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1. Introduction

The question on which functions from a set to itself (selfmaps) appear as functions with a certain
structural property has been addressed by various authors. In particular, in [3] and [6] those selfmaps
which appear as lattice endomorphisms or lattice anti-endomorphisms have been characterized. In [2] a
similar study was done for infra-endomorphisms of the groups Z,, and D,,. In this paper we characterize
those selfmaps that appear as automorphisms of certain abelian groups, namely the cyclic groups, the
group Zy x Zy, p prime, and the group Z" for some n > 1.

For a given set A, let us agree to say that a bijection f : A — A has the auto-property if it is possible
to find a binary operation * on A such that (4, ) is an abelian group and f € Aut(A).

If A is finite, such an f necessarily gives rise to cycles, i.e., (disjoint) finite sequences ay, a, ..., dm
from A such that f(a;) = aiy1 for 1 <i <m — 1and f(a,,) = a;. Every element of A belongs to some
cycle. The number of elements in a cycle is its length. So a fixed point of f is a cycle of length 1. The cycle
structure of f is a description of how many cycles of each length f has. A convenient notation for this
structure will be developed and used in Section 2.

On the other hand, if A is infinite, then, apart from possible cycles, there is also the possibility of f
having chains, i.e., infinite sequences . .., a;, aiy1, ita, . . . from A such that f(a;) = aiy; for all i. The
number of cycles of various lengths, as well as the number of chains, will be referred to simply as the
structure of f. This infinite case will be discussed in Section 3.

2. Cyclic groups and groups of order p?, p prime

For this section, we always assume that A is a finite set and that f : A — A is a bijection.
cl1 € - Ck

If f has ¢; cycles of length t; (1 < i < k), then we say f has the cycle structure [ §} 2 . i |, where, for
consistency, we always take t; > t, > --- > ;. We stress that it is possible that some c; could be 0, and
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these columns can just as well be omitted from the array. Also note that Z:-;l citi = |A|, and that the
identity map has cycle structure [ 141].

It is evident that if we want to investigate the conditions f has to satisfy to have the auto-property,
then it suffices to find the cycle structures of all possible automorphisms on all abelian groups of order
|A|. These cycle structures completely determine all those f having the auto-property.

We begin by doing this for cyclic groups.

We determine all possible cycle structures of automorphisms f : Z, — Zj, for the additive (cyclic)
group Z, = {0,1,...,n —1}.

For thering Z,, = {0,1,...,n — 1}, consider the group of units U, = {k1, ks, ..., kpm)} =k € Zy :
(k,n) = 1} (where we take k; = 1). Let T, = (Z,, \ Uy) \ {0} and for z € Ty, putz’ = (zf’n).

Letf : Z, — Zjn be an automorphism. Then f(1) € Uy, otherwise, if f(1) = z € Ty, then f(2') =
0 = f(0), a contradiction. If f(1) = 1 = kj, then f is the identity map.

Let2 < i < ¢(n),and assume thatf (1) = k;. Then 1, k;, k?, ces kfi_l isacycle oflength ¢; = ord,, (k;)
(the least x € N such that kf = 1(mod 7)), and consisting exactly of the elements of the subgroup (k;)
of Uy. If (ki) # Uy, choose any k; € Uy, \ (k;). Then kj, kjki, kjk%, R kjkf"fl is another cycle of length
¢;, consisting exactly of the coset k;(k;) of (k;) in U,. Continuing in this manner, we obtain [Uj, : (k;)]
cycles of this type, exhausting all the elements of U,.

Now consider any z € T,. Then the cycle z,zk;, zk?, . .. ,zk?‘f1 is obtained, where the length of
the cycle is the least A € N such that n| z(kiA — 1). This means that A = ord, (k;). Note that A|¢;.
Also note that each member of this cycle is in T,. Other elements of Ty, not in this cycle, might
give rise to cycles of the same length A. Hence, the total number of cycles of length A is given by
% {z € T, : ordy (ki) = A}| =: L;,. Finally, cycles of length 1 obtained in this way exclude the fixed
point 0, so that there are [{z € T}, : ordy (ki) = 1}| + 1 cycles of length 1.

Hence we have one direction of the following theorem:

Theorem 2.1. Let |A| = nandletf : A — A be a bijection. Then there exists a binary operation x on A
such that (A, %) is a cyclic group and f € Aut(A) if and only if either f is the identity map, or there is an
i, 2 <i < ¢(n), such that f has the cycle structure

[Un: ki)l +Lig; Lip, --- Lin, Lin+1
¢ M A 1 ’

where £; > A1 > --- > A; > 1 denotes the complete list of (positive) divisors of £; = ordy(k;).

