
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of Algebra 324 (2010) 3378–3387

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Centralizers in endomorphism rings ✩

Vesselin Drensky a,∗, Jenő Szigeti b, Leon van Wyk c
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We prove that the centralizer Cen(ϕ) ⊆ EndR(M) of a nilpotent
endomorphism ϕ of a finitely generated semisimple left R-module
R M (over an arbitrary ring R) is the homomorphic image of the
opposite of a certain Z(R)-subalgebra of the full m × m matrix
algebra Mm(R[z]), where m is the dimension of ker(ϕ). If R is a
local ring, then we give a complete characterization of Cen(ϕ) and
of the containment Cen(ϕ) ⊆ Cen(σ ), where σ is a not necessarily
nilpotent element of EndR (M). For a K -linear map A of a finite
dimensional vector space over a field K we determine the PI-
degree of Cen(A).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

If S is a ring (or algebra), then the centralizer Cen(s) = {u ∈ S | us = su} of an element s ∈ S is
a subring (subalgebra) of S . The aim of this paper is to investigate the centralizer Cen(ϕ) of an ele-
ment ϕ in the endomorphism ring EndR(M) of a left R-module R M . In the case of finite dimensional
vector spaces the study of Cen(ϕ) can be reduced to the nilpotent case. Thus we focus only on the
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nilpotent endomorphisms of a finitely generated semisimple R M . We note that most of our statements
are generalizations of classical linear algebra results about commuting matrices (see [2,5,6,8]).

Following observations about the nilpotent Jordan normal base in Section 2 and other preliminary
results in Section 3, we prove in Theorem 3.9 that Cen(ϕ) is the homomorphic image of the opposite
of a certain Z(R)-subalgebra of the full m×m matrix algebra Mm(R[z]) over the polynomial ring R[z],
where m is the dimension of ker(ϕ). If R is a local ring, then in Theorem 3.11 we present Cen(ϕ)

as (the opposite of) a factor of a certain subalgebra of Mm(R[z]). The Z(R)-dimension of Cen(ϕ) is
determined when R is local, Z(R) is a field and R/ J (R) is finite dimensional over Z(R).

If ϕ is a so-called indecomposable nilpotent element of EndR(M), then the elements of Cen(ϕ)

are described in terms of an appropriate R-generating set of R M in Theorem 4.1. In particular, if R
is commutative, then ψ ∈ Cen(ϕ) if and only if ψ is a polynomial expression of ϕ . If R is a local
ring, ϕ is nilpotent and σ is an arbitrary element of EndR(M), then Cen(ϕ) ⊆ Cen(σ ) is equivalent
to the existence of a certain R-generating set of R M (Theorem 4.3). In the commutative local case
Cen(ϕ) ⊆ Cen(σ ) if and only if σ is a polynomial expression of ϕ .

For a nilpotent matrix A ∈ Mn(K ) (over a field K ) the semisimple component of Cen(A) is deter-
mined in Theorem 5.1. Our proof of Theorem 5.1 is based on the use of Theorem 3.11. If p is the max-
imum number of elementary Jordan matrices of the same size and with the same eigenvalue (of a not
necessarily nilpotent A), then for the T-ideals of the identities we prove that T (Cen(A)) ⊇ T (M p(K ))q

for a suitable q. Hence the PI-degree of Cen(A) is equal to p.
Since all known results about matrix centralizers are closely connected with the Jordan normal

form, it is not surprising that our development depends on the existence of the so-called nilpotent
Jordan normal base of a semisimple module with respect to a given nilpotent endomorphism (the
main theorem of [7]).

For a version of this paper containing more computational details see [1].

2. The nilpotent Jordan normal base

Throughout the paper a ring R means a (not necessarily commutative) ring with identity, Z(R) and
J = J (R) denote the center and the Jacobson radical of R , respectively. Also, Mm(R) and R[z] denote
the m × m matrix ring and the polynomial ring of the commuting indeterminate z, respectively. The
ideal (zk) � R[z] generated by zk will be considered in the sequel, and (z0) = R[z].

