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1. Introduction

The Cayley–Hamilton theorem and the corresponding trace identity play a fundamental role in

proving classical results about the polynomial and trace identities of the n × n matrix algebra Mn(K)
over a field K (see [2,3]). In case of char(K) = 0, Kemer’s pioneering work (see [5]) on the T-ideals of

associative algebras revealed the importance of the identities satisfied by the n × nmatrices over the

Grassmann (exterior) algebra

E = K
〈
v1, v2, . . . , vr, . . . | vivj + vjvi = 0 for all 1 � i � j

〉
generated by the infinite sequence of anticommutative indeterminates (vi)i�1.

For n × nmatrices over a Lie-nilpotent ring R satisfying the polynomial identity

[[[. . . [[x1, x2], x3], . . .], xm], xm+1] = 0

(with [x, y] = xy − yx), a Cayley–Hamilton identity of degree nm (with left- or right-sided scalar

coefficients) was found in [6]. Since E is Lie-nilpotent with m = 2, the above mentioned Cayley–

Hamilton identity for a matrix A ∈ Mn(E) is of degree n2.

In [1] Domokos presented a slightly modified version of this identity in which the coefficients are

invariant under the conjugationactionofGLn(K). For amatrixA ∈ M2(E)heobtained the trace identity

A4 − 2tr(A)A3 +
(
2tr2(A) − tr(A2)

)
A2 +

(
1

2
tr(A)tr(A2) + 1

2
tr(A2)tr(A) − tr3(A)

)
A

+1

4

(
tr4(A) + tr2(A2) − 5

2
tr2(A)tr(A2) + 1

2
tr(A2)tr2(A)

−2tr(A3)tr(A) + 2tr(A)tr(A3)

)
I = 0,

where I is the identity matrix and tr(A) denotes the sum of the diagonal entries of A. A similar identity

with right coefficients also holds for A. Here E can be replaced by any ring R which is Lie-nilpotent of

index 2.

The identity [x, y][x, z] = 0 is a consequence of Lie-nilpotency of index 2 (see [4]), as is obviously

[[x, y], [x, z]]=0. The first aim of the present paper is to provide an example of an algebra satisfying

[[x, y], [u, v]]=0, but neither [x, y][u, v]=0nor [[x, y], z]=0. Since the abovementioned trace iden-

tity cannot be used formatrices over such an algebra, our secondpurpose is to exhibit a new trace iden-

tity of the samekind (of degree 4 inA) for amatrixA inM2(R), whereR is any ring satisfying the identity

[[x, y], [x, z]] = 0

and 1
2

∈ R. We note that a ring satisfying [[x, y], [u, v]] = 0 is called Lie-solvable of index 2.

FromnowonwardRandS are ringswith1. InSection2weconsider the ringU∗
3(R)ofupper triangular

3 × 3 matrices with equal diagonal entries over R. First we observe that U∗
3(R) is never commutative.

We prove that if R is commutative then the algebra U∗
3(R) satisfies the identities [x, y][u, v] = 0 and

[[x, y], z] = 0. However, for a non-commutative R we show that the ring U∗
3(R) never satisfies any of

the identities [x, y][u, v] = 0 and [[x, y], z] = 0.

The main result in Section 2 states that if S satisfies the identities [x, y][u, v]=0 and [[x, y], z]=
0, then the matrix ring U∗

3(S) is Lie-solvable of index 2. It follows that if R is commutative, then

U∗
3(U

∗
3(R)) is an example of an algebra satisfying [[x, y], [u, v]] = 0, but neither [x, y][u, v] = 0 nor

[[x, y], z] = 0.

Section 3 is entirely devoted to the construction of our Cayley–Hamilton trace identity.

2. A particular Lie-solvable matrix algebra

Since

E1,2, E2,3 ∈ U∗
3(R) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
a b c

0 a d

0 0 a

⎤⎥⎥⎥⎦ | a, b, c, d ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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and E1,2E2,3 = E1,3 �= 0 = E2,3E1,2, the ring U∗
3(R) is never commutative. Any element of U∗

3(R) can
be written as aI + X , where X is strictly upper triangular. We note that XYZ = 0 for strictly upper

triangular 3 × 3 matrices. If R is commutative, then aI is central in U∗
3(R) (of course, also in M3(R)),[aI + X, bI + Y] = [X, Y] for all a, b ∈ R and so U∗

3(R) satisfies all polynomial identities in which each

summand is a product of certain (possibly iterated) commutators. For example,

[x, y][u, v] = 0 and [[x, y], z] = 0

are typical such identities for U∗
3(R). If R is non-commutative, say [r, s] �= 0 for some r, s ∈ R, then for

x = rI, y = sE1,2, u = E2,2, v = z = E2,3 in U∗
3(R) we have

[x, y][u, v] = [[x, y], z] = [r, s]E1,3 �= 0.