Proof. It remains to show how to turn A into a cyclic group with f € Aut(A), given that f has one of the
cycle structures mentioned in the statement of the theorem, say for iy, where 2 < iy < ¢(n).

First, we observe that there is indeed an automorphism h;, : Z, — Z;,, namely the one induced by
hi, (1) = k;,, that has the same cycle structure as f.

We can then turn to the so-called structural graph of f. Let G = (V,E) be a directed graph with
|V| = nand p : A — V abijection. Then G is called a structural graph of f if (u,v) € E < (Ja € A :
u=p(a) Av=p(f(a))). pis called a graph projection of f.

Since f and h;, have exactly the same cycle structure, we see that the structural graphs of f and h;; are
isomorphic (as graphs). One can use this isomorphism to endow A with a cyclic group structure such
that f is a group automorphism.

In particular, let pf and pp, be graph projections of f and hj, respectively, and let ¥ be a graph
isomorphism from the codomain of py to the codomain of Py, - Definen : A - Z,byn = 'Oh_iol Vpy.

Then it is routine to check that (A, *) is a cyclic group, where o x 8 = n~ 1 (n(a) +n(B)) foralla, B € A.
The identity is 14 = n~1(0). It is also routine to check that f € Aut(A). O
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Corollary 2.2. If|A| = n, then there are at most ¢ (n) cycle structures for a bijection f : A — A that will
turn A into a cyclic group, with f € Aut(A).

Proof. Apart from the identity map, the possible cycle structures of automorphisms are determined by
2 < i < ¢(n). But note that distinct #’s could give rise to the same cycle structure of an automorphism.
O

Example 2.3. (a) If |A| = p, where p is a prime, then f : A — A has the auto-property if and only if it

has the cycle structure [ é i ] for some divisor d of p — 1. (Note that in case d = p — 1, we get that
[ é i ] = [#], representing the identity map.)
(b) Let |A| = 12. Then Uy, = {1,5,7, 11}, so that (ky, k», k3, ka) = (1,5,7,11). Then we have
€y = ordp(5) = 2. Ly = |{3,6,9}] = 3, Ly = % - 1{2,4,8,10}| = 2. This gives the cycle

[U121<52>I+L2,2 L2,11+1] — [421 411]

Similarly, for £3 = 2 we obtain the cycle structure [g ?] and for £4 = £(12) = 2 we obtain the
cycle structure [ 3 2 ].
Hence, A can be turned into a cyclic group with f € Aut(A) if and only if f is the identity map, or
f has one of the three cycle structures above.
(c) Let |A| = p?, with p prime. Thenz’ = pforallz € T,2 = {p,2p, ..., (p — 1)p}. This implies that

—1
pT if ordy (ki) = 2,

structure [

1
Ly = 5 {z € Tpr rordy(ki) = A}| =

0 otherwise

for every divisor A of £; = ord2 (k;), where 2 < i < P> —p.

Forinstance, if p = 3, then (k1, k2, ..., ks) = (1,2,4,5,7,8). Fori = 2wehave ¢, = ordg(2) = 6,
and since ords(2) = 2, it follows that L, , = % =1landLy; = L3 = Lyg = 0. Also, since k, = 2
is a generator of the group Uy, [Ug : (2)] = [Uy : Ug] = 1. So (for the case i = 2) we obtain, by
Theorem 2.1, the cycle structure [ (91 1] =[] 1]

Similarly, for i = 3 we get the cycle structure [ 23], fori = 4 we get [} } 1], fori = 5 we get
[%3] and finally, fori = 6 = ¢(9) weget[51].

Consequently, if |[A| = 9, it can be turned into a cyclic group with f € Aut(A) if and only if
f has one of the cycle structures [} 1 1], [33], [31] or []] (the identity). Note that other cycle
structures are indeed possible in the non-cyclic case (see Theorem 2.5).

We now turn our attention to the case |A| = p?, p prime, and completely determine when f has the
auto-property in this case. Theorem 2.1 takes care of the case when A is cyclic. We will therefore focus
here only on the group Z}% = Zp X Ly, with Aut(Z, x Zp) = GL;(Zy). Our aim is to determine the cycle
structures of all the elements of GL,(Z), when acting on the elements of le,.

We recall that conjugate permutations have the same cycle structures, and we formalize this in

Lemma 2.4. If F is a finite field, and A,B € GL,(F) are similat, then they determine the same cycle
structure on the group F2,

Henceforth, for « in the finite field F, we use the notation o™ («) for the (additive) order of @ € F and
we use 0% () for the (multiplicative) order of @ € F*.

In [1] it is given that there exist elements of order d in GL,(Z,), for any d that divides p* — 1, as well
as of order pd for any d | p — 1. Furthermore, by virtue of Lemma 2.4, we only have to study the Jordan
normal forms of the matrices in GL,(Z,). We do it by considering three cases:
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IL.