A subset X = {xγ ,i | γ ∈ Γ, 1 � i � kγ } of a (unitary) left R-module R M is called a nilpotent Jordan
normal base with respect to ϕ ∈ EndR(M) if each R-submodule Rxγ ,i � M is simple,

⊕
γ ∈Γ,1�i�kγ

Rxγ ,i = M

is a direct sum, ϕ(xγ ,i) = xγ ,i+1, ϕ(xγ ,kγ ) = xγ ,kγ +1 = 0 for all γ ∈ Γ , 1 � i � kγ , and the set {kγ |
γ ∈ Γ } of integers is bounded (Γ is called the set of Jordan blocks and the size of the block γ ∈ Γ

is the integer kγ ). Obviously, the existence of a nilpotent Jordan normal base implies that R M is
semisimple and ϕ is nilpotent with ϕn = 0 �= ϕn−1, where n = max{kγ | γ ∈ Γ }. Clearly,

im(ϕ) =
⊕

γ ∈Γ ′,2�i�kγ

Rxγ ,i and ker(ϕ) =
⊕
γ ∈Γ

Rxγ ,kγ ,

where Γ ′ = {γ ∈ Γ | kγ � 2}. The following is one of the main results in [7].

2.1. Theorem. For ϕ ∈ EndR(M) the following are equivalent:

1. R M is semisimple and ϕ is nilpotent.
2. There exists a nilpotent Jordan normal base of R M with respect to ϕ .
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2.2. Proposition. Let ϕ ∈ EndR(M) be nilpotent, with R M finitely generated semisimple. If {xγ ,i | γ ∈ Γ, 1 �
i � kγ } and {yδ, j | δ ∈ �, 1 � j � lδ} are nilpotent Jordan normal bases of R M with respect to ϕ , then there
exists a bijection π : Γ → � such that kγ = lπ(γ ) for all γ ∈ Γ . Thus the sizes of the blocks of a nilpotent
Jordan normal base are unique up to a permutation of the blocks.

Proof. We apply induction on the index of the nilpotency of ϕ . If ϕ = 0, then we have kγ = lδ = 1 for
all γ ∈ Γ , δ ∈ �, and

⊕
γ ∈Γ Rxγ ,1 = ⊕

δ∈� R yδ,1 = M implies the existence of a bijection π : Γ → �

(Krull–Schmidt, Kurosh–Ore). Assume that our statement holds for any R-endomorphism φ : N → N
with R N a finitely generated semisimple left R-module and φn−1 = 0 �= φn−2. Consider the situation
described in the proposition with ϕn = 0 �= ϕn−1. Then

im(ϕ) =
⊕

γ ∈Γ ′,2�i�kγ

Rxγ ,i

ensures that {xγ ,i | γ ∈ Γ ′, 2 � i � kγ } is a nilpotent Jordan normal base of the left R-submodule
im(ϕ) of R M with respect to the restricted R-endomorphism ϕ : im(ϕ) → im(ϕ). The same holds
for {yδ, j | δ ∈ �′, 2 � j � lδ}, where �′ = {δ ∈ � | lδ � 2}. Since φn−1 = 0 �= φn−2 for φ = ϕ � im(ϕ),
our assumption gives a bijection π : Γ ′ → �′ such that kγ − 1 = lπ(γ ) − 1 for all γ ∈ Γ ′ . In view of
ker(ϕ) = ⊕

γ ∈Γ Rxγ ,kγ = ⊕
δ∈� R yδ,lδ we have |Γ | = |�| and so |Γ \ Γ ′| = |� \ �′|. Thus we have

a bijection π∗ : Γ \ Γ ′ → � \ �′ and the natural map π 	 π∗ : Γ ′ ∪ (Γ \ Γ ′) → �′ ∪ (� \ �′) is a
bijection with the desired property. �

We call a nilpotent element s of a ring S decomposable if es = se for some idempotent e ∈ S with
0 �= e �= 1. A nilpotent element which is not decomposable is called indecomposable. In the case of
finite dimensional vector spaces an indecomposable nilpotent endomorphism is nonderogatory (or
1-regular) in the sense of [4].

2.3. Proposition. Let ϕ : M → M be a non-zero nilpotent R-endomorphism of the semisimple left
R-module R M. Then the following are equivalent:

1. There is a nilpotent Jordan normal base {xi | 1 � i � n} of R M with respect to ϕ consisting of one block
(thus |Γ | = 1 for any nilpotent Jordan normal base {xγ ,i | γ ∈ Γ, 1 � i � kγ } of R M with respect to ϕ).

2. ϕ is an indecomposable nilpotent element of the ring EndR(M).
3. R M is finitely generated and ϕd−1 �= 0, where d = dimR(M).

