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ABSTRACT

Let A be a set and f : A → A a bijective function. Necessary and su�cient
conditions on f are determined which makes it possible to endow A with a
binary operation ∗ such that (A, ∗) is a cyclic group and f ∈ Aut(A). This result

is extended to all abelian groups in case |A| = p2, p a prime. Finally, in case
A is countably in�nite, those f for which it is possible to turn A into a group
(A, ∗) isomorphic to Z

n for some n ≥ 1, and with f ∈ Aut(A), are completely
characterized.
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1. Introduction

The question on which functions from a set to itself (selfmaps) appear as functions with a certain
structural property has been addressed by various authors. In particular, in [3] and [6] those selfmaps
which appear as lattice endomorphisms or lattice anti-endomorphisms have been characterized. In [2] a
similar study was done for infra-endomorphisms of the groupsZn andDn. In this paper we characterize
those selfmaps that appear as automorphisms of certain abelian groups, namely the cyclic groups, the
group Zp × Zp, p prime, and the group Zn for some n ≥ 1.

For a given set A, let us agree to say that a bijection f : A → A has the auto-property if it is possible
to �nd a binary operation ∗ on A such that (A, ∗) is an abelian group and f ∈ Aut(A).

If A is �nite, such an f necessarily gives rise to cycles, i.e., (disjoint) �nite sequences a1, a2, . . . , am
from A such that f (ai) = ai+1 for 1 ≤ i ≤ m − 1 and f (am) = a1. Every element of A belongs to some
cycle. The number of elements in a cycle is its length. So a �xed point of f is a cycle of length 1. The cycle
structure of f is a description of how many cycles of each length f has. A convenient notation for this
structure will be developed and used in Section 2.

On the other hand, if A is in�nite, then, apart from possible cycles, there is also the possibility of f
having chains, i.e., in�nite sequences . . . , ai, ai+1, ai+2, . . . from A such that f (ai) = ai+1 for all i. The
number of cycles of various lengths, as well as the number of chains, will be referred to simply as the
structure of f . This in�nite case will be discussed in Section 3.

2. Cyclic groups and groups of order p2, p prime

For this section, we always assume that A is a �nite set and that f : A → A is a bijection.
If f has ci cycles of length ti (1 ≤ i ≤ k), then we say f has the cycle structure

[ c1 c2 ··· ck
t1 t2 ··· tk

]

, where, for
consistency, we always take t1 > t2 > · · · > tk. We stress that it is possible that some ci could be 0, and

CONTACT J. H. Meyer meyerjh@ufs.ac.za Department of Mathematics and Applied Mathematics, University of the Free State,
P.O. Box 339, Bloemfontein 9300, South Africa.
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468 B.-E. DE KLERK ET AL.

these columns can just as well be omitted from the array. Also note that
∑k

i=1 citi = |A|, and that the
identity map has cycle structure

[

|A|
1

]

.
It is evident that if we want to investigate the conditions f has to satisfy to have the auto-property,

then it su�ces to �nd the cycle structures of all possible automorphisms on all abelian groups of order
|A|. These cycle structures completely determine all those f having the auto-property.

We begin by doing this for cyclic groups.
We determine all possible cycle structures of automorphisms f : Zn → Zn, for the additive (cyclic)

group Zn = {0, 1, . . . , n − 1}.
For the ring Zn = {0, 1, . . . , n− 1}, consider the group of units Un = {k1, k2, . . . , kφ(n)} = {k ∈ Zn :

(k, n) = 1} (where we take k1 = 1). Let Tn = (Zn \ Un) \ {0} and for z ∈ Tn, put z
′ = n

(z,n) .

Let f : Zn → Zn be an automorphism. Then f (1) ∈ Un, otherwise, if f (1) = z ∈ Tn, then f (z′) =

0 = f (0), a contradiction. If f (1) = 1 = k1, then f is the identity map.

Let 2 ≤ i ≤ φ(n), and assume that f (1) = ki. Then 1, ki, k
2
i , . . . , k

ℓi−1
i is a cycle of length ℓi = ordn(ki)

(the least x ∈ N such that kxi ≡ 1(mod n)), and consisting exactly of the elements of the subgroup 〈ki〉

of Un. If 〈ki〉 6= Un, choose any kj ∈ Un \ 〈ki〉. Then kj, kjki, kjk
2
i , . . . , kjk

ℓi−1
i is another cycle of length

ℓi, consisting exactly of the coset kj〈ki〉 of 〈ki〉 in Un. Continuing in this manner, we obtain [Un : 〈ki〉]
cycles of this type, exhausting all the elements of Un.

Now consider any z ∈ Tn. Then the cycle z, zki, zk
2
i , . . . , zk

λ−1
i is obtained, where the length of

the cycle is the least λ ∈ N such that n | z(kλi − 1). This means that λ = ordz′(ki). Note that λ|ℓi.
Also note that each member of this cycle is in Tn. Other elements of Tn, not in this cycle, might
give rise to cycles of the same length λ. Hence, the total number of cycles of length λ is given by
1
λ

|{z ∈ Tn : ordz′(ki) = λ}| =: Li,λ. Finally, cycles of length 1 obtained in this way exclude the �xed
point 0, so that there are |{z ∈ Tn : ordz′(ki) = 1}| + 1 cycles of length 1.

