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One of the aims of this paper is to provide a short survey on the Zj-graded, the
symmetric and the left (right) generalizations of the classical determinant theory
for square matrices with entries in an arbitrary (possibly non-commutative) ring.
This will put us in a position to give a motivation for our main results. We use
the preadjoint matrix to exhibit a general trace expression for the symmetric
determinant. The symmetric version of the classical Newton trace formula is also
presented in the 3 x 3 case.

Keywords: Z,-graded; symmetric; left (right) determinants and characteristic
polynomials; Cayley—Hamilton identities; the symmetric 3 x 3 Newton trace
formula
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1. Introduction

The universal notion of a determinant has a long history. Determinants of matrices with
entries in non-commutative rings have been considered by many mathematicians, among
them Cayley, Study, Ore, Dieudonné and others. An excellent recent survey dealing
with almost all existing determinants is [1], where the so-called Gelfand—Retakh quaside-
terminants are used as a main organizing tool.

It seems that the symmetric determinant does not fitinto the general framework presented
in [1]. One of the aims of this paper is to provide a short introduction to the symmetric and
the corresponding left and right versions of the classical determinant theory. The natural
symmetrization of the determinant formula and of the adjoint matrix lead to extremely
useful concepts. It turns out that these constructions can serve as a starting point of a new
symmetric determinant theory for square matrices over an arbitrary ring. The most important
feature of this theory is that it can be used to solve systems of left (or right) linear equations
and to exhibit left and right Cayley—Hamilton identities for matrices over a Lie nilpotent
ring (see [2-5]).
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The algebra of n x n matrices over an exterior (Grassmann) algebra E is our basic
example. The Lie nilpotent property of E plays a central role in the various applications of
the symmetric and the corresponding left and right determinants.

The so-called (and not widely known) Z,-graded determinant (in [6]) is also designed
to ‘attack’ matrices over an exterior algebra. Its construction heavily depends on the natural
Zo-grading E = Eoy @ E;. The Z,-graded determinant (and adjoint) can be used to give
an explicit inverse formula and to exhibit left and right Cayley—Hamilton identities for an
n X n matrix over E.

The ‘misterious’ superdeterminant of a supermatrix due to Kantor and Trishin (in [7])
is another concept which is closely related to the Z,-grading of the exterior algebra. The
treatment in [7] leads to the solution of certain special systems of left (or right) linear
equations and to an invariant Cayley—Hamilton identity for supermatrices. Unfortunately,
the lack of complete understanding prevents us from dealing with the KT-superdeterminant.

Using the fact that E is a local ring, the Dieudonné determinant is a well-defined
Uy | GL,(E) — E;; map satisfying certain natural rules. Here E ;) denotes the
Abelianized multiplicative group of units in E (see [8]). The Dieudonné determinant is
an important tool in algebraic K-theory, but we cannot use it to solve systems of linear
equations (over a local ring) and to derive Cayley—Hamilton identities.

In the rest of this introductory section, we try to explain why we restrict our attention
to the matrix algebras M,,(E) and M,, ;(E).

The Cayley—Hamilton theorem and the corresponding trace identity play a fundamental
role in proving classical results about the polynomial and trace identities of the n x n matrix
algebraM,,(K) overaficld K (see [9-12]). In case of char (K') = 0, Kemer’s pioneering work
(see [13]) on the T-ideals of associative algebras revealed the importance of the identities
satisfied by the full n x n matrix algebra M,,(E) and by the algebra of (n, t) supermatrices
M, ;(E), where

E=K<v1,v2,...,vi,...|v,~vj—|—vjv,~=0 for all 1§i§j>

is the exterior (Grassmann) algebra generated by the infinite sequence of anticommutative
indeterminates (v;);>1.

Let K (x1, x2, ..., x;,...) denote the polynomial K-algebra generated by the infinite
sequence xi, X2, ..., Xj, . .. of non-commuting indeterminates. The prime T-ideals of this
(free associative K-)algebra are exactly the T-ideals of the identities satisfied by M,,(K)
for n > 1. The T-prime T-ideals are the prime T-ideals plus the T-ideals of the identities
of M,,(E) forn > 1 and of M, ;(E) forn — 1 >t > 1. Another remarkable result is that
for a sufficiently large n > 1, any T-ideal contains the T-ideal of the identities satisfied by
M, (E).