Proof. (1) ⇔ (3) is straightforward.
(1) ⇒ (2): If ε ◦ ϕ = ϕ ◦ ε for some idempotent ε ∈ EndR(M) with 0 �= ε �= 1, then im(ε) ⊕

im(1 − ε) = M for the non-zero (semisimple) R-submodules im(ε) and im(1 − ε) of R M , and
ϕ : im(ε) → im(ε) and ϕ : im(1 − ε) → im(1 − ε). Since these restricted R-endomorphisms are nilpo-
tent, we have nilpotent Jordan normal bases of im(ε) and im(1 − ε) with respect to ϕ � im(ε) and
ϕ � im(1 − ε) respectively. The union of these two bases gives a nilpotent Jordan normal base of M
with respect to ϕ consisting of more than one block, a contradiction (the direct sum property of the
new base is a consequence of the modularity of the submodule lattice of R M).

(2) ⇒ (1): Suppose we have a nilpotent Jordan normal base X of R M with respect to ϕ with
|Γ | � 2. Fix δ ∈ Γ and consider the non-zero ϕ-invariant R-submodules

N ′
δ =

⊕
1�i�kδ

Rxδ,i and N ′′
δ =

⊕
γ ∈Γ \{δ},1�i�kγ

Rxγ ,i .

Then M = N ′
δ ⊕ N ′′

δ and for the natural projection εδ of M onto N ′
δ we have εδ ◦ εδ = εδ , 0 �= εδ �= 1

and εδ ◦ ϕ = ϕ ◦ εδ . �
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3. The centralizer of a nilpotent endomorphism

Note that ϕ ∈ EndR(M) defines a natural left action ∗ of R[z] on M providing a left R[z]-module
structure on M . Clearly, Cen(ϕ) = EndR[z](M) for the centralizer Z(R)-subalgebra of EndR(M).

Henceforth R M is semisimple and we consider a fixed nilpotent Jordan normal base

X = {xγ ,i | γ ∈ Γ, 1 � i � kγ } ⊆ M

with respect to a given nilpotent ϕ ∈ EndR(M) of index n.
The Γ -copower

∐
γ ∈Γ R[z] is an ideal of the Γ -direct power ring (R[z])Γ comprising all elements

f = ( fγ (z))γ ∈Γ with a finite set {γ ∈ Γ | fγ (z) �= 0} of non-zero coordinates. The copower (power)
has a natural (R[z], R[z])-bimodule structure. If fγ (z) = aγ ,1 + aγ ,2z + · · · + aγ ,nγ +1znγ then

Φ(f) =
∑

γ ∈Γ,1�i�kγ

aγ ,i xγ ,i =
∑
γ ∈Γ

( ∑
1�i�kγ

aγ ,iϕ
i−1(xγ ,1)

)
=

∑
γ ∈Γ

fγ (z) ∗ xγ ,1

defines a left R[z]-module homomorphism Φ : ∐γ ∈Γ R[z] → M .

3.1. Proposition. The function Φ is surjective,
∐

γ ∈Γ ( J [z] + (zkγ )) ⊆ ker(Φ) and if R is local (R/ J is a
division ring), equality holds.

Proof. The surjectivity of Φ and the containment
∐

γ ∈Γ ( J [z] + (zkγ )) ⊆ ker(Φ) are clear. When R
is local and aγ ,i xγ ,i = 0 for some 1 � i � kγ , then aγ ,i ∈ J . Thus fγ (z) = (aγ ,1 + aγ ,2z + · · · +
aγ ,kγ zkγ −1) + (aγ ,kγ +1zkγ + · · · + aγ ,nγ +1znγ ) ∈ J [z] + (zkγ ) is a consequence of Φ(f) = 0, implying

that f ∈ ∐
γ ∈Γ ( J [z] + (zkγ )). �

From now onward we also require that R M be finitely generated, Γ = {1,2, . . . ,m} and to ease
readability we assume that k1 � k2 � · · · � km � 1 for the block sizes, in which case dimR(M) =∑

γ ∈Γ kγ and dimR(ker(ϕ)) = |Γ | = m for the dimensions (composition lengths). Now
∐

γ ∈Γ R[z] =
(R[z])Γ and an element f = ( fγ (z))γ ∈Γ of (R[z])Γ is a 1 × m matrix over R[z]. We define the follow-
ing subsets of Mm(R[z]):

I(X) = {
P ∈ Mm

(
R[z]) ∣∣ P = [

pδ,γ (z)
]

and pδ,γ (z) ∈ J [z] + (
zkγ

)
for all δ,γ ∈ Γ

}

=

⎡
⎢⎢⎣

J [z] + (zk1) J [z] + (zk2) · · · J [z] + (zkm )

J [z] + (zk1) J [z] + (zk2) · · · J [z] + (zkm )
...

...
. . .

...