Hence we have one direction of the following theorem:

Theorem 2.1. Let |A| = n and let f : A → A be a bijection. Then there exists a binary operation ∗ on A
such that (A, ∗) is a cyclic group and f ∈ Aut(A) if and only if either f is the identity map, or there is an
i, 2 ≤ i ≤ φ(n), such that f has the cycle structure

[

[Un : 〈ki〉] + Li,ℓi Li,λ1 · · · Li,λt Li,1 + 1

ℓi λ1 · · · λt 1

]

,

where ℓi > λ1 > · · · > λt > 1 denotes the complete list of (positive) divisors of ℓi = ordn(ki).

Proof. It remains to show how to turn A into a cyclic group with f ∈ Aut(A), given that f has one of the
cycle structures mentioned in the statement of the theorem, say for i0, where 2 ≤ i0 ≤ φ(n).

First, we observe that there is indeed an automorphism hi0 : Zn → Zn, namely the one induced by
hi0(1) = ki0 , that has the same cycle structure as f .

We can then turn to the so-called structural graph of f . Let G = (V ,E) be a directed graph with
|V| = n and ρ : A → V a bijection. Then G is called a structural graph of f if (u, v) ∈ E ⇔ (∃a ∈ A :
u = ρ(a) ∧ v = ρ(f (a))). ρ is called a graph projection of f .

Since f and hi0 have exactly the same cycle structure, we see that the structural graphs of f and hi0 are
isomorphic (as graphs). One can use this isomorphism to endow A with a cyclic group structure such
that f is a group automorphism.

In particular, let ρf and ρhi0 be graph projections of f and hi0 , respectively, and let ψ be a graph

isomorphism from the codomain of ρf to the codomain of ρhi0 . De�ne η : A → Zn by η = ρ−1
hi0
ψρf .

Then it is routine to check that (A, ∗) is a cyclic group, where α ∗β = η−1(η(α)+η(β)) for all α,β ∈ A.
The identity is 1A = η−1(0). It is also routine to check that f ∈ Aut(A).
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COMMUNICATIONS IN ALGEBRA® 469

Corollary 2.2. If |A| = n, then there are at most φ(n) cycle structures for a bijection f : A → A that will
turn A into a cyclic group, with f ∈ Aut(A).

Proof. Apart from the identity map, the possible cycle structures of automorphisms are determined by
2 ≤ i ≤ φ(n). But note that distinct i’s could give rise to the same cycle structure of an automorphism.

Example 2.3. (a) If |A| = p, where p is a prime, then f : A → A has the auto-property if and only if it

has the cycle structure
[

d 1
p−1
d 1

]

for some divisor d of p− 1. (Note that in case d = p− 1, we get that
[

d 1
p−1
d 1

]

=
[ p
1

]

, representing the identity map.)

(b) Let |A| = 12. Then U12 = {1, 5, 7, 11}, so that (k1, k2, k3, k4) = (1, 5, 7, 11). Then we have
ℓ2 = ord12(5) = 2. L2,1 = |{3, 6, 9}| = 3, L2,2 = 1

2 · |{2, 4, 8, 10}| = 2. This gives the cycle

structure
[

[U12:〈5〉]+L2,2 L2,1+1
2 1

]

=
[

4 4
2 1

]

.

Similarly, for ℓ3 = 2 we obtain the cycle structure
[

3 6
2 1

]

and for ℓ4 = ℓφ(12) = 2 we obtain the
cycle structure

[

5 2
2 1

]

.
Hence, A can be turned into a cyclic group with f ∈ Aut(A) if and only if f is the identity map, or

f has one of the three cycle structures above.
(c) Let |A| = p2, with p prime. Then z′ = p for all z ∈ Tp2 = {p, 2p, . . . , (p − 1)p}. This implies that

Li,λ =
1

λ

∣

∣

∣
{z ∈ Tp2 : ordp(ki) = λ}

∣

∣

∣
=











p − 1

λ
if ordp(ki) = λ,

0 otherwise

for every divisor λ of ℓi = ordp2(ki), where 2 ≤ i ≤ p2 − p.
For instance, if p = 3, then (k1, k2, . . . , k6) = (1, 2, 4, 5, 7, 8). For i = 2we have ℓ2 = ord9(2) = 6,

and since ord3(2) = 2, it follows that L2,2 = 2
2 = 1 and L2,1 = L2,3 = L2,6 = 0. Also, since k2 = 2

is a generator of the group U9, [U9 : 〈2〉] = [U9 : U9] = 1. So (for the case i = 2) we obtain, by
Theorem 2.1, the cycle structure

[

1 0 1 1
6 3 2 1

]

=
[

1 1 1
6 2 1

]

.
Similarly, for i = 3 we get the cycle structure

[

2 3
3 1

]

, for i = 4 we get
[

1 1 1
6 2 1

]

, for i = 5 we get
[

2 3
3 1

]

, and �nally, for i = 6 = φ(9) we get
[

4 1
2 1

]

.
Consequently, if |A| = 9, it can be turned into a cyclic group with f ∈ Aut(A) if and only if

f has one of the cycle structures
[

1 1 1
6 2 1

]

,
[

2 3
3 1

]

,
[

4 1
2 1

]

or
[

9
1

]

(the identity). Note that other cycle
structures are indeed possible in the non-cyclic case (see Theorem 2.5).