Accordingly, the importance of matrices (and supermatrices) over certain non-
commutative rings is an evidence in the theory of PI-rings, nevertheless this fact has
been obvious for a long time in other branches of algebra (e.g. in the structure theory
of semisimple rings). Thus, the algebras M,,(E) and M,, ; (E) served as the main motivation
for the development of the symmetric and the Z;-graded determinants.

In Section 2, we deal with the study determinant of a quaternionic matrix (see [14,15])
and we show why a similar embedding approach does not work for M, (E). The main result
in Section 2 is based on an embedding of the two generated exterior algebra E® into a2 x 2
matrix algebra over a commutative ring and gives a Cayley—Hamilton identity of degree
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21 in M, (E®@). Section 3 is devoted to a simplified version of the Z;-graded determinant.
In Section 4, we present a short introduction to the symmetric theory of determinants, we
collect and explain some known results, and point out some similarities and differences
between the (traditional) commutative base ring case and the general case.

We do not intend to give a detailed study of the relationships between the symmetric
and any of the already existing determinant notions. Nevertheless, a thorough comparison
between the symmetric and the Z;-graded determinant would be essential. For a 2 x 2
matrix over E, the second right (left) determinant is the double of the right (left) Z,-graded
determinant. A similar comparison in the 3 x 3 case would probably require computer
calculations.

The treatment in Section 4 puts us in a position to give a motivation for our new results
in Sections 5 and 6. First we prove that sdet(A) = tr(AA™) = tr(A*A), where sdet(A) is
the symmetric determinant, tr(A) is the sum of the diagonal entries and A* is the so called
preadjoint matrix of the n x n matrix A € M, (R). Then we present the following symmetric
version of the Newton trace formula for a 3 x 3 matrix A € M3(R):

sdet(A) = tr*(A) —tr(A) - tr(A%) —tr(A - tr(A) - A) — tr(A?) - tr(A) + tr(A>) +tr ((AT)3) ,

where A" denotes the transpose of A. The symmetric characteristic polynomial of this A
and the corresponding general Cayley—Hamilton identity are also presented by traces.

2. The embedding of H and the study determinant
There are well-known embeddings of the complex number field C and of the skew field H

of the real quaternions into matrices:

a+bi —> [ a b i|, a+bi+cj+dk = a+bi+(c+di)j — [

a+bi c+di
—b a ’

—c+di a—bi

The above definitions provide injective R-algebra homomorphisms @ : C — M (R) and
v : H — M (C). There is a natural u; : Mp(C) — My(M>(R)) extension of u:

o (|3 22 ) = u(zi1) p(zi2)
2,1 222 p(z2,1) p(z22) |°
Since My M3 (R)) = M4 (R), the composition ¥ = upov : H — My (R) is the following
map:

a b ¢ d

. . —b a —-d c
a+bi+cj+dk— e d a —b
—d —c b a

Using the natural extensions
v My (H) — M,,(M2(C)) = My, (C) and ¢, : M, (H) — M,;(M4(IR)) = My, (R),

an n x n matrix over H can be viewed as a 2n x 2n matrix over C or as a 4n x 4n matrix over
R. Now we can define the study determinant of a quaternionic matrix A € M, (H) as the
ordinary determinant S det(A) = detc v, (A) in My, (C). If we take the absolute value of
the complex number detc v, (A), then |detc v, (A) |2 = detg ¥, (A). The study determinant
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has some nice properties and it is used frequently in differential geometry and Lie theory.
The Cayley—Hamilton identity for %, (A) yields the same identity (with real coefficients) of
degree 4n for A itself.

A similar approach to get a useful determinant notion and a Cayley—Hamilton identity
in M, (E) is impossible. The reason is that the infinitely generated exterior algebra E cannot
be embedded into a full matrix algebra over a commutative ring (E does not satisfy any of
the standard identities). On the other hand, the embedding approach gives the following:

THEOREM 2.1 LetA € M, (E(2)) be an n x n matrix over the two generated exterior
algebra

E® = K<v1, v | viv2 = —vyuy, v% = v% = 0>.
Then A satisfies a Cayley—Hamilton identity of the form
AP 4 Czn_lAzn_l +---4+c1tA+col =0

wherec; € K,0<1i <2n—1.