J [z] + (zk1) J [z] + (zk2) · · · J [z] + (zkm )

⎤
⎥⎥⎦ ,

N (X) = {
P ∈ Mm

(
R[z]) ∣∣ P = [

pδ,γ (z)
]

and zkδ pδ,γ (z) ∈ J [z] + (
zkγ

)
for all δ,γ ∈ Γ

}
,

M(X) = {
P ∈ Mm

(
R[z]) ∣∣ fP ∈ ker(Φ) for all f ∈ ker(Φ)

}
.

Note that I(X) and N (X) are (R[z], R[z])-sub-bimodules of Mm(R[z]) in a natural way. For δ,γ ∈ Γ

let kδ,γ = kγ − kδ when 1 � kδ < kγ � n and kδ,γ = 0 otherwise.

3.2. Remark. It can be verified that the condition zkδ pδ,γ (z) ∈ J [z] + (zkγ ) in the definition of N (X)

is equivalent to pδ,γ (z) ∈ J [z] + (zkδ,γ ), and so
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N (X) =

⎡
⎢⎢⎢⎢⎣

R[z] R[z] R[z] · · · R[z]
J [z] + (zk1−k2) R[z] R[z] · · · R[z]
J [z] + (zk1−k3) J [z] + (zk2−k3) R[z] · · · R[z]

...
...

...
. . .

...

J [z] + (zk1−km ) J [z] + (zk2−km ) J [z] + (zk3−km ) · · · R[z]

⎤
⎥⎥⎥⎥⎦ .

3.3. Lemma. I(X) �l Mm(R[z]) is a left ideal, N (X) ⊆ Mm(R[z]) is a subring, I(X) � N (X) is an ideal and
M(X) is a Z(R)-subalgebra of Mm(R[z]). If R is a local ring, then N (X) = M(X).

Proof. Since the γ -th column of the matrices in I(X) comes from a (left) ideal J [z] + (zkγ ) of R[z],
we can see that I(X) is a left ideal.

If P,Q ∈ N (X), then we have pδ,τ (z) ∈ J [z]+ (zkδ,τ ) and qτ ,γ (z) ∈ J [z]+ (zkτ ,γ ). Thus kδ,τ +kτ ,γ �
kδ,γ implies that pδ,τ (z)qτ ,γ (z) ∈ J [z] + (zkδ,γ ). It follows that PQ ∈ N (X) proving that N (X) is a
subring.

If P ∈ I(X) and Q ∈ N (X), then we have pδ,τ (z) ∈ J [z] + (zkτ ) and qτ ,γ (z) ∈ J [z] + (zkτ ,γ ). Since
kτ + kτ ,γ � kγ , it follows that pδ,τ (z)qτ ,γ (z) ∈ J [z] + (zkγ ). Thus PQ ∈ I(X) and I(X) is an ideal of
N (X).

If P,Q ∈ M(X) and f ∈ ker(Φ), then fP ∈ ker(Φ) implies that Φ(f(PQ)) = Φ((fP)Q) = 0, whence
f(PQ) ∈ ker(Φ) follows. Thus PQ ∈ M(X), proving that M(X) is a Z(R)-subalgebra of Mm(R[z]).

If R is a local ring, then Proposition 3.1 gives that ker(Φ) = ∐
γ ∈Γ ( J [z] + (zkγ )). Now eδ ∈ ker(Φ),

where eδ denotes the vector with zkδ in its δ-coordinate and zeros in all other places. If P ∈ M(X),
then eδP ∈ ker(Φ) implies that zkδ pδ,γ (z) ∈ J [z] + (zkγ ), whence P ∈ N (X) follows. If P ∈ N (X) and
f ∈ ker(Φ), then pδ,γ (z) ∈ J [z] + (zkδ,γ ) and fδ(z) ∈ J [z] + (zkδ ). Thus kδ + kδ,γ � kγ implies that
fδ(z)pδ,γ (z) ∈ J [z] + (zkγ ), whence fP ∈ ker(Φ) and P ∈ M(X) follows. �
3.4. Lemma. If the center Z(R) of the ring R is a field such that R/ J is finite dimensional over Z(R), then

dimZ(R)

(N (X)/I(X)
) = [

R/ J : Z(R)
] · (k1 + 3k2 + · · · + (2m − 1)km

)
.

Proof. Any Z(R)-base of R/ J naturally leads to a Z(R)-base of N (X)/I(X), and so the claim is
obvious from the above matrix forms of I(X) and N (X). �

The assumption k1 � k2 � · · · � km � 1 ensures that

U(X) = {
U ∈ Mm(R/ J )

∣∣ U = [uδ,γ ] and uδ,γ = 0 if 1 � kδ < kγ

}
is a block upper triangular subalgebra of Mm(R/ J ). The T-ideal of the identities of U(X) is described
in [3]. We note that, if k1 > k2 > · · · > km � 1, then

U(X) =

⎡
⎢⎢⎢⎣

R/ J R/ J · · · R/ J

0 R/ J
. . .

...
...

