1 −m23
−m31 −m32 0

⎤
⎦ yE21

⎡
⎣ 1 m12 0

m12 0 m23
m13 m32 1

⎤
⎦

= xyE31 �= 0;⎡
⎣ 1 m12 m13

0 1 m23
m31 m32 0

⎤
⎦ x E13

⎡
⎣ 0 −m12 −m13

0 0 −m23
−m31 −m32 1

⎤
⎦ yE32

⎡
⎣ 1 m12 m13

0 1 m23
m31 m32 0

⎤
⎦

= xyE12 �= 0.

Lemma 5.10 Let 0 �= c = c2 = R and e ∈ Pit(cRc) such that e �= c. Then ReR � RcR.

Proof Observe that {e, c − e} is set of orthogonal idempotents. Clearly, ReR ⊆ RcR.
Assume that ReR = RcR. Then c = ∑

ri esi . So c − e = (
∑

ri esi )− e. Then

c − e = (c − e)2 =
[(∑

ri esi

)
− e

]
(c − e)

=
(∑

ri esi

)
(c − e)

=
∑

ri esi (c − e)
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=
(∑

ri esi (c − e)
)2

=
∑

j

∑
i

ri esi (c − e)r j es j (c − e)

= 0,

since

ri [esi (c − e)r j e]s j (c − e) = ri [esi e(c − e)r j e]s j (c − e)

= ri 0s j (c − e)

= 0,

because e ∈ Pit(cRc). However, this is a contradiction, since e �= c. Therefore ReR �
RcR. �

Theorem 5.11 Assume R has DCC on {ReR | e ∈ Pt(R)}. Then R is an n-Peirce ring
for some n ∈ Z+.

Proof Assume R has DCC on {ReR | e ⊆ Pt(R)}, but R is a not an n-Peirce ring for
any n ∈ Z+. Observe that Pt(R) �= {0, 1}. So let 0 �= c1 ∈ Pt(R) be such that c1 �= 1.
Then c1 Rc1 is not an n-Peirce ring for any n ∈ Z+, or (1 − c1)R(1 − c1) is not an n-Peirce
ring for any n ∈ Z+. Without loss of generality, say c1 Rc1 is not an n-Peirce ring for any
n ∈ Z+. Then Pt(c1 Rc1) �= {0, c1}. So let 0 �= c2 ∈ Pt(c1 Rc1) be such that c2 �= c1.
Then c2 Rc2 is not an n-Peirce ring for any n ∈ Z+, or (c1 −c2)R(c1 −c2) is not an n-Peirce
ring for any n ∈ Z+. Without loss of generality, say c2 Rc2 is not an n-Peirce ring for any
n ∈ Z+. By Lemma 3.8, c1, c2 ∈ Pit(R). From Lemma 5.10, R � Rc1 R � Rc2 R. We
can continue this process indefinitely, which contradicts the DCC on {ReR | e ∈ Pit(R)}.
Therefore R is an n-Peirce ring for some n ∈ Z+. �

Proposition 5.12 If {b1, . . . , bn} ⊆ Pit(R) is a complete set of nonzero orthogonal
idempotents such that Pit(bi Rbi ) = {0, bi }, then |{ReR | e ∈ Pit(R)}| ≤ 2n.

Proof Let 0 �= e = e2 ∈ Pit(R). By Lemma 3.8, each bi ebi ∈ Pit(R). Observe that
e = (∑n

i=1 bi
)

e
(∑n

i=1 bi
) = ∑n

i=1
∑n

j=1 bi eb j , and bi ebi �= 0 if and only if bi ebi = bi .
Let J ⊆ {1, . . . , n} such that bi ebi �= 0 if and only if i ∈ J . Since e ∈ Pit(R), e = e(e)e =
e
(∑n

i=1
∑n

j=1 bi eb j

)
e = ∑n

i=1
∑n

j=1 ebi eb j e = ∑n
i=1

∑
j=1 ebi b j e = ∑

i∈J ebi e.

Then ReR ⊆ ∑
i∈J Rbi R.

Observe that e−∑
i �= j bi eb j = ∑

i∈J bi ebi = ∑
i∈J bi . Let k ∈ J , then bke−bkeb j =

bk . Hence Rbk R ⊆ ReR. So
∑

i∈J Rbi R ⊆ ReR. Therefore ReR = ∑
i∈J Rbi R. Since

J ⊆ {1, . . . , n}, |{ReR | e ∈ Pit(R)}| ≤ |{∑i∈K Rbi R | K ⊆ {1, . . . , n}}| = |{K | K ⊆
{1, . . . , n}}| = 2n , where

∑
i∈K Rbi R corresponds to {0} when K = ∅. �

As an illustration and application of several of our previous results, we provide the
following lemma and proposition. Recall that a ring R is ‘quasi-Baer’ if for each X � R
there is an e = e2 ∈ R such that r R(X) = eR. See [6,21] for further details on the class of
quasi-Baer rings.
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Lemma 5.13 R is a prime ring if and only if R is quasi-Baer and a 1-Peirce ring.

Proof Assume R is prime. From [3, Lemma 4.2] or [6, Proposition 3.2.5], R is quasi-Baer.
From Corollary 3.6, R is a 1-Peirce ring. Conversely, assume x Ry = 0 for some x, y ∈ R
with x �= 0. Then y ∈ r R(x R) = r R(Rx R) = eR for some e = e2 ∈ R. Since r R(x R)
is an ideal of R, then e ∈ S�(R). By Proposition 3.10(1), e = 0. Hence y = 0, so R is
prime. �

Proposition 5.14 Assume that R is a quasi-Baer ring. If {e1, . . . , en} is a complete set
of orthogonal inner Peirce trivial idempotents and each ei Rei is a 1-Peirce ring, then R is
a k-Peirce ring for some 1 ≤ k ≤ n, Rπ ∈ Tn and each ei Rei is a prime ring.

Proof This proof follows from Theorem 5.7(2), Theorem 4.2, Lemma 5.13, and [21,
Lemma 2]. �

For example, any quasi-Baer ring with a complete set of orthogonal primitive idempo-
tents (e.g. a right hereditary right Noetherian ring) satisfies the hypothesis of Proposition
5.14.

In a sequel to this paper, we further investigate the properties and structure of the class
of n-Peirce rings.
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