Proof The assignments

1|——>10 v | T vy —> y 0
o1 0 —x |° 2 -2y —y

define a K-embedding ¢ : E® — My(K [x, y] /(x2, y2)), where (x2, y?) <1 K [x, y]is
the ideal generated by the monomials x2 and y. Now consider the induced K -embedding

0 i My(ED) — M, (My (K Lx.31/G2 3D ) ) = My (K [, 31 /062, 57))
The trace of any 2 x 2 block

&(by + byvy 4+ brvy + b3viv2)
_ bo+ bi1x + by — b3xy + (x2, y2) bix — baxy + (xz, y2)
—2byy + 2b3xy + (x2, y?) by — bix — bay + byxy + (x2, y?)

in €, (A) is of the form 2bg + (x2, yz). Since the trace of &, (A) is the sum of the traces of the
diagonal 2 x 2 blocks, we have tr(g,,(A)) = 2b+ (x2, y?) for some b € K. The coefficients
of the characteristic polynomial of ¢,(A) are rational polynomial expressions (with zero
constant terms) of the traces tr((e, (A))k) = tr(e, (A¥)), k > 1 (Newton formulae). Thus,
the Cayley—Hamilton identity for &, (A) is of the form

(en ()™ + (20m1 + (3%37) ) Ga(a)? " o (o1 4 (x2,32) ) eu(4)
+ (co + (xz, y2>) I1=0
withc; € K,0 <i <2n — 1. It follows that
en (Az" +em 1 AT e At col)

= e (A7) + canmren (A7) 4o ren () + cof =0
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holds in Ma, (K [x, y]/(x%,¥?)), and thus the injectivity of &, gives the desired
identity. O

3. The Z,-graded determinant

A Z,-grading of an (associative) ring R is a pair (Rg, R1), where Rg and R are additive
subgroups of R such that R = Ry @ Ry and R;R; C R;yj foralli, j € {0, 1} and i + j is
taken modulo 2. The relation RyRy C Ry ensures that Ry is a subring of R. It is easy to see
that the existence of 1 € R implies that I € Ry.

A Z»-grading (Rop, Rp) of the ring R is called central if Ry € Z(R) (here Z(R) denotes
the centre of R). The condition Ry € Z(R) implies the Lie nilpotence (of index 2) of R.
The general notion of the Z,-graded determinant (in [6]) is defined for an n x n matrix over
an arbitrary ring R with a central Z,-grading (Ro, R1).

In order to present a more natural and understandable treatment of the Z,-graded
determinant, we restrict ourselves to the case of the well-known central Z;-grading E =
Ey@® E of the (infinitely generated) exterior algebra. If we add one more (anticommutative)
generator w to the infinite sequence (v;);>1, we obtain an extended

E, = K<w, V1, V2, eeey Uiy oen | w? = wvj +vjw =vjv; +v;v; =0forall 1 <i < j>

exterior algebra. An n x n matrix A € M,,(E) can be uniquely written as A = A+ A; with
Ao € M, (Ep) and A; € M,,(E). The companion matrix of A is defined as A9 + Ajw €
M,,(E(0)), where the notations E,,(0) = (Ey)o and E (1) = (Ey); are used for the
even and the odd part of the (central) Z,-grading E,, = (Ey)o ® (Ey)1 of Ey,.

Since E,,(0) is commutative, the ordinary determinant and the ordinary adjoint of Ag+
Ajw are defined and can be written as

det(Ap + Ajw) =dp +diw € E(0) and adj(Ag + Ajw) = By + Biw € M, (E(0)),

wheredy € Eo,d; € E1, By € M,,(Ey), By € M,,(E) and each of these objects is uniquely
determined by A. Clearly, dyp = det(Ap), Bp = adj(Ap) and the elements dj, b;l; € Eq are

also polynomial expressions of the entries al.(g.) and al.(’lj) <note thatAg = [aff?] , fil = [al.(’l./?]
and B| = [bl(lj)] )
THEOREM 3.1 The elements of the product matrices
A(Bo + B1) = (Ao + A1)(Bo + B1) and (Bo + B1)A = (Bo + B1)(Ao + A1)
are contained in the subring Ey[d1] of E generated by d| and the elements of E, namely:

A(By + By1), (Bo + B1)A € M, (Eold1]).

The containment Eg € Z(E) implies that the subring Eg[d;] € E is commutative (the
elements of E[d;] are polynomials of d; with coefficients in Ep). As a consequence of
Theorem 3.1 the determinant and the adjoint of the matrices A(By + B1), (Byp + B1)A €
M, (Ey[d;]) are defined. We call

rgdet(A) = det(A(Bo + Bj)) the right Z,-graded determinant
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and
rgadj(A) = (Bo + B1)adj(A(Bo + B1)) the right Z;-graded adjoint

(with respect to E = Eog @ E1) of the matrix A € M,,(E). Since
A(Bo + B1)adj(A(By + B1)) = det(A(Bo + B1))/

in M, (Eo[d1]), we immediately obtain (in M,,(E)) that:
Argadj(A) = rgdet(A)1.