III.

Here, we only consider those matrices A in GL;(Z,) having Jordan normal form (08 0?2 ), where
ay,ay € Up. The order of such an A is d, where d | p — 1.

First, if o1 = oty = & (say), with 0™ (o) = d, then A = (‘6‘ 2) has 1% cycles of the form

X ox otd_lx
y > ay 3 e ad_ly >

each of length d and where x,y € Z,, not both 0.
Second, let ) # ay, with 0* (1) = d; and 0* («2) = d», where d; and d, are divisors of p — 1.

Here, A = (08 0?2) has
P_

d—ll cycles of the form

each of length dy, where x € U;
pd;zl cycles of the form
0 ( 0
y > azy PICIENE)
each of length dy, where y € Up;
(=
lcm(d d )
0)-(25)- (i)
y > 012)/ P Q{§ ly >
each of length K = lem(di, d2), where x,y € U,.

Now we consider those A € GL,(Z) with Jordan normal form (0 O[) where a € Up. The order
of A is pd, where d = 0* () is a divisor of p — 1, and for any d | p — 1, there exists such an A.

(o)
dr— >
oy’ 1}’

cycles of the form

Then A has 2= cycles of the form

X ax af1x
O b 0 e 0 b
Ahas 2~ cycles of the form

x\ [ax+y akx 4 kakly ozp”l Lx + (pd — Dati2y
y 5 ay e ey ak)/ 3o apd ly 5

each of length pd, where x, y € Z,, with y # 0. (Note that ot (dab¥=1y) = p.)

each of length d, where x € Up;

The only remaining case is where A € GL3(Zp) has Jordan normal form A= (ﬁ %), where

B,B € Z(B), a quadratic field extension of Z, (and 8 and B are conjugate roots of an irreducible
quadratic polynomial over Zy). For any d such that d | p*> — 1 but d { p — 1, there exists such an A

(and hence A) having order d.
It follows that all cycles in Z, (8 )2, except the trivial one (8), have length d. Note that the orbit

of Aon (}), for x,y € Zy(B), not both 0, is given by

6)-G)- (),
y 5 Ey 5 32)/ yee e Ed_l)/ 5
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of length d, since 0* (8) = 0*(B) = d. Hence, by Lemma 2.4, all nontrivial cycles of A in Zf,
also have length d.
We are now ready to characterize all automorphisms of Z’%.

Theorem 2.5. Let |A| = p? where p is prime, and let f : A — A be a bijection. Then A can be turned into
a group isomorphic to Zf,, with f € Aut(Zﬁ), if and only if f is the identity map, or f has any one of the
following cycle structures:

(a)[”ill] divisor d of p* — 1;
T for some divisor d of p ;

Ol

vd d 1]for some divisor d of p — 1;

(=D*  p=1 p=1 .

©) | em@ydpy @ 4 for divisors dy and dy of p — 1.
lCm(dl,dz) dl dz 1

Proof. From case III in the discussion preceding the theorem, an automorphism f with cycle structure

[ p21_1 i] exists. By letting d vary over all divisors of p> — 1, and by considering the corresponding

automorphisms f¢ (f composed with itself d times), we obtain all the possible cycle structures given

in (a). The cycle structures in (b) and (c) follow from cases II and I, respectively. Also note that, if it

happens that d; = d, = din (c), where d | p — 1, then the cycle structure in (a) is obtained. In particular,
dy = d, = 1 gives the identity map. O

Example 2.6. Let p = 7. The divisors of p> — 1 = 48 that are not divisors of p — 1 = 6, are given by
d € {4,8,12, 16,24, 48}. For these divisors we obtain, from Theorem 2.5(a), the following corresponding

cycle structures:
12 1 6 1 4 1 3 1 2 1 1 1
4 178 1”12 1|’ |16 1| |24 1| |48 1|
The divisorsof p— 1 = 6 are d € {1, 2, 3, 6}, so Theorem 2.5(b) gives the corresponding cycle structures
6 6 1| |6 7 3 31 2 21 1 11
7 1 1| |7 1|”|14 2 1|°|21 3 1|’|42 6 1|’

Finally, for the remaining cases, we consider Theorem 2.5(c), where we take dy,d, € {1,2, 3,6} and
we may assume that 1 < d; < d, < 6. We obtain the cycles

36 6 6 1] [49] [18 6 3 1] [21 7] [12 6 2 1] _ [14 7

1 1 1 1] |1]°[2 1 2 1| |2 1)7[3 1 3 1] |3 1]
6 1 1] _[7 7] [18 3 3 1] _[24 1] [6 3 2 1] _[6 2 3 1
6 1 6 1) |6 1|2 2 2 1] |2 1|6 2 3 1] |6 3 2 1)
6 3 1 1] [7 3 1] 12 22 1] [16 176 21 1] [7 21
6 2 6 1] |6 2 173 3 3 1] |[3 1] |6 3 1]~ 6 3 1

6 1 1 1] _[8 1
6 6 6 1| |6 1]

Consequently, if |[A| = 49, then A can be made into a group isomorphic to Z2, with f € Aut(Z2), if
and only if f has one of the 20 cycle structures shown here.