We now turn our attention to the case |A| = p2, p prime, and completely determine when f has the
auto-property in this case. Theorem 2.1 takes care of the case when A is cyclic. We will therefore focus
here only on the groupZ2

p = Zp×Zp, with Aut(Zp×Zp) ∼= GL2(Zp). Our aim is to determine the cycle

structures of all the elements of GL2(Zp), when acting on the elements of Z2
p.

We recall that conjugate permutations have the same cycle structures, and we formalize this in

Lemma 2.4. If F is a �nite �eld, and A,B ∈ GL2(F) are similar, then they determine the same cycle
structure on the group F2.

Henceforth, for α in the �nite �eld F, we use the notation o+(α) for the (additive) order of α ∈ F and
we use o×(α) for the (multiplicative) order of α ∈ F∗.

In [1] it is given that there exist elements of order d in GL2(Zp), for any d that divides p
2 − 1, as well

as of order pd for any d | p − 1. Furthermore, by virtue of Lemma 2.4, we only have to study the Jordan
normal forms of the matrices in GL2(Zp). We do it by considering three cases:
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470 B.-E. DE KLERK ET AL.

I. Here, we only consider those matrices A in GL2(Zp) having Jordan normal form
(

α1 0
0 α2

)

, where
α1,α2 ∈ Up. The order of such an A is d, where d | p − 1.

First, if α1 = α2 = α (say), with o×(α) = d, then A =
(

α 0
0 α

)

has
p2−1
d cycles of the form

(

x
y

)

,

(

αx
αy

)

, . . . ,

(

αd−1x

αd−1y

)

,

each of length d and where x, y ∈ Zp, not both 0.
Second, let α1 6= α2, with o

×(α1) = d1 and o
×(α2) = d2, where d1 and d2 are divisors of p− 1.

Here, A =
(

α1 0
0 α2

)

has
p−1
d1

cycles of the form

(

x
0

)

,

(

α1x
0

)

, . . . ,

(

α
d1−1
1 x
0

)

,

each of length d1, where x ∈ Up;
p−1
d2

cycles of the form

(

0
y

)

,

(

0
α2y

)

, . . . ,

(

0

α
d2−1
2 y

)

,

each of length d2, where y ∈ Up;
(p−1)2

lcm(d1,d2)
cycles of the form

(

x
y

)

,

(

α1x
α2y

)

, . . . ,

(

αK−1
1 x

αK−1
2 y

)

,

each of length K = lcm(d1, d2), where x, y ∈ Up.
II. Now we consider those A ∈ GL2(Zp) with Jordan normal form

(

α 1
0 α

)

, where α ∈ Up. The order
of A is pd, where d = o×(α) is a divisor of p − 1, and for any d | p − 1, there exists such an A.

Then A has
p−1
d cycles of the form

(

x
0

)

,

(

αx
0

)

, . . . ,

(

αd−1x
0

)

,

each of length d, where x ∈ Up;

A has
p−1
d cycles of the form
(

x
y

)

,

(

αx + y
αy

)

, . . . ,

(

αkx + kαk−1y

αky

)

, . . . ,

(

αpd−1x + (pd − 1)αpd−2y

αpd−1y

)

,

each of length pd, where x, y ∈ Zp, with y 6= 0. (Note that o+(dαpd−1y) = p.)

III. The only remaining case is where A ∈ GL2(Zp) has Jordan normal form Ã =
(

β 0

0 β

)

, where

β ,β ∈ Zp(β), a quadratic �eld extension of Zp (and β and β are conjugate roots of an irreducible
quadratic polynomial over Zp). For any d such that d | p2 − 1 but d ∤ p − 1, there exists such an A

(and hence Ã) having order d.
It follows that all cycles in Zp(β)

2, except the trivial one
(

0
0

)

, have length d. Note that the orbit

of Ã on
( x
y

)

, for x, y ∈ Zp(β), not both 0, is given by

(

x
y

)

,

(

βx

βy

)

,

(

β2x

β
2
y

)

, . . . ,

(

βd−1x

β
d−1

y

)

,
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COMMUNICATIONS IN ALGEBRA® 471

of length d, since o×(β) = o×(β) = d. Hence, by Lemma 2.4, all nontrivial cycles of A in Z2
p

also have length d.
We are now ready to characterize all automorphisms of Z2

p.

Theorem 2.5. Let |A| = p2 where p is prime, and let f : A → A be a bijection. Then A can be turned into
a group isomorphic to Z2

p, with f ∈ Aut(Z2
p), if and only if f is the identity map, or f has any one of the

following cycle structures:

(a)
[

p2−1
d 1

d 1

]

for some divisor d of p2 − 1;

(b)
[ p−1

d
p−1
d 1

pd d 1

]

for some divisor d of p − 1;

(c)

[

(p−1)2

lcm(d1,d2)

p−1
d1

p−1
d2

1

lcm(d1,d2) d1 d2 1

]

for divisors d1 and d2 of p − 1.

Proof. From case III in the discussion preceding the theorem, an automorphism f with cycle structure
[

1 1
p2−1 1

]

exists. By letting d vary over all divisors of p2 − 1, and by considering the corresponding

automorphisms f d (f composed with itself d times), we obtain all the possible cycle structures given
in (a). The cycle structures in (b) and (c) follow from cases II and I, respectively. Also note that, if it
happens that d1 = d2 = d in (c), where d | p−1, then the cycle structure in (a) is obtained. In particular,
d1 = d2 = 1 gives the identity map.