ProrosiTioNn 3.2

(i) If T € GL,(Eo) is an invertible matrix and A € M,,(E), then rgdet(TATfl) =
redet(A) and rgadj(T AT~") = T (rgadj(A))T .
(i) If A € M, (Eyp), then rgdet(A) = (det(A))" and rgadj(A) = (det(A))"’ladj(A).

The polynomial ring E[¢] inherits a natural (and central) Z,-grading E[t] = Ep[t] &
E1[t]from E = Eo@ E;. Wedefine theright Z;-graded characteristic polynomial of a matrix
A € M,,(E) as the right Z,-graded determinant (with respect to E[t] = Ey[t] & E1[t]) of
the matrix 1/ — A € M,,(E[t]), where [ is the identity matrix in M,,(E):

xa(t) =rgdet(tl — A) Z)\O+)\1t+"'+)\,kl‘k € E[t], o, 1,..., A € Eand A, # 0.

Since GL,(Eg) < GL,(Eo[t]), an immediate consequence of Proposition 3.2 is that

Xrar-1(t) = xa(t) for any invertible matrix 7 € GL, (Ep).

ProprosiTiON 3.3 Ifxa(t) = Ao+ i1t +---+ At is the right Z»-graded characteristic
polynomial of then x n matrix A € M, (E), then k = n? and A2 =1, Mg = rgdet(—A).

TueorReEM 3.4 Ifxa(t) € Elt]isthe right Z-graded characteristic polynomial of ann xn
matrix A € M, (E) and h(t) € E[t] is arbitrary, then the left substitution of A into the
product polynomial x o (t)h(t) = po+p1t+- - -+pumt™ iszero: Lpo+Apur+- - -+A" puy =0.

4. The symmetric and the right (left) determinants

Let S, denote the symmetric group of all permutations of the set {1, 2, ...,n}. Forann x n
matrix A = [g; ;] over an arbitrary (possibly non-commutative) ring or algebra R with 1,
the element

sdet(A) = Z Sgn(p)at(l).p(t(l)) < Ar(t),p(t(t)) - - - At (n),p(t(n))
T,pES),

= Z sgn(a)sgn(B)aq(1).p(1) - - - Aa(t).B(1) - - - Aar(n). f(n)
o,BES,

of R can be obviously considered as the symmetric determinant of A.
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The preadjoint matrix A* = [a}’j ¢ of ann x n matrix A = [a; ;] (over an arbitrary
ring or algebra R with 1) is defined as the following natural symmetrization of the classical
adjoint:

*

afy = ) sgn(P)ar() p(r() - - - Aris—1).p(e(s—1)Ar(s+1), p(e(s+1) + - e, p(e ()
T.p
= ngﬂ(a)sgn(ﬁ)aa(l),ﬁu) <ol (s—1),B(s—1)da(s+1),B(s+1) - - - Aa(n), B(n)>
o,

where the first sum is taken over all 7, p € S,, with t(s) = s and p(s) = r (the second sum
is taken over all , B € S, with «(s) = s and B(s) = r). We note that the (r, s) entry of A*
is exactly the signed symmetric determinant (—1)"+* sdet(A; ) of the (n — 1) x (n — 1)
minor Ag , of A arising from the deletion of the s-th row and the r-th column of A. If R is
commutative, then A* = (n — 1)!adj(A), where adj(A) denotes the ordinary adjoint of A.

The right adjoint sequence (Py)k>1 of A is defined by the recursion: P = A* and
Piy1 = (APy - -+ Pp)* for k > 1. Originally, the kth right determinant was defined as the
top left entry of the product matrix A Pj - - - Px. These definitions were introduced in [2].

The above-mentioned kth right determinant is not invariant with respect to the conjugate
action of GL, (Z(R)) on M,,(R). A more appropriate (and invariant) definition for the kth
right determinant is the trace of APy - - - Py (see [16] and [4]):

rdet) (A) =tr(APy ... Py).