One immediately raises the question of how the cycle structures of automorphisms on Z. relate to
the cycle structures of automorphisms on Z, x Z,. It turns out that the former forms a subset of the
latter.
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Theorem 2.7. Let |A| = p?, with p prime, and let f : A — A be a bijection. Then f has the auto-property
if and only if f has one of the cycle structures of an automorphism of Z.2, given by Theorem 2.5.

Proof. It suffices to show that every cycle structure that appears in Example 2.3(c), also appears in

Theorem 2.5. For the parameters £; = ord,» (k;), 2 < i < p* — p,and A = ord, (k;), we have ¢; | ¢ (p?)

and A | ¢(p) (see [4, Theorem 2.14]), and A | £; (see Example 2.3(c)). So we have the two possibilities:

2op el
A A

1. ¢; = A. This gives the cycle structure [
1

of Theorem 2.5(c) with dy = d, = A.

] = [ ol ], which agrees with the cycle structure
ro1

T £| = [p%)\l Pil i], which agrees with the cycle

P-p

pA
pA

3
3

2. ¢; = pA. This gives the cycle structure

>

structure of Theorem 2.5(b) with d = A.
O

A natural question is whether this result holds in a more general setting, i.e., whether, for a given prime
pandan integer n > 2, the cycle structures of the automorphisms of Zg already contain all possible cycle
structures of all abelian groups of order p”. This is unfortunately not the case, as the next example shows:

Example 2.8. The group Zg has an automorphism of which the cycle structure is different from that of
all automorphisms of Z3.

Proof. Consider f : Zg — Zg defined by f(x) = —x. The cycle structure of f is [ 2 3 |. Assume that there
is an automorphism g of Z3 which has the same cycle structure.

Consider the Jordan canonical form of g. Then g has minimal polynomial (x + 1)? since all elements
of Z3 lie within cycles of length at most 2. The characteristic polynomial of g is therefore (x+ 1), so that
there are two blocks in Jordan form, one of size 2 x 2 and one of size 1 x 1. Consequently, the eigenspace
related to the eigenvalue —1 = 1 must be of dimension at least 2, implying that there will be at least four
elements of Z3 in cycles of length 1, a contradiction. O

3. Groups isomorphic to Z"

We will now investigate the cycle structures of the automorphisms of all groups of the form Z". We must
clearly still have the trivial cycle of length 1, representing 0 + 0. From now on, we will refer to this cycle
as the zero cycle of the map. Since Z is infinite there is the possibility of not only having (finite) cycles
such as with the cases in Section 2, but also chains, i.e., distinct elements . .., a;, ait1, di+2, . .. from A,
such that f(a;) = a;4 for all i.

One of the major tools that we used to investigate the automorphisms of the finite groups was the fact
that the elements of the general linear group were much more than just matrices over rings, but they were
actually matrices over fields, which allowed us to use the Jordan normal form to form conjugacy classes
which partitioned the general linear group. In the case of matrices over Z this cannot be done, as Z is
not a field. But even though we have lost the Jordan normal forms, we still have that the automorphism
group is isomorphic to GL(Z, n). These are clearly all the n x n integer matrices with determinant equal
to £1 ([5]).

For 1 < i < n, e; is used to denote the element (0,...,1,...,0) € Z", with 1 in the i-th coordinate
and zeros elsewhere.

Proposition 3.1. Suppose f € Aut(Z") for some positive integer n. Then the following conditions must
hold:

1. Iff has a cycle, apart from the zero cycle, of any length k, then f has infinitely many cycles of length k.
2. Iff has a chain, it has infinitely many chains.

3. Ifalle;,i € {1,2,...,n} arein cycles of f, then all elements of Z"* are in cycles, i.e., f has no chains.
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Proof. Let the matrix representation of f be M, and represent the elements of the group Z" as columns.

1. Consider any non-zero cycle T = (x, Mx, M2x,...,M*1x) of length k. Let St be the (finite)
set of all the absolute values of the non-zero components of the members of T. There exists
a (non-zero) smallest element in St. Now, for any positive integer m, we see that mT =
(mx, M(mx), M2(mx), . .., M*"Y(mx)) = (mx,mMx, mM?x, . ..,mMF1x) is a cycle of length k,
with S, = mSr, from which it follows that the cycles mT are disjoint for different m € N as the
minimum components are all distinct from one another. Consequently there are infinitely many
cycles of length k.

