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Let K be a field of any characteristic and let R be an algebra generated by two
elements satisfying quadratic equations. Then R is a homomorphic image of F =
K�x� y � x2 + ax + b = 0� y2 + cy + d = 0� for suitable a� b� c� d ∈ K. We establish
that F can be embedded into the 2× 2 matrix algebra M2�K�t�� with entries from
the polynomial algebra K�t� over the algebraic closure of K and that F and M2�K�

satisfy the same polynomial identities as K-algebras. When the quadratic equations
have double zeros, our result is a partial case of more general results by Ufnarovskij,
Borisenko, and Belov from the 1980s. When each of the equations has different zeros,
we improve a result of Weiss, also from the 1980s.
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INTRODUCTION

In this article, K is an arbitrary field of any characteristic. All algebras are
unital and over K or over its algebraic closure K.

Initially this project was motivated by results on the minimum number of
idempotents needed to generate various kind of algebras, see, e.g., Roch and
Silbermann [11], Krupnik [8], Kelarev et al. [7], van der Merwe and van Wyk [10],
Goldstein and Krupnik [5]. In particular, Krupnik [8] exhibited three idempotent
matrices which generate Mn�K�. He also showed that any algebra generated by two
idempotents satisfies the standard identity of degree four, and hence Mn�K� cannot
be generated by two idempotent matrices if n ≥ 3. Independently, Weiss [14, 15]
established that if an infinite dimensional algebra R is generated by two idempotents
and K is of characteristic different from 2, then R is isomorphic to a subalgebra of
M2�K�v��.
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It is worthy to study algebras generated by idempotents and nilpotent
elements, and this was another motivation for our project. Van der Merwe and van
Wyk [10, Theorem 2.1] showed that the algebra Mn�K�, n ≥ 2, over an arbitrary field
K can be generated by an idempotent matrix and a nilpotent matrix of index n.

Our third motivation came from the well-developed theory of
(noncommutative) monomial algebras. For an ideal J of the free associative algebra
K�x1� � � � � xd� generated by a finite set of monomials Ufnarovskij [12] associated an
oriented graph and described the growth of the factor algebra K�x1� � � � � xd�/J in
terms of paths in the graph. In particular, the growth of such an algebra is either
polynomial or exponential and its Hilbert series is rational. Borisenko [3] showed
that a finitely presented monomial algebra is of polynomial growth if and only if
it satisfies a polynomial identity. Then for a suitable n it can be embedded into
the matrix algebra Mn�K�t�� over the polynomial algebra K�t�. This allows to treat
successfully the case when the algebra has the presentation

Fp�q � K�x� y � xp = yq = 0�� p� q ≥ 2�

i.e., Fp�q is generated by two elements and the only relations give the nilpotency
of the generators. If q ≥ 3, then it is easy to see (and it follows also from
Ufnarovskij [12]) that the monomials xyx and xy2x generate a free subalgebra of
Fp�q. If p = q = 2, the approach of Ufnarovskij [12] and Borisenko [3] gives that the
algebra F2�2 can be embedded into Mn�K�t�� for a suitable n ≤ 6. Further, Belov [1]
developed the theory of monomial algebras associated with infinite periodic words.
If w = xi1 · · · xim is a monomial, then the algebra Aw has a basis consisting of all
finite subwords of the infinite word

w� = � � � xi1 · · · ximxi1 · · · xim � � � �

and all monomials which are not subwords of w� are equal to 0 in Aw. Again, the
algebra Aw can be embedded into Mn�K�t�� and, additionally, both algebras have
the same polynomial identities. Tracing step-by-step the proof of Belov, one sees
that the algebras F2�2 and Axy are isomorphic and can be embedded into M2�K�t��.
An account of the work of Ufnarovskij, Borisenko, and Belov can be found in the
survey articles by Ufnarovskij [13] and Belov et al. [2]. For a background on PI-
algebras see, e.g., Drensky and Formanek [4].

The purpose of this article is to describe algebras generated by two elements
satisfying quadratic equations. We prove that the algebra with presentation

F = K�x� y � x2 + ax + b = 0� y2 + cy + d = 0�

for suitable a� b� c� d ∈ K can be embedded into the 2× 2 matrix algebra M2�K�t��

with entries from the polynomial algebra K�t� over the algebraic closure of K

and that F and M2�K� satisfy the same polynomial identities as K-algebras. Our
embedding is similar to the embedding obtained by the methods of Belov [1]. As
in Weiss [14, 15] we show that F is a free module of rank 4 over its centre and all
proper homomorphic images of F are finite dimensional.
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Our algebra F is a free product of two two-dimensional algebras,

F = K�x � x2 + ax + b = 0� ∗ K�y � y2 + cy + d = 0��

There is an obvious analogy of F in group theory. The free product of two cyclic
groups

G = �x � xp = 1� ∗ �y � yq = 1�� p� q ≥ 2�

contains a free subgroup if q ≥ 3, and is metabelian (solvable of class 2) if
p = q = 2, see, e.g., Magnus et al. [9, Problem 19, p. 195].