Theorem 2.1. If S satisfies [x, y][u, v] = 0 and [[x, y], z] = 0, then U∗
3(S) satisfies [[x, y], [u, v]] = 0.

Proof. Using the matrices

x =

⎡⎢⎢⎢⎣
a b c

0 a d

0 0 a

⎤⎥⎥⎥⎦ and y =

⎡⎢⎢⎢⎣
e f g

0 e h

0 0 e

⎤⎥⎥⎥⎦
in U∗

3(S), a straightforward calculation gives that

[x, y] =

⎡⎢⎢⎢⎣
[a, e] [a, f ] + [b, e] [a, g] + [c, e] + (bh − fd)

0 [a, e] [a, h] + [d, e]
0 0 [a, e]

⎤⎥⎥⎥⎦ = [a, e]I + C + αE1,3,

where α = bh − fd and C is a strictly upper triangular matrix with entries in [S, S] (the additive

subgroup of S generated by all commutators). Now [[a, e], s] = 0 for all s ∈ S, hence [a, e]I is central
in U∗

3(S) (also in M3(S)). Thus we have

[[x, y], [u, v]] = [[a, e]I + C + αE1,3, [a′, e′]I + C′ + α′E1,3] = [C + αE1,3, C
′ + α′E1,3] = 0

because of (C + αE1,3)(C
′ + α′E1,3) = (C′ + α′E1,3)(C + αE1,3) = 0. Indeed, CC′ = C′C = 0 is

a consequence of C, C′ ∈ M3([S, S]) and of [x, y][u, v] = 0 in S, and CE1,3 = E1,3C = C′E1,3 =
E1,3C

′ = 0 follows from the fact that C and C′ are strictly upper triangular. �

Corollary 2.2. If R is commutative, then the algebra U∗
3(U

∗
3(R)) satisfies [[x, y], [u, v]] = 0, but neither

[x, y][u, v] = 0 nor [[x, y], z] = 0.

3. Matrices with commutator entries

The following can be considered as the “real” 2 × 2 Cayley–Hamilton trace identity.

Proposition 3.1. If 1
2

∈ R and A = [aij] ∈ M2(R), then

A2−tr(A)A + 1

2
(tr2(A)−tr(A2))I=

⎡⎣ 1
2
[a11,a22]+ 1

2
[a12,a21] [a12, a22]

[a21, a11] − 1
2
[a11,a22]− 1

2
[a12,a21]

⎤⎦ .

Proof. A straightforward computation suffices. �

Corollary 3.2. If 1
2

∈ R and B = [bij] ∈ M2(R) with tr(B) = 0, then

B2 − 1

2
tr(B2)I =

⎡⎣ 1
2
[b12, b21] −[b12, b11]
[b21, b11] − 1

2
[b12, b21]

⎤⎦ .
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Proof. Since b22 = −b11, we have [b11, b22] = 0 and [b12, b22] = −[b12, b11]. Thus the formula in

Proposition 3.1 immediately gives the identity for B. �

Theorem 3.3. If 1
2

∈ R and R satisfies [[x, y], [x, z]] = 0, then(
C2 − 1

2
tr(C2)I

)2

− 1

2
tr

((
C2 − 1

2
tr(C2)I

)2
)
I = 0

for all C ∈ M2(R) with tr(C) = 0.

Proof. Take C = [cij]. In view of Corollary 3.2 we have

C2 − 1

2
tr(C2)I =

⎡⎣ 1
2
[c12, c21] −[c12, c11]
[c21, c11] − 1

2
[c12, c21]

⎤⎦ .

Since tr(C2 − 1
2
tr(C2)I) = 0, the repeated application of Corollary 3.2 to B = C2 − 1

2
tr(C2)I gives that(

C2 − 1

2
tr(C2)I

)2

− 1

2
tr

(
(C2 − 1

2
tr(C2)I)2

)
I

= 1

2

⎡⎣ −[[c12, c11], [c21, c11]] [[c12, c11], [c12, c21]]
[[c21, c11], [c12, c21]] [[c12, c11], [c21, c11]]

⎤⎦ .