The left adjoint sequence (Qr)k>1 can be defined analogously: Q1 = A* and Qi4+1 =
(Qk ... Q1A)* for k > 1. The k-th left determinant of A is

Idet(x)(A) = tr(Qk ... Q14A).
Note that rdet(41)(A) = rdety)(AA*™) and ldet(x41)(A) = Ildet)(A*A). The basic
properties of these determinants are given in the following theorems.
THEOREM 4.1 (see [4,16]) If T € GL,(Z(R)) is an invertible matrix with entries in the
centre Z(R) of R, then

tr(A), (T"'AT)* = T A*T,
rdet( (A), Idet ) (T "1 AT) = Idet ) (A).

(T~ AT)
rdet gy (T~ 1AT)

The next results shed light on the fact that we call radj)(A) = n Py - - - Py the kth right
adjoint and ladj ) (A) = nQy - - - Q1 the kth left adjoint of A.

THEOREM 4.2 (see [2,4]) The product matrices Aradj(l)(A) and ladj(l)(A)A in M, (R)
can be written as

Aradjj)(A) = nAA* = tr(AA")] + C" =rdet(1)(A)] + C’
and
ladj j,(A)A = nA*A = tr(A* A)T + C" = 1det1)(A)] + C”,
where I is the identity matrix, tr(C") = tr(C") = 0 and all entries of the matrices C' and

C" are in the additive commutator subgroup [R, R] of R generated by all elements of the
form [u,v] = uv —vu, u,v € R.



Downloaded by [University of Stellenbosch] at 00:42 15 August 2014

Linear and Multilinear Algebra 1083

TueorReEM 4.3 (see [2]) Ifthe ring R satisfies the polynomial identity

(L[ - - [[x1, x2], %3], - - ] Xk ], xk41] = O
(R is Lie nilpotent of index k), then the products Aradj(k)(A) and ladj *) (A)A are scalar
matrices in M, (R) such that
Aradj(k) (A) =nAP,--- P, = rdet(k) (A, ladj(k) (A)A =nQy... 01A = ldet(k) (A)I.
If R is commutative, then radj;,(A) = ladj(;,(A) = nA* = nladj(A) and

rdet(y(A) = ldet o (A) = n {(n — DI E+2 " (geray ™

If R is Lie nilpotent of index 2 and % € R, then in Theorem 4.2
C’ € M, ([R, R]) € M, (Z(R)) implies that

1
AA* = Z(r(AA®)] + C') € M,,(Z(R)[tr(AA®)]),
n
where the subring Z(R)[tr(AA*)] generated by Z(R) and tr(A A*) is commutative. Thus
l‘det(z) (A) = rdet(l)(AA*) =n!det(AA").

Let 1 <t < n —1be an integer and R = Rg ® R be a Z,-grading of R. Now
A € M, (R) is called an (n, t) supermatrix if

ajj € Roforall 1 <i,j<randt+1<i,j<n,
and
gijeRiforall <i<tr+l<j<nandr+l<i<nl=<j=<t

Thus, an (n, t) supermatrix can be partitioned into square and rectangular blocks as follows:

Al Al
R
|:A2,1 A2,21|

where Aj jisat x t and Ay isan (n —t) x (n — t) square matrix over Rp and A7 is
at x (n—1t)and Ay is an (n — t) x t rectangular matrix over R;. Clearly, the set of all
(n, t) supermatrices M, ;(R) is a subring (algebra) of M,,(R).

THEOREM 4.4 (see [3]) If R = Ro ® R is a Zy-grading of R and A € M,, ;(R), then
A" € M, ;(R) and rdet i (A), Idet)(A) € Ro forall 1 < k.

Let R[z] denote the ring of polynomials of the single commuting indeterminate z, with
coefficients in R. The kth right (left) characteristic polynomial of A is the kth right (left)
determinant of the n x n matrix z/ — A in M,,(R[z]):

Pak(z) =rdetp)(zl — A) and ga x(z) = ldet(z] — A).

TueoreMm 4.5 (see [3]) IfR = Ry ® Ry is a Z»-grading of R and A € M, ;(R), then
Pak(2),qak(2) € Rolz] forall 1 < k.