2. The proof is roughly the same as above. The cycle T = (x, Mx, ..., M*~1x) is just replaced by the
chain T = (..., M~ 2x, M~ 'x, x, Mx, M?x, . . .). Here, the existence of the smallest (non-zero) element
is guaranteed by the well-ordering principle on N.

3. Suppose all the e; are in cycles with the cycle containing e; of length k;. Any x € Z" can be represented
asx = Y i aje, o € Z. Denote the least common multiple of the set {kj»j € {1,2,...,n}} by £.
Then

n n
Mx = ZaiMeei = Za,«ei =X,
i=1 i=1

as Mle; = e; forall i = 1,2,..., n. Hence x lies in a cycle of length dividing £.
O

Proposition 3.1 tells us that if the structure of an automorphism consists of cycles only, then there is
only a finite number of possible cycle lengths, as all cycles must be of length dividing the least common
multiple of the lengths of the cycles of the e;’s. However, it is still possible, in principle, for an infinite
number of distinct cycle lengths to exist for an automorphism, but then some e; must lie in a chain. The
following result shows that not even this is possible.

Proposition 3.2. The structure of any automorphism of Z" possesses at most finitely many distinct cycle
lengths.

Proof. Suppose that f has infinitely many distinct cycle lengths. Let the matrix representation of f be
given by the n x n matrix M.

If n = 1,then f(1) = 1 or f(1) = —1, as det(M) = 1. The former case is simply the identity
mapping, and the latter has a cycle structure consisting of only cycles of length two, together with the
zero-cycle.

So assume that #n > 2 for the remainder of the proof. Let, for 1 <i <mn,
X1i

X2i
Xi =

Xni

be any n distinct non-zero elements of Z" occurring in cycles. For each i, let the cycle length of x; be s;.
Let U = [x1|x2] . . . |x,], the n X n matrix with columns x;,i = 1,. .., n. From Proposition 3.1 it follows
that at least one of the e;’s belongs to a chain, say it is e;. Also, let U(r, ¢) denote the (r, ¢)-minor of U.
We now consider

y= Z(—l)i_lU(l,i)xi.

i=1
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Foreachi € {2,...,n}, the entry in the ith row of y is clearly the determinant of the matrix
'xil X2 ... Xin 7]
X21 X222 ... X2
b
X1 X2 ... Xin
LXn1  Xn2 ... Xnn

which is zero, as the ith row is identical to the first row. This means all the components of y, except
perhaps the first, are equal to zero.

In the same way we see that the first component of y is simply the determinant of U. By denoting the
least common multiple of {s;,i € {1,2,...,n}} by ¢, it is clear that

My =" (=D"'Uu, M
i=1

n
= > (-1)7'UQ, i
i=1
= y,
which means that y belongs to a cycle. However, the element e lies in a chain, implying that all non-
zero elements with only their first components non-zero, lie in a chain. Consequently, y must be 0, from
which it follows that det(U) = 0. This means that the columns of U are linearly dependent, and for
fixed x1, %2, . .., x,—1, any other element z that lies in some cycle, can be expressed as z = Z:lz_ll ViXi,
with y; € Q. Hence z must belong to a cycle having a length dividing the least common multiple of
the set {s1,s2,...,5,—1}. Since this holds for all z occurring in cycles, we see that the structure of any
automorphism has only finitely many distinct cycle lengths. O

Example 3.3. The structure of the automorphism on Z? represented by M = [ 1 } | does not have any
non-zero cycles, hence it consists only of the zero cycle, and infinitely many chains.

Proof. First we notice that for any positive integer n, M" = [Fgl Ffil ] with F,, the n-th number in the

Fibonacci sequence. Suppose that the structure of M contains a cycle of length n € N. Then there exist
a,b € Z such that

aFnJ,_] + bFn = a,
aF, + bF,_1 = b,
which can be written as

(Fn+1 - 1)a+Fnb= 0,

F,a+ (F,_1 — Db =0.
The determinant of this system is (F,+1 — 1)(Fp—1 — 1) — Fﬁ, which reduces to (Fﬁ+1 —Fy41F,— Fﬁ) +
1— (Fy+1+Fn—1). Using the identity FﬁH —F,11F, —Fﬁ = (—1)", we see that the system has a non-zero

determinant, and conclude that [Zi| = [g] is the only solution. O
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Definition 3.4. Suppose the structure of an automorphism of Z" contains a cycle of length k. Then this
cycle is called a primitive cycle of the structure if for any proper divisor d of k, there are no non-zero
cycles of length d in this structure. In this case, we call k a primitive cycle length of the structure of the
automorphism.