Example 2.6. Let p = 7. The divisors of p2 − 1 = 48 that are not divisors of p − 1 = 6, are given by
d ∈ {4, 8, 12, 16, 24, 48}. For these divisors we obtain, fromTheorem 2.5(a), the following corresponding
cycle structures:

[

12 1
4 1

]

,

[

6 1
8 1

]

,

[

4 1
12 1

]

,

[

3 1
16 1

]

,

[

2 1
24 1

]

,

[

1 1
48 1

]

.

The divisors of p− 1 = 6 are d ∈ {1, 2, 3, 6}, so Theorem 2.5(b) gives the corresponding cycle structures
[

6 6 1
7 1 1

]

=

[

6 7
7 1

]

,

[

3 3 1
14 2 1

]

,

[

2 2 1
21 3 1

]

,

[

1 1 1
42 6 1

]

.

Finally, for the remaining cases, we consider Theorem 2.5(c), where we take d1, d2 ∈ {1, 2, 3, 6} and
we may assume that 1 ≤ d1 ≤ d2 ≤ 6. We obtain the cycles

[

36 6 6 1
1 1 1 1

]

=

[

49
1

]

,

[

18 6 3 1
2 1 2 1

]

=

[

21 7
2 1

]

,

[

12 6 2 1
3 1 3 1

]

=

[

14 7
3 1

]

,

[

6 6 1 1
6 1 6 1

]

=

[

7 7
6 1

]

,

[

18 3 3 1
2 2 2 1

]

=

[

24 1
2 1

]

,

[

6 3 2 1
6 2 3 1

]

=

[

6 2 3 1
6 3 2 1

]

,

[

6 3 1 1
6 2 6 1

]

=

[

7 3 1
6 2 1

]

,

[

12 2 2 1
3 3 3 1

]

=

[

16 1
3 1

]

,

[

6 2 1 1
6 3 6 1

]

=

[

7 2 1
6 3 1

]

,

[

6 1 1 1
6 6 6 1

]

=

[

8 1
6 1

]

.

Consequently, if |A| = 49, then A can be made into a group isomorphic to Z2
7, with f ∈ Aut(Z2

7), if
and only if f has one of the 20 cycle structures shown here.

One immediately raises the question of how the cycle structures of automorphisms on Zp2 relate to
the cycle structures of automorphisms on Zp × Zp. It turns out that the former forms a subset of the
latter.
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472 B.-E. DE KLERK ET AL.

Theorem 2.7. Let |A| = p2, with p prime, and let f : A → A be a bijection. Then f has the auto-property
if and only if f has one of the cycle structures of an automorphism of Z2

p, given by Theorem 2.5.

Proof. It su�ces to show that every cycle structure that appears in Example 2.3(c), also appears in
Theorem 2.5. For the parameters ℓi = ordp2(ki), 2 ≤ i ≤ p2 − p, and λ = ordp(ki), we have ℓi | φ(p2)
and λ | φ(p) (see [4, Theorem 2.14]), and λ | ℓi (see Example 2.3(c)). So we have the two possibilities:

1. ℓi = λ. This gives the cycle structure
[

p2−p
λ

+
p−1
λ

1
λ 1

]

=
[

p2−1
λ

1
λ 1

]

, which agrees with the cycle structure

of Theorem 2.5(c) with d1 = d2 = λ.

2. ℓi = pλ. This gives the cycle structure

[

p2−p
pλ

p−1
λ

1

pλ λ 1

]

=
[ p−1

λ

p−1
λ

1
pλ λ 1

]

, which agrees with the cycle

structure of Theorem 2.5(b) with d = λ.

A natural question iswhether this result holds in amore general setting, i.e., whether, for a given prime
p and an integer n ≥ 2, the cycle structures of the automorphisms ofZn

p already contain all possible cycle
structures of all abelian groups of order pn. This is unfortunately not the case, as the next example shows:

Example 2.8. The group Z8 has an automorphism of which the cycle structure is di�erent from that of
all automorphisms of Z3

2.

Proof. Consider f : Z8 → Z8 de�ned by f (x) = −x. The cycle structure of f is
[

2 3
1 2

]

. Assume that there

is an automorphism g of Z3
2 which has the same cycle structure.

Consider the Jordan canonical form of g. Then g has minimal polynomial (x+ 1)2 since all elements
ofZ3

2 lie within cycles of length at most 2. The characteristic polynomial of g is therefore (x+1)3, so that
there are two blocks in Jordan form, one of size 2×2 and one of size 1×1. Consequently, the eigenspace
related to the eigenvalue−1 = 1 must be of dimension at least 2, implying that there will be at least four
elements of Z3

2 in cycles of length 1, a contradiction.

3. Groups isomorphic to Zn

Wewill now investigate the cycle structures of the automorphisms of all groups of the formZn. Wemust
clearly still have the trivial cycle of length 1, representing 0 7→ 0. From now on, we will refer to this cycle
as the zero cycle of the map. Since Z is in�nite there is the possibility of not only having (�nite) cycles
such as with the cases in Section 2, but also chains, i.e., distinct elements . . . , ai, ai+1, ai+2, . . . from A,
such that f (ai) = ai+1 for all i.