. . .
. . . R/ J

0 · · · 0 R/ J

⎤
⎥⎥⎥⎦

is an upper triangular matrix algebra.

3.5. Lemma. There is a natural ring isomorphism

N (X)/
(N (X) ∩ zMm

(
R[z])) + I(X) ∼= U(X)

which is an (R, R)-bimodule isomorphism at the same time.
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Proof. If P = [pδ,γ (z)] is in N (X), then it is straightforward to see that there exists a matrix [wδ,γ ]
in Mm(R) ∩ N (X) such that

P + ((N (X) ∩ zMm
(

R[z])) + I(X)
) = [wδ,γ ] + ((N (X) ∩ zMm

(
R[z])) + I(X)

)

holds in N (X)/(N (X) ∩ zMm(R[z])) + I(X). The assignment

P + ((N (X) ∩ zMm
(

R[z])) + I(X)
) �−→ [wδ,γ + J ]

is well defined and gives the required isomorphism. �
3.6. Lemma. For P ∈ M(X) and f = ( fγ (z))γ ∈Γ in (R[z])Γ the formula ψP(Φ(f)) = Φ(fP) properly defines
an R-endomorphism ψP : M → M of R M such that ψP ◦ ϕ = ϕ ◦ ψP . The assignment Λ(P) = ψP gives a
homomorphism M(X)op → Cen(ϕ) of Z(R)-algebras.

Proof. Using the definition of M(X) and the surjectivity of Φ it is straightforward to check the
claims. �
3.7. Lemma. I(X) ⊆ ker(Λ), and if R is local, then the equality holds.

Proof. The containment is clear. If R is a local ring and P ∈ ker(Λ), then Λ(P) = ψP = 0 im-
plies that ψP(Φ(f)) = Φ(fP) = 0 for all f ∈ (R[z])Γ . If 1δ denotes the vector in (R[z])Γ with 1
in its δ-coordinate and zeros in all other places, then 1δP ∈ ker(Φ) and Proposition 3.1 gives that
pδ,γ (z) ∈ J [z] + (zkγ ). �
3.8. Lemma. If ψ ◦ ϕ = ϕ ◦ ψ for some ψ ∈ EndR(M), then there is a P ∈ M(X) such that ψ(Φ(f)) = Φ(fP)

for all f = ( fγ (z))γ ∈Γ in (R[z])Γ .

Proof. Since Φ : (R[z])Γ → M is surjective, for each δ ∈ Γ we can find an element pδ = (pδ,γ (z))γ ∈Γ

in (R[z])Γ such that Φ(pδ) = ψ(xδ,1). For the m × m matrix P = [pδ,γ (z)] we have

ψ
(
Φ(f)

) =
∑
δ∈Γ

ψ
(

fδ(z) ∗ xδ,1
) =

∑
δ∈Γ

fδ(z) ∗ ψ(xδ,1) =
∑
δ∈Γ

fδ(z) ∗ Φ(pδ)

=
∑
δ∈Γ

Φ
(

fδ(z)pδ

) = Φ

(∑
δ∈Γ

fδ(z)pδ

)
= Φ(fP)

for all f ∈ (R[z])Γ . Since f ∈ ker(Φ) implies that Φ(fP) = ψ(Φ(f)) = 0, we obtain that P ∈ M(X). �
3.9. Theorem. Λ : M(X)op → Cen(ϕ) is a surjective homomorphism of Z(R)-algebras.

Proof. The claim directly follows from Lemma 3.6 and Lemma 3.8. �
3.10. Corollary. Cen(ϕ) satisfies all the polynomial identities (with coefficients in Z(R)) of Mop

m (R[z]).

3.11. Theorem. If R is a local ring, then Cen(ϕ) is isomorphic to the opposite of the factor N (X)/I(X) as
Z(R)-algebras:

Cen(ϕ) ∼= (N (X)/I(X)
)op = N op(X)/I(X).
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If f i = 0 are polynomial identities of the Z(R)-subalgebra U op(X) of Mop
m (R/ J ) with fi ∈ Z(R)〈x1, . . . , xr〉,

1 � i � n, then f1 f2 · · · fn = 0 is an identity of Cen(ϕ).