We shall now investigate whether for any natural number k, there exists an automorphism for which
all the non-zero cycles are of length k. In order to do so, we shall first take some inspiration on the
construction of cycles from larger ones. Suppose, for example, the automorphism M of Z" has a cycle
(x, Mx, M?x, . .., M°x) of length 6.

The cycle generated by x + M?x + M*x is (x + M?x + M*x, Mx + M>x + M°x), hence has length 1
or 2. Similarly, the cycle (x + M3x, Mx + M*x, M?x + M°x), generated by x + M?3x, must have a length
that divides 3.

Note that these cycle lengths are not necessarily of lengths 2 and 3, respectively. They could also be
oflength 1. At first it seems that this could severely restrict the possibilities on the numbers which could
be primitive cycle lengths. However, surprisingly, this result does not eventually restrict the numbers
which are primitive cycle lengths, but rather tells us how to construct automorphisms with exactly those
primitive cycle lengths. For our 6-cycle case, for example, if we can somehow find an invertible integer
matrix M such that I + M? + M* = I + M® = 0, then the constructed elements which could have cycle
lengths of 2 and 3 will actually turn out to be the zero element, and the cycle reduces to the zero-cycle.

Example 3.5. The automorphism on Z* with matrix representation M = [ % 1] has all of its non-zero
cycle lengths equal to 6.

Proof. We have that I + M? + M* = 0 and I + M> = 0, and also that M® = I, which means that all

cycles are of length dividing 6. Consider an arbitrary |:;i| € Z2. This gives the cycle

CHL2 =B

This is an explicit example of an automorphism of which the structure consists of the zero cycle, no chains
and all non-zero cycles of length 6, implying that 6 is a primitive length with respect to this structure.
Note that if any of these cycles were to collapse into a cycle of length less than 6, then we must have that

Sl I
y y=x =] L= )
All these possibilities lead to the zero cycle. O

This example also paves the way toward establishing a technique that will allow us, for any positive
integer k, the construction of an automorphism on some Z" of which the structure has all of its non-zero
cycles of length k. The next theorem is the first step toward this goal:

Theorem 3.6. Foranyn > 1, letn = ]_[f-;l pit be the prime factorization of n, where we assume that
p1 > p2 > -+ > pk. Define, foreachi € {1, ..., k} the polynomial Q; by

pi—1 )

nj

Qi) =Y Ani.
j=0

Then the nth cyclotomic polynomial &, divides Q; for all i € {1,2,...,k}. Moreover, ®, is the only
non-constant polynomial that divides all the Q;.
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Proof. First we notice that A" —1 = (A% —1)Q;foranyi € {1,2,...,k}. Let ¢ be a primitive nth root of

unity. From (¢ P — 1)Q;(¢) = 0and¢ hi — 1 # 0 it follows that Q;(¢) = 0. An immediate consequence is
that A — ¢ is a factor of Q; for all primitive roots ¢ of unity, so the nth cyclotomic polynomial ®,, divides
all of the Q;.

Now suppose that there is another non-constant polynomial R which is a factor of all the Q;’s but
with a root 1 which is not a primitive nth root of unity. As the roots of R must all be nth roots of unity;, it
follows that n = ¢™ for some m € {1,2,...,n} and such that gcd(m, n) # 1. However, then there exists

an i such that n?i — 1 = 0, and as Q;(n) = 0, it follows that 7 is a root of A" — 1 of multiplicity at least
two. This is a contradiction, as all roots of A" — 1 have multiplicity 1. O

Combining Theorem 3.6 and The Cayley-Hamilton Theorem, it is clear that if we can find an n x n
matrix M with characteristic polynomial ®,,, then M is a root of ®,,, and thus of all the Q;’s.
We now have:

Proposition 3.7. Let n € N. Then there exists an automorphism f, : Z" — Z, for some positive integer
m, such that the structure of f,, consists of only the zero cycle and infinitely many cycles of length n.

Proof. Theorem 3.6 shows that the nth cyclotomic polynomial is the (non-constant) greatest common
divisor of the Q;’s. Let Co, be its companion matrix (so that Cg, has characteristic polynomial ®,,).
Since the constant term of &, is either 1 or —1, we have that det Cp, = =£1. Hence Cg, is invertible,
making it the matrix representation of an automorphism. Cg, is a root of ®,, and since ®,, divides all
the Qy’s, we have that Co, is a root of all the Q;s.