One of the major tools that we used to investigate the automorphisms of the �nite groups was the fact
that the elements of the general linear groupweremuchmore than justmatrices over rings, but they were
actually matrices over �elds, which allowed us to use the Jordan normal form to form conjugacy classes
which partitioned the general linear group. In the case of matrices over Z this cannot be done, as Z is
not a �eld. But even though we have lost the Jordan normal forms, we still have that the automorphism
group is isomorphic to GL(Z, n). These are clearly all the n× n integer matrices with determinant equal
to ±1 ([5]).

For 1 ≤ i ≤ n, ei is used to denote the element (0, . . . , 1, . . . , 0) ∈ Zn, with 1 in the i-th coordinate
and zeros elsewhere.

Proposition 3.1. Suppose f ∈ Aut(Zn) for some positive integer n. Then the following conditions must
hold:
1. If f has a cycle, apart from the zero cycle, of any length k, then f has in�nitely many cycles of length k.
2. If f has a chain, it has in�nitely many chains.
3. If all ei, i ∈ {1, 2, . . . , n} are in cycles of f , then all elements of Zn are in cycles, i.e., f has no chains.
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COMMUNICATIONS IN ALGEBRA® 473

Proof. Let the matrix representation of f beM, and represent the elements of the group Zn as columns.
1. Consider any non-zero cycle T = (x,Mx,M2x, . . . ,Mk−1x) of length k. Let ST be the (�nite)

set of all the absolute values of the non-zero components of the members of T. There exists
a (non-zero) smallest element in ST . Now, for any positive integer m, we see that mT =

(mx,M(mx),M2(mx), . . . ,Mk−1(mx)) = (mx,mMx,mM2x, . . . ,mMk−1x) is a cycle of length k,
with SmT = mST , from which it follows that the cycles mT are disjoint for di�erent m ∈ N as the
minimum components are all distinct from one another. Consequently there are in�nitely many
cycles of length k.

2. The proof is roughly the same as above. The cycle T = (x,Mx, . . . ,Mk−1x) is just replaced by the
chainT = (. . . ,M−2x,M−1x, x,Mx,M2x, . . .). Here, the existence of the smallest (non-zero) element
is guaranteed by the well-ordering principle on N.

3. Suppose all the ei are in cycles with the cycle containing ei of length ki. Any x ∈ Zn can be represented
as x =

∑n
i=1 αiei,αi ∈ Z. Denote the least common multiple of the set {kj, j ∈ {1, 2, . . . , n}} by ℓ.

Then

Mℓx =

n
∑

i=1

αiM
ℓei =

n
∑

i=1

αiei = x,

asMℓei = ei for all i = 1, 2, . . . , n. Hence x lies in a cycle of length dividing ℓ.

Proposition 3.1 tells us that if the structure of an automorphism consists of cycles only, then there is
only a �nite number of possible cycle lengths, as all cycles must be of length dividing the least common
multiple of the lengths of the cycles of the ei’s. However, it is still possible, in principle, for an in�nite
number of distinct cycle lengths to exist for an automorphism, but then some ei must lie in a chain. The
following result shows that not even this is possible.

Proposition 3.2. The structure of any automorphism of Zn possesses at most �nitely many distinct cycle
lengths.

Proof. Suppose that f has in�nitely many distinct cycle lengths. Let the matrix representation of f be
given by the n × nmatrixM.

If n = 1, then f (1) = 1 or f (1) = −1, as det(M) = ±1. The former case is simply the identity
mapping, and the latter has a cycle structure consisting of only cycles of length two, together with the
zero-cycle.

So assume that n ≥ 2 for the remainder of the proof. Let, for 1 ≤ i ≤ n,

xi =















x1i

x2i

...

xni















be any n distinct non-zero elements of Zn occurring in cycles. For each i, let the cycle length of xi be si.
Let U = [x1|x2| . . . |xn], the n× nmatrix with columns xi, i = 1, . . . , n. From Proposition 3.1 it follows
that at least one of the ei’s belongs to a chain, say it is e1. Also, let U(r, c) denote the (r, c)-minor of U.
We now consider

y =

n
∑

i=1

(−1)i−1U(1, i)xi.
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474 B.-E. DE KLERK ET AL.

For each i ∈ {2, . . . , n}, the entry in the ith row of y is clearly the determinant of the matrix


























xi1 xi2 . . . xin

x21 x22 . . . x2n

...
...

. . .
...

xi1 xi2 . . . xin

...
...

. . .
...

xn1 xn2 . . . xnn



























,

which is zero, as the ith row is identical to the �rst row. This means all the components of y, except
perhaps the �rst, are equal to zero.

In the same way we see that the �rst component of y is simply the determinant of U. By denoting the
least common multiple of {si, i ∈ {1, 2, . . . , n}} by ℓ, it is clear that

Mℓy =

n
∑

i=1

(−1)i−1U(1, i)Mℓxi

=

n
∑

i=1

(−1)i−1U(1, i)xi

= y,

which means that y belongs to a cycle. However, the element e1 lies in a chain, implying that all non-
zero elements with only their �rst components non-zero, lie in a chain. Consequently, ymust be 0, from
which it follows that det(U) = 0. This means that the columns of U are linearly dependent, and for
�xed x1, x2, . . . , xn−1, any other element z that lies in some cycle, can be expressed as z =

∑n−1
i=1 γixi,

with γi ∈ Q. Hence z must belong to a cycle having a length dividing the least common multiple of
the set {s1, s2, . . . , sn−1}. Since this holds for all z occurring in cycles, we see that the structure of any
automorphism has only �nitely many distinct cycle lengths.