The above characteristic polynomials appear in the following Cayley—Hamilton theorems.
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THEOREM 4.6 (see [4]) The first right characteristic polynomial pa1(z) € R[z] of a
matrix A € M,,(R)is of the form

pa1@ =r" APz 4aD A D

with )\é)l), Agl), cey A kﬁll) € R and )L,(ll) = n!l. The product matrix

n—1°

n(zI — A)(zI — A)* can be written as
n(zl — Azl — A)* = pa1 (@I +Co+ Ciz+ -+ CaZ",

where the matrices C; € M,,(R) are uniquely determined by A, tr(C;) = 0 and each entry
of Ciisin[R, R], i.e. C; € M, (IR, R]) forall 0 <i <n. The right

(W1 co)+ A (A1) b AT (D T+ Cun ) + AT+ C) =0
and a similar left
(11 + Do) + (" 14+ D) A+t (2 1+ Dot ) A1+ (11 + DA™ =0
Cayley—Hamilton identity with right and left matrix coefficients hold for A.
THeorREM 4.7 (see [2]) Ifthe ring R satisfies the polynomial identity

(L[ .. [Lx1, x21, 231, -1, Xk ], X611 =0

(R is Lie nilpotent of index k), then the kth right characteristic polynomial
pak(z) € R[z] of a matrix A € M,,(R) is of the form

k k k k_ k k
pak@) =2 + 2Pz 4 2 Q) AR

with 10,00, 08 0% € Rand a) = n {(n — pylrmer et
The right

k k k_1, (k ko (k
(A pax =11 + A0+ 4 AR a0 =0

and a similar left

K
gaxA) = w1+ pPA+ 4 At Oart =0
Cayley—Hamilton identity with right and left scalar coefficients hold for A. We also have
(Au = v(A) = 0, where u(z) = par(2)h(z), v(z) = h(2)qar(z) and h(z) € R[z] is

arbitrary.

Now consider E as a base ring and observe that E is Lie nilpotent of index 2. Thus,
the above Theorems 4.3 and 4.7 apply to M,,(E). The natural Z,-grading E = Ey @ E;
allows us to apply Theorems 4.4 and 4.5 to M,, ;(E). The most remarkable consequences
of these theorems are the following: M,,(E) is integral over E( of degree 212 and M, (E)
is integral over E of degree n? (see [2,3]).

Fora2 x 2 matrix A = [qg; ;] € Ma(E) we have A = Ag + Ay with
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Ag = [a}oj)] € Ma(Eg) and A; = [ai“]?] € My(E,). Thus
0) (1 0) (D
. a, 5+ a5 5w  —a; 5 —a,; ,w
adj(Ao+Aw) = | 25 G o° (% | =Bo+ Biw,
—ay | —ay w4y tapjw
whence
0) (D) 0) (D
Bo4 B = | %22 —aia=dia | | A2 @2 | _ s
0 = _,0_,0 0 LD T —ay an | T
21 41 41 1,1 . :
and

2rgdet(A) = 2det(A(By + B1)) = 2det(AA™) = rdet()(AA*) = rdet(2)(A)

follow. The comparison of rgdet(A) and rdet()(A) for a 3 x 3 matrix A € M3(E) is a
challenging problem.

5. The trace form of the symmetric determinant

If the base ring R is commutative, then tr(AB) = tr(BA) for all A, B € M,(R). In
spite of the fact that this well-known trace identity is no longer valid for matrices over a
non-commutative ring, the first left and first right determinants of A coincide (it was not
recognized in [4]).

TueorREM 5.1 The traces of the product matrices A*A and AA* are both equal to the
symmetric determinant of A:

rdet(1)(A) = tr(AA™) = sdet(A) = tr(A*A) = ldet()(A).

Proof We prove that tr(AA*) = sdet(A). (The proof of sdet(A) = tr(A*A) is similar.)
The trace of a matrix is the sum of the diagonal entries, hence

tr(A*A)

%
= § : ar,saSJ

1<r,s<n

= Z sgn(a)sgn(B)dq(1),(1) - * * Aa(s—1), f(s—1)da(s+1),f(s+1) - - - Qa(n), B(n)Aar(s), B(s)
(a,B.5)eA,

= Z sgn(a)sgn(B)au 1).p/(1) -+ Ao’ (1)) - - - G (). p/(n) = SAet(A),

o' ,B'eS,
where A, = {(a. B.5) | . B €Sy, 1 <5 <n,a(s) = s} and the map
(a0, B, s) —> (&, B) with
r_ 1 s—1 s n—1n
CENa) o als—=1) as+1) ... a@) s

and

ﬂ,_< 1 ... s-=1 K ...n—1 n >
S\ B . B =1 B+ ... Bm) B(s)
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isa A, — S, x S, bijection. Since
sgn(a’) = (—=1)"“sgn(@), sgn(B) = (=1)" " sgn(B)
and
Ag(1).8(1) * * " Qa(s—1),B(s—1)Aa(s+1),8(s+1) * = Aa(n).B(n)Aa(s),B(s)
= Ao (1).p/(1) " Q! (1).p' (1) -+ - G’ (n), B (n) s
the proof is complete. O
CoroLLARY 5.2 The first right and left characteristic polynomials of a matrix A €

M,,(R) coincide: pa 1(z) = qa,1(z). Thus we have )L;l) = ,LL;I) forall 0 <i < nin
the corresponding Cayley—Hamilton identities (see Theorem 4.6).