Now we have

[[c12, c11], [c21, c11]] = [[c11, c12], [c11, c21]]
and

[[c21, c11], [c12, c21]] = −[[c21, c11], [c21, c12]].
Thus each entry of the above 2× 2 matrix is of the form ±[[x, y], [x, z]] = 0 and the desired identity

follows. �

In Corollaries 3.4 and 3.5 we assume that 1
2

∈ R and R satisfies [[x, y], [x, z]] = 0.

Corollary 3.4. If C ∈ M2(R) with tr(C) = tr(C2) = tr(C4) = 0, then C4 = 0.

Proof. Expanding the left hand side of the identity in Theorem 3.3, we get

C4 − 1

2
tr(C2)C2 − 1

2
C2tr(C2) + 1

2

(
tr2(C2) − tr(C4)

)
I = 0,

whose all terms but C4 contain a factor tr(C2) or tr(C4). �

Corollary 3.5. If 1
2

∈ R and R is a ring satisfying [[x, y], [x, z]] = 0, then for all A ∈ M2(R) we have

A4 − 1

2
A2tr(A)A − 1

2
Atr(A)A2 − 1

2
A3tr(A) − 1

2
tr(A)A3 + 1

2
A2tr2(A) + 1

2
tr2(A)A2

− 1

2
A2tr(A2) − 1

2
tr(A2)A2 + 1

4
Atr(A)Atr(A) + 1

4
tr(A)Atr(A)A
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+ 1

4
tr(A)A2tr(A) + 1

4
Atr2(A)A − 1

4
tr(A)Atr2(A) − 1

4
tr2(A)Atr(A)

+ 1

4
tr(A)Atr(A2) + 1

4
tr(A2)Atr(A) − 1

4
Atr3(A) − 1

4
tr3(A)A

+ 1

4
Atr(A)tr(A2) + 1

4
tr(A2)tr(A)A − 1

2
tr2(A)tr(A2)I − 1

2
tr(A2)tr2(A)I

+ 1

2
tr2(A2)I+ 1

4
tr

(
A2tr(A)A

)
I+ 1

4
tr(Atr(A)A2)I+ 1

4
tr(A3)tr(A)I+ 1

4
tr(A)tr(A3)I

− 1

8
tr(A)tr(Atr(A)A)I−1

8
tr(Atr(A)A)tr(A)I−1

8
tr(Atr2(A)A)I−1

8
tr(A)tr(A2)tr(A)I

+ 1

2
tr4(A)I − 1

2
tr(A4)I = 0.

Proof. Apply Theorem 3.3 for C = A − 1
2
tr(A)I; using linearity of tr(−), we get the identity

above. �

Wenote that the trace identity in Corollary 3.5 is different from the trace identity given byDomokos

[1] in the following respect: in the latter in each term a power of A is multiplied from the left by a trace

expression, whereas in our identity terms like A2tr(A)A appear.

Throughout this section we have used the identity [[x, y], [x, z]] = 0. The referee pointed out that

this identity implies the “seemingly stronger” identity [[x, y], [u, v]] = 0 of Lie solvability, which

plays an important role in Section 2.

Startingwith amatrix C ∈ M2(R) such that tr(C) = 0, define the sequence (Ck)k�0 by the following

recursion: C0 = C and

Ck+1 = C2
k − 1

2
tr(C2

k )I.

Clearly, tr(Ck) = 0 for all k � 0 and Ck is a trace polynomial expression of C. In view of Corollary 3.2,

the entries of C1 are of the form [x1, x2]. The repeated application of Corollary 3.2 (as it can be seen in

the proof of Theorem 3.3) and a straightforward induction show that the (four) entries of Ck are all of

the form [x1, x2, . . . , x2k ]solv, where [x1, x2]solv = [x1, x2] and for i � 1 we take the Lie brackets as

[x1, x2, . . . , x2i+1 ]solv = [[x1, x2, . . . , x2i ]solv, [x2i+1, x2i+2, . . . , x2i+2i ]solv].
If R satisfies the general identity

[x1, x2, . . . , x2k ]solv = 0

of Lie solvability, then Ck = 0, whence we can derive a trace identity for C. Thus the substitution

C = A − 1
2
tr(A)I gives a trace identity for an arbitrary A ∈ M2(R).
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