Proof. Theorem 3.9 ensures that Cen(ϕ) ∼= M(X)op/ker(Λ) as Z(R)-algebras. In order to prove the
desired isomorphism, it suffices to note that for a local ring R we have M(X) = N (X) and ker(Λ) =
I(X) by Lemmas 3.3 and 3.7 respectively. Thus

L = ((N (X) ∩ zMm
(

R[z])) + I(X)
)
/I(X) � N (X)/I(X)

can be viewed as an ideal of Cen(ϕ). The use of Lemma 3.5 gives

Cen(ϕ)/L ∼= (N op(X)/I(X)
)
/L ∼= N op(X)/

(N (X) ∩ zMm
(

R[z])) + I(X) ∼= Uop(X).

It follows that f i = 0 is an identity of Cen(ϕ)/L. Thus f i(v1, . . . , vr) ∈ L for all v1, . . . , vr ∈ Cen(ϕ), and
so f1(v1, . . . , vr) f2(v1, . . . , vr) · · · fn(v1, . . . , vr) ∈ Ln . Since (zMm(R[z]))n ⊆ I(X) implies that Ln =
{0}, the proof is complete.

3.12. Corollary. If R is a local ring such that Z(R) is a field and R/ J is finite dimensional over Z(R), then

dimZ(R)

(
Cen(ϕ)

) = [
R/ J : Z(R)

](
k1 + 3k2 + · · · + (2m − 1)km

)
.

Proof. Since dimZ(R)(N (X)/I(X))op = dimZ(R)(N (X)/I(X)), the result follows from Lemma 3.4. �
4. Further properties of the centralizers

4.1. Theorem. Let ϕ be an indecomposable (nilpotent) element of EndR(M). Then ψ ∈ Cen(ϕ) if and only if
there is an R-generating set {y j ∈ M | 1 � j � d} of R M and elements a1,a2, . . . ,an in R such that

a1 y j + a2ϕ(y j) + · · · + anϕ
n−1(y j) = ψ(y j) and

a1ϕ(y j) + a2ϕ
(
ϕ(y j)

) + · · · + anϕ
n−1(ϕ(y j)

) = ψ
(
ϕ(y j)

)

for all 1 � j � d.

Proof. If ψ ∈ Cen(ϕ), then the first identity implies the second one. Proposition 2.3 ensures the
existence of a nilpotent Jordan normal base {xi | 1 � i � n} of R M with respect to ϕ consist-
ing of one block. Clearly,

⊕
1�i�n Rxi = M implies that ψ(x1) = a1x1 + a2x2 + · · · + anxn = a1x1 +

a2ϕ(x1) + · · · + anϕ
n−1(x1) for some a1,a2, . . . ,an ∈ R . Thus ψ(xi) = ψ(ϕ i−1(x1)) = ϕ i−1(ψ(x1)) =

ϕ i−1(a1x1 + a2ϕ(x1) + · · · + anϕ
n−1(x1)) = a1ϕ

i−1(x1) + a2ϕ(ϕ i−1(x1)) + · · · + anϕ
n−1(ϕ i−1(x1)) =

a1xi + a2ϕ(xi) + · · · + anϕ
n−1(xi) for all 1 � i � n.

Conversely, we have ϕ(ψ(y j)) = ϕ(a1 y j + a2ϕ(y j) + · · · + anϕ
n−1(y j)) = a1ϕ(y j) + a2ϕ(ϕ(y j)) +

· · · + anϕ
n−1(ϕ(y j)) = ψ(ϕ(y j)) for all 1 � j � d. Thus ϕ ◦ ψ = ψ ◦ ϕ . �

4.2. Corollary. If in addition R is commutative, then ψ ∈ Cen(ϕ) if and only if there are a1,a2, . . . ,an ∈ R
such that a1u + a2ϕ(u) + · · · + anϕ

n−1(u) = ψ(u) for all u ∈ M, in other words, ψ is a polynomial of ϕ .

4.3. Theorem. Let R be a local ring and σ ∈ EndR(M). Then Cen(ϕ) ⊆ Cen(σ ) if and only if there is an
R-generating set {y j ∈ M | 1 � j � d} of R M and there are elements a1,a2, . . . ,an in R such that

a1ψ(y j) + a2ϕ
(
ψ(y j)

) + · · · + anϕ
n−1(ψ(y j)

) = σ
(
ψ(y j)

)

for all 1 � j � d and all ψ ∈ Cen(ϕ).
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Proof. If Cen(ϕ) ⊆ Cen(σ ), then a1 y j + a2ϕ(y j) + · · · + anϕ
n−1(y j) = σ(y j) implies that a1ψ(y j) +

a2ϕ(ψ(y j)) + · · · + anϕ
n−1(ψ(y j)) = σ(ψ(y j)) for all ψ ∈ Cen(ϕ). For any δ ∈ Γ we have εδ ∈

Cen(ϕ) ⊆ Cen(σ ), where εδ : M → N ′
δ is the natural projection corresponding to the direct sum

M = N ′
δ ⊕ N ′′

δ , with

N ′
δ =

⊕
1�i�kδ

Rxδ,i and N ′′
δ =

⊕
γ ∈Γ \{δ},1�i�kγ

Rxγ ,i .