In view of Theorem 5.1 and Corollary 5.2, for the above determinants and characteristic
polynomials, it is reasonable to use the terminology ‘symmetric’ instead of ‘first right” and
“first left’.

The following observation for 2 x 2 matrices over the Grassmann algebra is due to
Domokos (see [16]).

ProposiTioN 5.3 If A =[a; ;] is in M2(R), then
rdet(2)(A) — ldet(2)(A) = Sa(ai,1,a12,a2,1,a22),

where Sy(x1, X2, X3, X4) = )
of degree four.

oes, S81(0)Xo (1) X0 (2)Xo (3) X0 (4) IS the standard polynomial

Proof Using
AF—| %22 T412
—a21  din

AA* = ai,1az2 —ai2az1 —aiidai2 +aai
az,1a2 —azoaz 1 —a a2 +azai ’

and the products

AFA = | 922011 T a12a21  d22412 —A1,2022
—az1a1,1 +aiaz —aziaip +apiazy |’

a direct computation shows that

rdet(2)(A) — Idet(2) (A) = rdet 1) (AA¥) — Idet(1)(A* A) = sdet(AA¥) — sdet(A* A)
= (a1,1a2,2 — a1 2a2,1)(—ap 1412 +axpay 1) + (—ap 1a1 2 +az pay 1)(ay 1422 — aj 2az,1)
— (—ayja1p+ajpay)(ag 1az,2 —azpa 1) —(az1a22 — az 2az 1)(—aj,1a1 2+ aj 2ai,1)
—(apa1,1 —aypa21)(—ap 1a1p+ay 1a22) —(—ap 1a1 2 +ay 1az2)(ap pay,1 — aypaz;1)
+ (appa12— a1 pap 2)(—ay a1, + ay1a2,1)+(—ap 1a1,1 +aj1az,1)(ax2a1 2 —ay 2a2,2)
= Sylay 1, a1,2,a2,1,a2,2).

O
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CoroLLARY 5.4 If A =a; j]is in Ma(R), then

PA2(2) —qa2(z) = rdetp)(zl — A) —ldet)y(z] — A)
= S4(z—ai1,—aip, —az 1,z —azn)

= Si(—ay1, —ai, —az1, —azp) = Saai1, ai2,a21,a22)

is a constant polynomial in R[z].

6. The symmetric Newton formulae for 2 x 2 and 3 x 3 matrices

If our base ring R is commutative, then the well-known Newton trace formulae for 2 x 2
and 3 x 3 matrices are the following:

2det(A) = tr’(A) — tr(A?),
6det(A) = tr’ (A) — 3tr(A)tr(A?) + 2tr(A%).
ProrosiTioN 6.1 If R is an arbitrary ring and A € Ma(R), then the symmetric analogue
sdet(A) = tr’(A) — tr(A?)

of the classical 2 x 2 Newton formula holds. Notice that sdet(A) = 2det(A) in case of a
commutative R.

Proof Using

[a b » [ @®+bc ab+bd
A_|:c di|andA _|:ca+dc cb+d2:|’

we obtain that
tr’(A) — tr(A%) = (a + d)> — (a*> + bc + cb + d?) = ad + da — be — cb = sdet(A).
0

TueorReM 6.2 If R is an arbitrary ring and A € M3(R), then the following symmetric
analogue of the classical 3 x 3 Newton formula holds:

sdet(A) = tr* (A) —tr(A) - tr(A%) —tr(A - tr(A) - A) — tr(A?) - tr(A) + tr(A%) + tr ((AT)3) )
Notice that

sdet(A) = 6det(A), tr(A)tr(A%) = tr(A - tr(A) - A) = tr(A?) - tr(A), tr <(AT)3> = tr(A%)
in case of a commutative R.