Example 3.3. The structure of the automorphism on Z2 represented by M =
[

1 1
1 0

]

does not have any
non-zero cycles, hence it consists only of the zero cycle, and in�nitely many chains.

Proof. First we notice that for any positive integer n,Mn =
[

Fn+1 Fn
Fn Fn−1

]

with Fn the n-th number in the

Fibonacci sequence. Suppose that the structure ofM contains a cycle of length n ∈ N. Then there exist
a, b ∈ Z such that

aFn+1 + bFn = a,

aFn + bFn−1 = b,

which can be written as

(Fn+1 − 1)a + Fnb = 0,

Fna + (Fn−1 − 1)b = 0.

The determinant of this system is (Fn+1 − 1)(Fn−1 − 1)−F2n, which reduces to (F
2
n+1 −Fn+1Fn −F2n)+

1−(Fn+1+Fn−1). Using the identity F
2
n+1−Fn+1Fn−F2n = (−1)n, we see that the system has a non-zero

determinant, and conclude that

[

a
b

]

=

[

0
0

]

is the only solution.
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COMMUNICATIONS IN ALGEBRA® 475

De�nition 3.4. Suppose the structure of an automorphism of Zn contains a cycle of length k. Then this
cycle is called a primitive cycle of the structure if for any proper divisor d of k, there are no non-zero
cycles of length d in this structure. In this case, we call k a primitive cycle length of the structure of the
automorphism.

We shall now investigate whether for any natural number k, there exists an automorphism for which
all the non-zero cycles are of length k. In order to do so, we shall �rst take some inspiration on the
construction of cycles from larger ones. Suppose, for example, the automorphism M of Zn has a cycle
(x,Mx,M2x, . . . ,M5x) of length 6.

The cycle generated by x + M2x + M4x is (x + M2x + M4x,Mx + M3x + M5x), hence has length 1
or 2. Similarly, the cycle (x +M3x,Mx +M4x,M2x +M5x), generated by x +M3x, must have a length
that divides 3.

Note that these cycle lengths are not necessarily of lengths 2 and 3, respectively. They could also be
of length 1. At �rst it seems that this could severely restrict the possibilities on the numbers which could
be primitive cycle lengths. However, surprisingly, this result does not eventually restrict the numbers
which are primitive cycle lengths, but rather tells us how to construct automorphisms with exactly those
primitive cycle lengths. For our 6-cycle case, for example, if we can somehow �nd an invertible integer
matrixM such that I +M2 +M4 = I +M3 = 0, then the constructed elements which could have cycle
lengths of 2 and 3 will actually turn out to be the zero element, and the cycle reduces to the zero-cycle.

Example 3.5. The automorphism on Z2 with matrix representationM =
[

0 1
−1 1

]

has all of its non-zero
cycle lengths equal to 6.

Proof. We have that I + M2 + M4 = 0 and I + M3 = 0, and also that M6 = I, which means that all

cycles are of length dividing 6. Consider an arbitrary

[

x
y

]

∈ Z2. This gives the cycle

([

x
y

]

,

[

y
y − x

]

,

[

y − x
−x

]

,

[

−x
−y

]

,

[

−y
x − y

]

,

[

x − y
x

])

.

This is an explicit example of an automorphismofwhich the structure consists of the zero cycle, no chains
and all non-zero cycles of length 6, implying that 6 is a primitive length with respect to this structure.
Note that if any of these cycles were to collapse into a cycle of length less than 6, then we must have that

[

x
y

]

∈

{[

y
y − x

]

,

[

−x
−y

]

,

[

y − x
−x

]}

.

All these possibilities lead to the zero cycle.

This example also paves the way toward establishing a technique that will allow us, for any positive
integer k, the construction of an automorphism on someZn of which the structure has all of its non-zero
cycles of length k. The next theorem is the �rst step toward this goal:

Theorem 3.6. For any n > 1, let n =
∏k

i=1 p
αi
i be the prime factorization of n, where we assume that

p1 > p2 > · · · > pk. De�ne, for each i ∈ {1, . . . , k} the polynomial Qi by

Qi(λ) =

pi−1
∑

j=0

λ
n·j
pi .

Then the nth cyclotomic polynomial 8n divides Qi for all i ∈ {1, 2, . . . , k}. Moreover, 8n is the only
non-constant polynomial that divides all the Qi.
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476 B.-E. DE KLERK ET AL.

Proof. First we notice that λn −1 = (λ
n
pi −1)Qi for any i ∈ {1, 2, . . . , k}. Let ζ be a primitive nth root of

unity. From (ζ
n
pi −1)Qi(ζ ) = 0 and ζ

n
pi −1 6= 0 it follows thatQi(ζ ) = 0. An immediate consequence is

that λ− ζ is a factor ofQi for all primitive roots ζ of unity, so the nth cyclotomic polynomial8n divides
all of the Qi.