MAIN RESULTS

Let S be any K-algebra. Then S may be considered as a K-subalgebra of
the K-algebra S = K ⊗K S via the embedding s → 1⊗ s, s ∈ S. In particular, we
assume that the free associative algebra K�x1� x2� � � � � is naturally embedded into
K�x1� x2� � � � �. For a K-algebra R we denote by TK�R� the T-ideal of K�x1� x2� � � � �
consisting of all polynomial identities of R. The corresponding notation when R
is a K-algebra is TK�R�. The following fact is well known, see, e.g., Drensky and
Formanek [4, p. 12, Remark 1.2.9(ii)].

Lemma 1. If the field K is infinite, C is a commutative (unital) K-algebra, and
the K-algebra S satisfies a polynomial identity, then S and C ⊗K S have the same
polynomial identities. In particular, S and S = K ⊗K S have the same polynomial
identities and TK�S� = TK�S� ∩ K�x1� x2� � � � �.

We fix �� � = 0 or 1 and elements 	1� 	2� 
1� 
2 ∈ K, 	1� 
1 
= 0. We define the
following 2× 2 matrices with entries in the polynomial algebra K�t�:

X =
(
	2 + �	1 	1t

0 	2

)
� Y =

(

2 0

1t 
2 + �
1

)
� U =

(
� t

0 0

)
� V =

(
0 0
t �

)
�

i.e., X = 	1U + 	2I , Y = 
1V + 
2I , where I is the identity 2× 2 matrix. Direct
computations give

U 2 = �U� V 2 = �V�

XY =
(
�	2 + �	1�
2 + 	1
1t

2 	1t�
2 + �
1�

	2
1t 	2�
2 + �
1�

)
�

YX =
(

2�	2 + �	1� 
2	1t


1t�	2 + �	1� 
1	1t
2 + �
2 + �
1�	2

)
�

�X� Y� = XY − YX = 	1
1t

(
t �

−� −t

)
� �X� Y�2 = 	21


2
1t

2�t2 − ���I�

Proposition 2. The K-subalgebra R generated by X and Y in M2�K�t�� satisfies the
same polynomial identities as the K-algebra M2�K�.
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Proof. Since the algebra R is a K-subalgebra of M2�K�t��, it satisfies all polynomial
identities of M2�K�t��. By Lemma 1 the K-algebras M2�K�t�� and M2�K� have the
same polynomial identities. Hence TK�M2�K�� ⊆ TK�R�.

First, let the base field K be infinite. By Lemma 1, the K-algebras R and
R have the same polynomial identities. Hence, the inclusion in the opposite
direction TK�R� ⊆ TK�M2�K�� would follow if we show that the K-algebra M2�K�
is a homomorphic image of the K-algebra R. It is sufficient to see that the
matrices I� X0 = X�t0�� Y0 = Y�t0�� X0Y0 are linearly independent for some t0 ∈ K.
Equivalently, we may consider the matrices I� U0 = U�t0�� V0 = V�t0�� U0V0. Let t0 ∈
K, t0 
= 0�±1, and let for some �0� �1� �2� �3 ∈ K

0 = �0I + �1U0 + �2V0 + �3U0V0 =
(
�0 + ��1 + t20�3 t0��1 + ��3�

t0�2 �0 + ��2

)
�

We derive consecutively

�2 = 0� �0 = 0� �1 + ��3 = 0� ��1 + t20�3 = 0�

Since �� � = 0� 1 and t0 
= 0�±1, we obtain t20 − �� 
= 0. Hence �1 = �3 = 0 and
I� X0� Y0� X0Y0 are linearly independent and span M2�K� for any t0 
= 0�±1.
Therefore, M2�K� is a homomorphic image of R.

Now, let the field K be finite. We mimic the standard Vandermonde arguments
used in theory of PI-algebras. Let f�x1� � � � � xn� ∈ K�x1� x2� � � � � be a polynomial
identity for the algebra R. Hence f�r1� � � � � rn� = 0 for any r1� � � � � rn ∈ R. We are
interested in the case when r1 ∈ R has the form

r1 = h0I + h1X + h2Y + h3XY�

where hi = hi��X� Y�
2�, i = 0� 1� 2� 3, are polynomials in �X� Y�2 = 	21


2
1t

2�t2 −
���I . In this way, f�r1� � � � � rn� = 0 is an evaluation of g = f�x10 + x11 + x12 +
x13� x2� � � � � xn�. We write g as

g = g�x10� x11� x12� x13� x2� � � � � xn� =
m∑
j=0

gj�x10� x11� x12� x13� x2� � � � � xn��

where gi�x10� x11� x12� x13� x2� � � � � xn� is the homogeneous component of g of degree
j in x10. Evaluating f on

r1 = �X� Y�2iI + h1X + h2Y + h3XY� r2� � � � � rn ∈ R�

we obtain

f�r1� � � � � rn� = g��X� Y�2iI� h1X� h2Y� h3XY� r2� � � � � rn�

=
m∑
j=0

�X� Y�2ijgj�I� h1X� h2Y� h3XY� r2� � � � � rn�
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=
m∑
j=0