Thus σ : im(εδ) → im(εδ) and so σ(xδ,1) = ∑
1�i�kδ

aδ,i xδ,i = hδ(z) ∗ xδ,1 for some hδ(z) = aδ,1 +
aδ,2z + · · · + aδ,kδ

zkδ−1 in R[z]. Since ϕ ∈ Cen(σ ) implies that σ ∈ Cen(ϕ), it follows that σ(Φ(f)) =∑
γ ∈Γ σ ( fγ (z) ∗ xγ ,1) = ∑

γ ∈Γ fγ (z) ∗ σ(xγ ,1) = ∑
γ ∈Γ fγ (z) ∗ (hγ (z) ∗ xγ ,1) = ∑

γ ∈Γ ( fγ (z)hγ (z)) ∗
xγ ,1 = Φ(fH), where f ∈ (R[z])Γ and H = ∑

γ ∈Γ hγ (z)Eγ ,γ is a diagonal matrix in M(X) (H ∈ M(X)

is a consequence of σ(Φ(f)) = Φ(fH)). By Theorem 3.9, the containment Cen(ϕ) ⊆ Cen(σ ) is equiv-
alent to the condition that σ ◦ ψP = ψP ◦ σ for all P ∈ M(X). As a consequence, we obtain that
Cen(ϕ) ⊆ Cen(σ ) is equivalent to Φ(fPH) = σ(Φ(fP)) = σ(ψP(Φ(f))) = ψP(σ (Φ(f))) = ψP(Φ(fH)) =
Φ(fHP) for all f ∈ (R[z])Γ and P ∈ M(X). Thus Cen(ϕ) ⊆ Cen(σ ) implies Φ(f(PH − HP)) = 0 or
f(PH − HP) ∈ ker(Φ). Take e = (1)γ ∈Γ and E1,δ ∈ N (X) by Remark 3.2. Then the δ-coordinate of
e(E1,δH − HE1,δ) = (hδ(z) − h1(z))eE1,δ ∈ ker(Φ) is hδ(z) − h1(z). Since R is local, P = E1,δ ∈ M(X) by
the last part of Lemma 3.3. Now Proposition 3.1 gives that hδ(z) − h1(z) ∈ J [z] + (zkδ ). Thus σ(xδ,1) =
hδ(z) ∗ xδ,1 = h1(z) ∗ xδ,1 for all δ ∈ Γ . It follows that σ(xγ ,i) = σ(ϕ i−1(xγ ,1)) = ϕ i−1(σ (xγ ,1)) =
ϕ i−1(h1(z) ∗ xγ ,1) = h1(z) ∗ ϕ i−1(xγ ,1) = h1(z) ∗ xγ ,i = a1xγ ,i + a2ϕ(xγ ,i) + · · · + anϕ

n−1(xγ ,i), where
h1(z) = a1 + a2z + · · · + anzn−1.

Conversely, 1M ∈ Cen(ϕ) gives a1 y j + a2ϕ(y j) + · · · + anϕ
n−1(y j) = σ(y j) for all 1 � j � d. Then

ψ(σ (y j)) = a1ψ(y j)+a2ϕ(ψ(y j))+· · ·+anϕ
n−1(ψ(y j)) = σ(ψ(y j)) for all ψ ∈ Cen(ϕ) and 1 � j � d.

Thus ψ ◦ σ = σ ◦ ψ and so Cen(ϕ) ⊆ Cen(σ ). �
4.4. Corollary. If in addition R is commutative, then Cen(ϕ) ⊆ Cen(σ ) if and only if there are a1,a2, . . . ,an ∈
R such that a1u + a2ϕ(u) + · · · + anϕ

n−1(u) = σ(u) for all u ∈ M, in other words, σ is a polynomial of ϕ .

4.5. Remark. Since Cen(ϕ) ⊆ Cen(σ ) is equivalent to σ ∈ Cen(Cen(ϕ)), we may consider Theorem 4.3
as some kind of double centralizer theorem.