Now suppose that there is another non-constant polynomial R which is a factor of all the Qi’s but
with a root η which is not a primitive nth root of unity. As the roots of Rmust all be nth roots of unity, it
follows that η = ζm for somem ∈ {1, 2, . . . , n} and such that gcd(m, n) 6= 1. However, then there exists

an i such that η
n
pi − 1 = 0, and as Qi(η) = 0, it follows that η is a root of λn − 1 of multiplicity at least

two. This is a contradiction, as all roots of λn − 1 have multiplicity 1.

Combining Theorem 3.6 and The Cayley–Hamilton Theorem, it is clear that if we can �nd an n × n
matrixM with characteristic polynomial8n, thenM is a root of8n, and thus of all the Qi’s.

We now have:

Proposition 3.7. Let n ∈ N. Then there exists an automorphism fn : Zm → Zm, for some positive integer
m, such that the structure of fn consists of only the zero cycle and in�nitely many cycles of length n.

Proof. Theorem 3.6 shows that the nth cyclotomic polynomial is the (non-constant) greatest common
divisor of the Qi’s. Let C8n be its companion matrix (so that C8n has characteristic polynomial 8n).
Since the constant term of 8n is either 1 or −1, we have that detC8n = ±1. Hence C8n is invertible,
making it the matrix representation of an automorphism. C8n is a root of 8n, and since 8n divides all
the Qi’s, we have that C8n is a root of all the Qi’s.

Since all theQi’s divide λ
n−1, all cycles associated withC8n have lengths dividing n. Any cycle length

d properly dividing n, would have to divide n
pi
for some pi. By letting

[

x
y

]

be a non-zero element in any

cycle of length d, we note that

Qi(C8n)

[

x

y

]

=

pi−1
∑

j=0

(C8n)
nj
pi

[

x

y

]

=

pi−1
∑

j=0

[

x

y

]

= pi

[

x

y

]

=

[

pix

piy

]

,

which clearly cannot hold, since Qi(C8n) = 0. The automorphism on Zm, where m = φ(n), of which
C8n is the matrix representation consequently has a structure consisting of the zero-cycle, no chains,
and only cycles of length n. Note, we cannot use Theorem 3.6 if n = 1, but, of course, an automorphism
with all its (non-zero) cycles of length 1 does exist – simply take the identity map on the group Zm, for
anym ≥ 1.

For each n ∈ N, we shall call the automorphism described in Proposition 3.7 a pure n-cyclic
automorphism and denote its matrix representation by Pn.

We now proceed to investigate automorphisms on Zn with cycles of di�erent lengths.

Theorem 3.8. Suppose the structure of an automorphism on Zn has non-zero cycles of lengths α and β.
Then the structure also has a cycle of length [α,β] (the least common multiple of α and β).

Proof. Let M be the matrix representation of the automorphism. Suppose x lies in a cycle of length α
and y in a cycle of length β . It is clear that for each positive integer k,

M[α,β](x + ky) = M[α,β]x + kM[α,β]y = x + ky,

as α|[α,β] and β|[α,β]. Denote the cycle length of x + ky by γk for all k ∈ N. Clearly, γk|[α,β], so
there exist distinct k, j ∈ N with γk = γj. Denote this common value by γ . Consider the two cycles
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COMMUNICATIONS IN ALGEBRA® 477

(x + ky,M(x + ky), . . . ,Mγ−1(x + ky)) and (x + jy,M(x + jy), . . . ,Mγ−1(x + jy)). Since matrix
multiplication is distributive over matrix summation we can subtract these two cycles term by term
to obtain a new cycle ((j − k)y,M(j − k)y, . . . ,Mγ−1(j − k)y). Note though, that the cycle length
of (j − k)y need not be γ . It is possible that the newly formed cycle actually fully traverses the cycle
containing (j − k)y several times. However, the cycle length of (j − k)y must divide γ . Since k 6= j and
M(j− k)y = (j− k)My, it is clear that (j− k)ymust be in a cycle of the same length as y, and hence β|γ .

Let γ = qα + r, 0 ≤ r < α. Then

x + ky = Mγ (x + ky) = Mrx + kMγ y = Mrx + ky.

SoMrx = x, but since the cycle containing x is of length α, it follows that r = 0, and so α | γ . It follows
that [α,β]|γ , and we conclude that γ = [α,β].

We can now give a complete structural characterization of all functions having the auto-property with
underlying group Zn.

Theorem 3.9. Let A be a countably in�nite set. A bijective function f : A → A possesses the auto-property
with underlying group structure (Zn,+) (for some n ≥ 1) if and only if the structure of f satis�es all of the
following:
(1) It contains at least one cycle of length 1.
(2) The number of distinct cycle lengths is �nite.
(3) If it contains a non-zero cycle then it contains in�nitely many cycles of this length.
(4) If it contains a chain, it contains in�nitely many chains.
(5) If it contains non-zero cycles of length α and β, then it contains a cycle of length [α,β].

Proof. Propositions 3.1, 3.2 and Theorem 3.8 show that the conditions listed above are necessary.
Let f be a function on a countably in�nite set satisfying all the conditions listed in the theorem. We

show that f has the auto-property by constructing an invertible integer matrix representing f . Condition
(2) allows the construction of a �nite set L = {n1, n2, . . . , ns} consisting of the distinct cycle lengths
occurring in the structure of f . For each ni ∈ L, Proposition 3.7 shows the existence of a pure ni-cyclic
automorphism. If f has no chains, construct the integer matrix

M =























Pn1 0 0 · · · 0

0 Pn2 0 · · · 0

0 0 Pn3 · · · 0

...
...