Proof Using

S
I
R QU
>0 o
AST NI
S
_|
|
o SR
~ 0
"N S
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a’>+bd+cg ab+be+ch ac+bf +cp
A = | da+ed+ fg db+e*+ fh dc+ef + fp
ga+hd + pg gb+he+ ph ge+hf + p?

and
a’>+bd+cg ab+be+ch ac+bf +cp a
A= da+ed+ fg db+ e+ fh dc+ef+fp |- | d
ga+hd+ pg gb+he+ ph gc+ hf + p? 8

S &
S N

we obtain that
tr(A%) = a® +bd + cg +db +e* + fh+ gc + hf + p*
and

r(AY = (@®+bd + cg)a+ (ab + be + ch)d + (ac+bf +cp)g + (da+ed + fg)b
+(db 4 €* + fh)e + (dc + ef + fp)h + (ga + hd + pg)c
+(gb + he + ph) f + (gc + hf + p)p.

We obtain a similar expression for tr ((AT)3). Then the proof can be completed by direct
(but annoying) computation.

Remark 6.3  For anon-commutative ring R, the identity tr ((AT)z) = tr(A2) holds for any
A € M,(R), but tr ((AT)?) = tr(A?) is not valid even in the 2 x 2 case.

THEOREM 6.4 [If A is a 3 x 3 matrix over an arbitrary ring R, then the symmetric
characteristic polynomial of A in R[z] is

Pa1(2) = qa.1(z) = sdet(zl — A) = 62° — 6tr(A)z> + 3(tr’(A) — tr(A%))z — sdet(A).

Proof Using
tr(zI — A) = 3z — tr(A), tro(z] — A) = 2770 — 27tr(A) 2> + 9tr?(A)z — tr(A),
(2 —A)? =221 —zA — Az + A%, (2] — A)?) = 322 — 2tr(A)z + tr(A?),
tr(zl — A) - tr((z] — A)?) = 92> — 9tr(A)z? + 2tr> (A)z 4 3tr(A%)z — tr(A)tr(A?),
tr((zf — A)?) - tr(z — A) = 92> — 9tr(A)z? + 2tr2(A)z + 3tr(A?)z — tr(A%)tr(A),
tr((zI — A) -tr(zI — A) - (zI — A))

—tr (31z3 — 3422 — tr(A) 2% — 3A22 + tr(A) Az + 3A%z + Atr(A)z — Atr(A)A)
=9z° — 9tr(A)z? + 21’ (A)z 4 3tr(A%)z — tr(A - tr(A) - A),

(2] — A =221 — %A — zAz7 — A2 + A%z 4 AzA + zA% — A3,
tr((zI — A)®) = 3z2° — 3tr(A) 2% + 3tr(A%)z — tr(Ad),

tr (((zl — A)T)3) — 353 —3uw(AT)Z? + 3t ((AT)2) i—tr ((AT)3)
323 — 3tr(A)22 + 3tr(A%)z —tr ((AT)3)
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and Theorem 6.2, we obtain that
sdet(zI — A) = 7zl — A) —tr(zl — A) - tr((z] — A)?)
—tr((zl —A) - tr(z] — A) - (z] — A))
—tr((zl — A)?) -tr(zl — A) +tr((z] — A)) +tr (((zl — A)T)3)
62> — 6tr(A)z> + 3(tr’(A) — tr(A?))z — sdet(A).

O

CorROLLARY 6.5 IfA € M3(R), then Theorem 4.6 gives the existence of 3 x 3 matrices
Ci, D; (0 <i < 3) with entries in [R, R] such that

(—sdet(A)I +Co) +(3(tr? (A) —tr(A%) [+ C1) A+ (—6tr(A) ] +C2) A>+ (61 +C3)A* = 0
and
(—sdet(A) I +Do)+AB(tr’(A)—tr(A%) [+ D)+ A% (—6tr(A) [+ D7)+ A (614 D3) = 0.
CoROLLARY 6.6 If% € R and A € M3(R) such that
tr(A) = tr(A?) = (A3 = tr ((AT)3) —0,
then sdet(A) = 0 and
A’ =Co+ ClA+ CrA%> + C3A3 = Dy + AD| + A’D, + A’D;

for some 3 x 3 matrices Ci, D; (0 < i < 3) with entries in [R, R]. Thus A3 e Ms(T),
where T = R[R, R] N [R, R]R is the intersection of the left and right ideals R[R, R] and
[R, RIR of R.

We close the paper by the following:

Problem 6.7 1If R is a commutative ring, then the Newton formula for a 4 x 4 matrix
A € M4(R) is

24 det(A) = tr*(A) — 6tr? (A)tr(A?) + 3tr2(A?) 4 8tr(A)tr(A%) — 6tr(AY).

Find the symmetric analogue of the above formula for sdet(A) over an arbitrary ring R.
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