5. The centralizer of an arbitrary linear map

If K is an algebraically closed field and {λ1, λ2, . . . , λr} is the set of all eigenvalues of A ∈ Mn(K ),
then Cen(A) is isomorphic to the direct product of the centralizers Cen(Ai), where Ai denotes the
block diagonal matrix consisting of all Jordan blocks of A having eigenvalue λi in the diagonal. The
number of the diagonal blocks in Ai is dim(ker(Ai − λi I i)), and the size of Ai is di × di , where di is
the multiplicity of the root λi in the characteristic polynomial of A. Since Cen(Ai) = Cen(Ai − λi I i)

and Ai − λi I i is nilpotent in Mdi (K ), we shall consider the case of a nilpotent matrix.

5.1. Theorem. If A ∈ Md(K ) is nilpotent of index n, then Cen(A)/ J (Cen(A)) ∼= Mq1 (K ) ⊕ · · · ⊕ Mqn (K ),
where qe is the number of elementary Jordan matrices of size e × e and Mqe (K ) = {0} if qe = 0. The index of
nilpotency of J (Cen(A)) is bounded from above by nv, where v is the number of different sizes.

Proof. Now A ∈ EndK (K d) has a nilpotent Jordan normal base X in K d with block sizes n = k1 �
k2 � · · · � km � 1, and Theorem 3.11 gives an isomorphism Cen(A) ∼= N op(X)/I(X) of K -algebras. Let
Ti = K [z]/(zki ), and to minimize the “noise” in the matrix below, we use z instead of z + (zki ) in Ti

for the K -algebra
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CA =

⎡
⎢⎢⎢⎢⎣

T1 zk1−k2 T1 · · · · · · zk1−km T1
T2 T2 zk2−k3 T2 · · · zk2−km T2
...

...
. . .

. . .
...

Tm−1 Tm−1 · · · Tm−1 zkm−1−km Tm−1
Tm Tm · · · Tm Tm

⎤
⎥⎥⎥⎥⎦ .

Thus the map P + I(X) �→ [pi, j(z) + (zk j )]� is well defined and provides an N op(X)/I(X) → CA
isomorphism of K -algebras, where P = [pi, j(z)] is in N (X) and � denotes the transpose. Recall that
the Jacobson radical of a finite dimensional algebra is equal to the maximal nilpotent ideal of the
algebra. The K [z]-module

TA =

⎡
⎢⎢⎣

T1 T1 · · · T1
T2 T2 · · · T2
...

...
. . .

...

Tm Tm · · · Tm

⎤
⎥⎥⎦

satisfies zk1 TA = {0}. The intersection I = zTA ∩ CA is an ideal of CA and In = Ik1 = {0}, thus I ⊆
J (CA). We obtain that CA/I is a lower block triangular matrix algebra with diagonal blocks of size

qt1 × qt1 ,qt2 × qt2 , . . . ,qtv × qtv , where k1 = t1 > t2 > · · · > tv = km � 1 are the different block sizes
(the strictly decreasing sequence of the different ki ’s) appearing in X . The strictly lower triangular
part

⎡
⎢⎢⎢⎣

0 0 · · · 0
Mqt2 ×qt1

(K ) 0 · · · 0
...

. . .
. . .

...

Mqtv ×qt1
(K ) · · · Mqtv ×qtv−1

(K ) 0

⎤
⎥⎥⎥⎦

of CA/I is nilpotent of index v and is equal to the radical of CA/I . Consequently, ( J (CA)v)n ⊆ In =
{0} and the index of nilpotency of J (CA) is bounded by nv . Clearly, CA/ J (CA) ∼= Mqt1

(K ) ⊕ · · · ⊕
Mqtv

(K ). �
Note that the form of the centralizer CA in Theorem 5.1 is a classically known object that can be

found, for instance, in [2, Chapter VIII, §2, pp. 220–224] or in [8]. Hence Theorem 5.1 could have been
observed without the results of this paper, even if it is a by-product of our general approach.

Recall that the PI-degree PIdeg(S) of a PI-algebra S is equal to the maximum p such that the
multilinear polynomial identities of S follow from the multilinear polynomial identities of M p(K ).

5.2. Corollary. Let A be an n ×n matrix over an algebraically closed field K and let p be the maximum number
of equal elementary Jordan matrices in the canonical Jordan form of A over the algebraic closure of K . Then
PIdeg(Cen(A)) = p.

Proof. For a finite dimensional K -algebra S with Jacobson radical J the PI-degree of S is equal to the
maximal size of the matrix subalgebras of S/ J . Applying Theorem 5.1 one completes the proof. �
5.3. Remark. Corollary 5.2 holds for all fields. If K is not algebraically closed, then a detailed argument
in [1] shows how the algebraic closure of K can be used.
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