...
. . .

...

0 0 0 · · · Pns























which is a block diagonal matrix obtained by placing the matrices Pni , as de�ned in Proposition 3.7
(as blocks) along the diagonal of M and all other entries equal to 0. If f has chains, simply append the
matrix

[

1 1
1 0

]

along the diagonal ofM, say at the bottom on the right.
Since all of the Pni ’s are along the diagonal, it follows that det(M) = det(Pn1) det(Pn2) · · · det(Pns)

is either 1 or −1, as all the Pni ’s are invertible. This shows that M is invertible, and represents an
automorphism fM : Zm → Zm for some positive integer m. Let the number of rows of Pni be denoted
by xi. For ni, it is clear that the cycle containing the element ex1+···+xi−1+1 is of length ni in the structure
of fM , as the cycle of e1 is of length ni in the structure of the pure ni-cycle represented by the matrix
Pni . The structure of fM thus contains cycles of length ni for each ni ∈ L. If f contains a chain, the last
matrix embedded in the diagonal ofM is

[

1 1
1 0

]

. Example 3.3 then shows that ex1+···+xs+1 lies in a chain.
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478 B.-E. DE KLERK ET AL.

It is now clear that a non-zero cycle of length ni (or a chain) occurs in the structure of f only if one also
occurs in the structure of fM .

Given any element z ∈ Zm, written as a column, we can decompose z as the sum z = z1 + z2 +

· · · + zs + ẑ with each zn being a column of length m, with its j-th entry equal to that of z, for all

j ∈
{(

∑n−1
i=1 xi

)

+ 1, . . . ,
(

∑n−1
i=1 xi

)

+ xn

}

, and zeros elsewhere. If f has chains, ẑ is a column of length

m, with the �rst m − 2 entries equal to 0, and the last two entries equal to the corresponding entries of
z; otherwise put ẑ equal to the zero column of lengthm, i.e., all its entries are equal to 0. We will refer to
zi as the ni-cycle component of z, and to ẑ as the chain component of z. SinceMℓz =

∑s
j=1M

ℓzj +Mℓẑ
for all ℓ ≥ 1, and each zi is in a cycle of length dividing ni (1 ≤ i ≤ s), it is clear that z is in a chain if and
only if ẑ is in a chain, which is the case for exactly all non-zero ẑ. Consequently, if fM has a chain, then
f must also have had one (since otherwise ẑ = 0 for all z ∈ Zm). Now take any z in a non-zero cycle
of fM . As discussed above, ẑ must be the zero column. However, sinceM acts on zk in the same way as

the pure nk-cycle would on a column consisting of the
((

∑k−1
i=1 xi

)

+ 1
)

th up to
((

∑k−1
i=1 xi

)

+ xk

)

th

entries of zk, it follows that the cycle of zk is either the zero-cycle, or of length nk. Since the zi’s are
linearly independent, the cycle length of z is equal to the least common multiple of the ni’s for which
the corresponding zi’s are not zero columns. It now follows that any non-zero cycle of fM has length the
least commonmultiple of nσ(1), nσ(2), . . . , nσ(k) for some permutation σ of (1, 2, . . . , s), with k ≤ s, and
(by condition 5) of the same length as some cycle of f . Consequently, a cycle of length n (or a chain)
occurs in the structure of fM only if one also occurs in that of f . We now have that the structures of f
and fM have cycles of the same distinct lengths (as well as chains) if and only if the other one has, and by
conditions (1), (3) and (4), in�nitely many of them, apart from the zero-cycle. It follows that f has the
auto-property.

Example 3.10. Suppose we want to construct a matrix which represents an automorphism with chains,
and cycles of lengths 6 and 15.

As there are cycles of length 6 and 15, there must be a cycle of length 30. We proceed to �nd P6,P15
and P30.

Pure 6-cycle: Q1(λ) = 1 + λ2 + λ4 and Q2(λ) = 1 + λ3. The gcd of the Qi’s is 86(λ) = 1 − λ + λ2.
The companion matrix of this polynomial is:

P6 =

[

0 1

−1 1

]

.

Pure 15-cycle: Q1(λ) = 1 + λ3 + λ6 + λ9 + λ12 and Q2(λ) = 1 + λ5 + λ10. The gcd of the Qi’s is
815(λ) = 1 − λ+ λ3 − λ4 + λ5 − λ7 + λ8. The companion matrix of this polynomial is:

P15 =









































0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−1 1 0 −1 1 −1 0 1









































.
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COMMUNICATIONS IN ALGEBRA® 479

Pure 30-cycle: Q1(λ) = 1 + λ6 + λ12 + λ18 + λ24, Q2(λ) = 1 + λ10 + λ20 and Q3(λ) = 1 + λ15. The
gcd of the Qi’s is830(λ) = 1+ λ− λ3 − λ4 − λ5 + λ7 + λ8. The companion matrix of this polynomial
is:

P30 =

























0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−1 −1 0 1 1 1 0 −1

























.

The matrix which represents the desired automorphism (on Z20) is








































































0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 −1 1 −1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 −1 −1 0 1 1 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0









































































.
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