Since all the Q;’s divide A" — 1, all cycles associated with Co, have lengths dividing n. Any cycle length

d properly dividing n, would have to divide I% for some p;. By letting ;C be a non-zero element in any

cycle of length d, we note that

x| kol W [x] B[« x pix
QCop | “| = S Copt || = S L I L
¢ u ; ¢ u Z& u u [Pz‘y]

which clearly cannot hold, since Q;(Cg,) = 0. The automorphism on Z™, where m = ¢ (n), of which
Co, is the matrix representation consequently has a structure consisting of the zero-cycle, no chains,
and only cycles of length n. Note, we cannot use Theorem 3.6 if n = 1, but, of course, an automorphism
with all its (non-zero) cycles of length 1 does exist — simply take the identity map on the group Z™, for
any m > 1. O

For each n € N, we shall call the automorphism described in Proposition 3.7 a pure n-cyclic
automorphism and denote its matrix representation by P,,.
We now proceed to investigate automorphisms on Z" with cycles of different lengths.

Theorem 3.8. Suppose the structure of an automorphism on 7" has non-zero cycles of lengths o and B.
Then the structure also has a cycle of length [c, B] (the least common multiple of o and B).

Proof. Let M be the matrix representation of the automorphism. Suppose x lies in a cycle of length «
and y in a cycle of length 8. It is clear that for each positive integer k,

M@Pl(x + ky) = M@PBly 4 kM[“’ﬁ]y = x+ ky,

as |, B] and B|[a, B]. Denote the cycle length of x + ky by yi for all k € N. Clearly, yk|[«, B], so
there exist distinct k,j € N with y;x = y;. Denote this common value by y. Consider the two cycles
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(x + ky, M(x + ky),...,M""Y(x + ky)) and (x + jy, M(x + jy),..., M"Y~ (x + jy)). Since matrix

multiplication is distributive over matrix summation we can subtract these two cycles term by term

to obtain a new cycle ((j — k)y, M(j — k)y,...,M?~1(j — k)y). Note though, that the cycle length

of (j — k)y need not be y. It is possible that the newly formed cycle actually fully traverses the cycle

containing (j — k)y several times. However, the cycle length of (j — k)y must divide y. Since k # jand

M — k)y = (j — k)My, it is clear that (j — k)y must be in a cycle of the same length as y, and hence |y
Lety =qa+ 1, 0 <r < a.Then

x+ky=M(x+ky) = Mx+kM'y=Mx+ky.

So M"x = x, but since the cycle containing x is of length «;, it follows that r = 0, and so « | y. It follows
that [«, B8]|y, and we conclude that y = [«, B]. L]

We can now give a complete structural characterization of all functions having the auto-property with
underlying group Z".

Theorem 3.9. Let A be a countably infinite set. A bijective function f : A — A possesses the auto-property
with underlying group structure (Z", +) (for some n > 1) if and only if the structure of f satisfies all of the
following:

(1) It contains at least one cycle of length 1.

(2) The number of distinct cycle lengths is finite.

(3) If it contains a non-zero cycle then it contains infinitely many cycles of this length.

(4) If it contains a chain, it contains infinitely many chains.

(5) If it contains non-zero cycles of length o and B, then it contains a cycle of length [«, B].

Proof. Propositions 3.1, 3.2 and Theorem 3.8 show that the conditions listed above are necessary.

Let f be a function on a countably infinite set satisfying all the conditions listed in the theorem. We
show that f has the auto-property by constructing an invertible integer matrix representing f. Condition
(2) allows the construction of a finite set £ = {n1,n3,...,n,} consisting of the distinct cycle lengths
occurring in the structure of f. For each n; € £, Proposition 3.7 shows the existence of a pure n;-cyclic
automorphism. If f has no chains, construct the integer matrix

[P, O 0 -+ 0]
0 P, O --- 0
M=10 0 Py - 0
0 0 0 - P, |

which is a block diagonal matrix obtained by placing the matrices P,,, as defined in Proposition 3.7
(as blocks) along the diagonal of M and all other entries equal to 0. If f has chains, simply append the
matrix [ | § ] along the diagonal of M, say at the bottom on the right.

Since all of the P,,’s are along the diagonal, it follows that det(M) = det(P,,) det(Py,) - - - det(Py,)
is either 1 or —1, as all the P,,’s are invertible. This shows that M is invertible, and represents an
automorphism fpr : Z™ — Z™ for some positive integer m. Let the number of rows of P, be denoted
by x;. For n;, it is clear that the cycle containing the element ey, 4.4, ,+1 is of length #; in the structure
of far, as the cycle of e; is of length #; in the structure of the pure n;-cycle represented by the matrix
P,,,. The structure of fjs thus contains cycles of length n; for each n; € L. If f contains a chain, the last
matrix embedded in the diagonal of M is [ 1 ] Example 3.3 then shows that ey, t...;x 41 lies in a chain.
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It is now clear that a non-zero cycle of length n; (or a chain) occurs in the structure of f only if one also
occurs in the structure of f.

Given any element z € Z™, written as a column, we can decompose z as the sum z = z; + 2z +
-++ 4+ zg + Z with each z, being a column of length m, with its j-th entry equal to that of z, for all

je { (Z:-le xi> +1,..., (Z?;ll xi) + xp }, and zeros elsewhere. If f has chains, Z is a column of length

m, with the first m — 2 entries equal to 0, and the last two entries equal to the corresponding entries of
z; otherwise put Z equal to the zero column of length m, i.e., all its entries are equal to 0. We will refer to
z; as the n;-cycle component of z, and to Z as the chain component of z. Since M‘z = Z;Zl Mezj + M
forall £ > 1, and each z; is in a cycle of length dividing n; (1 < i <s), itis clear that z is in a chain if and
only if Z is in a chain, which is the case for exactly all non-zero . Consequently, if fos has a chain, then
f must also have had one (since otherwise z = 0 for all z € Z™). Now take any z in a non-zero cycle
of fp. As discussed above, z must be the zero column. However, since M acts on zx in the same way as
the pure ng-cycle would on a column consisting of the ((Zf:_ll xi> + l)th up to ((Zf;ll x,-) + xk) th
entries of zj, it follows that the cycle of zj is either the zero-cycle, or of length ny. Since the z;’s are
linearly independent, the cycle length of z is equal to the least common multiple of the #;’s for which
the corresponding z;’s are not zero columns. It now follows that any non-zero cycle of fjs has length the
least common multiple of 15 (1), 15(2), . . . » B (k) fOr some permutation o of (1,2,...,s), with k <s,and
(by condition 5) of the same length as some cycle of f. Consequently, a cycle of length # (or a chain)
occurs in the structure of fyr only if one also occurs in that of f. We now have that the structures of f
and fr have cycles of the same distinct lengths (as well as chains) if and only if the other one has, and by
conditions (1), (3) and (4), infinitely many of them, apart from the zero-cycle. It follows that f has the
auto-property. O

Example 3.10. Suppose we want to construct a matrix which represents an automorphism with chains,
and cycles of lengths 6 and 15.

As there are cycles of length 6 and 15, there must be a cycle of length 30. We proceed to find Pg, P15
and P3().

Pure 6-cycle: Q; (1) = 1 + A2 + A* and Q2(A) = 1 + A>. The gcd of the Q/’s is Ps(A) = 1 — A + A2,
The companion matrix of this polynomial is:

0 1
Py = .
-1 1
Pure 15-cycle: Qi(A) = 1+ A% + 1% + A% + 212 and Qa(A) = 1 + 1> + A!0. The ged of the Q/’s is

®15(A) =1— A1+ A3 — A%+ 1> — 17 4+ A8. The companion matrix of this polynomial is:

0 1. 0 0 0 0 0 O]

o 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
Ps=1"9 09 0o 0o o 1 0 o
0o 0 0 0 0 0 1 0

0o 0 0 0 0 0 o0 1

-1 1 0 -1 1 -1 o0 1
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Pure 30-cycle: Qq(A) = 1 + A% + A2 + A8 4224 Q(A) =14+ A1 + 1% and Q3(A) = 1 + A, The
gcd of the Q;sis @30(A) = 1+ A — A% — A% — A% + 17 4 A%, The companion matrix of this polynomial
is:

P3o =

—_ O O O O o oo

—_ O O O OO O -
—_ o O O O = OO
— O O O~ O OO
— O O = O O OO
SO = O O O OO
|

——-_-0 O O 0O OO

[=NeleloNeNeN =

2

(=]
~—
—
2]

The matrix which represents the desired automorphism (on Z

[«]
o
o
o
[«]
o
o
o
S

O DO OO OO DO O OO0 O O OO

S OO OO OO OO O OO OO~HOOOo

O OO OO OO OO0 O OO OO OOO
O OO OO ODODDODOOOO OO OO

|
|
—

SO O OO OO0 oo oo

|
[=NeBoBolNe ool Neolol oo oo o e ol - =
O O OO OO DD OO DODDODODODDODOO OO - -
SO OO OO OO OO OO OOO O —~Oo
[=NeBoNBoNoNoRoloNeoE-R-NeNolNoloNel ==
O DO OO OO DO O OO O OO OO
SO OO OO OO OO OO OO0 OO0
O OO OO OO R OOOOOO OO
[«]
[=NeNeloNoeNeRol =1 ==l oo i)
OO P OO OO OO ODODOOOC OO
SO P O OO OO oOoOOCOC oo Oo0o
OO P OO OO0 DODODOODDODOoOOOC O OO
SO OO H OO OO OO0
SO R H O OO OOODOOoOOOOoOOOC O OO
il el el el eleleloBeBo o NoRo o oo o« Ne)
= HeNeNeNoRoNoNeoRcoNoNeoNoRoNoNeoNoRoNe Ne)

(=}
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