�	21

2
1t

2�t2 − ����ijgj�I� h1X� h2Y� h3XY� r2� � � � � rn�

= 0�

For i = 0� 1� � � � � m, we obtain m+ 1 equations which form a linear homogeneous
system with unknowns gj�I� h1X� h2Y� h3XY� r2� � � � � rn�, j = 0� 1� � � � � m. Its
determinant � is equal to the Vandermonde determinant with entries

vij = �	21

2
1t

2�t2 − ����ij� i� j = 0� 1� � � � � m�

and is different from zero because the elements v1j are pairwise different. Therefore,
the zero solution

gj�I� h1X� h2Y� h3XY� r2� � � � � rn� = 0� j = 0� 1� � � � � m�

is the only solution of the system over the field of rational functions K�t� and hence
also over K�t�. This means that the homogeneous component gj of degree j in x10 of
the polynomial identity g�x10� x11� x12� x13� x2� � � � � xn� of R vanishes when evaluated
for

x10 = I� x11 = h1X� x12 = h2Y� x13 = h3XY� x2 = r2� � � � � xn = rn�

With the same arguments, we conclude that the multihomogeneous components
g�i0�i1�i2�i3� of g of degree �i0� i1� i2� i3� in �x10� x11� x12� x13� vanish when evaluated for

x10 = I� x11 = X� x12 = Y� x13 = XY� x2 = r2� � � � � xn = rn�

Since I� X� Y�XY are linearly independent in M2�K�t��, they form a basis over K�t�,
and every element s1 in M2�K�t�� has the form

s1 = h0I + h1X + h2Y + h3XY� h0� h1� h2� h3 ∈ K�t��

Hence

f�s1� r2� � � � � rn� = f�h0I + h1X + h2Y + h3XY� r2� � � � � rn�

= g�h0I� h1X� h2Y� h3XY� r2� � � � � rn�

= ∑
g�i0�i1�i2�i3��h0I� h1X� h2Y� h3XY� r2� � � � � rn�

= ∑
h
i0
0 h

i1
1 h

i2
2 h

i3
3 g�i0�i1�i2�i3��I� X� Y�XY� r2� � � � � rn�

= 0

for any s1 ∈ M2�K�t��, r2� � � � � rn ∈ R. Continuing in this way, we conclude that
f�s1� s2� � � � � sn� = 0 for any s1� � � � � sn ∈ M2�K�t�� and f�x1� � � � � xn� is a polynomial
identity for M2�K�t��. Hence TK�R� = TK�M2�K�t���. Since the field K�t� is infinite,
Lemma 1 gives

TK�t��M2�K�t��� = TK�t��M2�K�t���� TK�M2�K�t��� = TK�M2�K���
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and this implies TK�R� = TK�M2�K�� because

TK�R� = TK�M2�K�t��� = TK�t��M2�K�t��� ∩ K�x1� x2� � � � �
= TK�t��M2�K�t��� ∩ K�x1� x2� � � � �
= TK�M2�K�t��� ∩ K�x1� x2� � � � �
= TK�M2�K�� ∩ K�x1� x2� � � � �
= TK�M2�K���

�

Now we shall prove the main result of our article.

Theorem 3. Let K be a field of any characteristic, and let a� b� c� d be arbitrary
elements of K. Then the algebra

F = K�x� y � x2 + ax + b = 0� y2 + cy + d = 0�

can be embedded into M2�K�t��. The algebras F and M2�K� satisfy the same polynomial
identities as K-algebras.

Proof. Step 1. The equation f�x� = x2 + ax + b = 0 has two zeros 
1� 
2 in an
extension of K and f�x� = �x − 
1��x − 
2� in K�x�. If 
1 = 
2, we change the
variable x in K�x� by x = u+ 
1 and obtain that f�x� = u2. Similarly, if 
1 
= 
2,
we change x by x = 	1u+ 	2, 	1 = 
2 − 
1� 	2 = 
1 in K. Then f�x� = 	21�u

2 − u� =
�a2 − 4b��u2 − u�. Hence, working in the K-algebra

F = K�x� y � x2 + ax + b = 0� y2 + cy + d = 0��

which contains F , we may assume that it is generated by u and v such that either
u2 = 0 or u2 = u, and similarly, either v2 = 0 or v2 = v. Hence F = K ⊗K F has the
presentation

F = K�u� v � u2 = �u� v2 = �v��

where �� � = 0� 1. As a K-vector space F is spanned on the monomials

1� �uv�p� �vu�p� p ≥ 1� �uv�qu� �vu�qv� q ≥ 0�

(It follows from the general theory of free products or of Gröbner bases that these
elements form a K-basis of F .)

Step 2. We consider the matrices

U =
(
� t
0 0

)
� V =

(
0 0
t �

)
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in M2�K�t��. As in Step 1, we choose 	1� 	2� 
1� 
2 ∈ K, 	1� 
1 
= 0, such that the
matrices

X = 	1U + 	2I� Y = 
1V + 
2I

satisfy the equations X2 + aX + bI = 0, Y 2 + cY + dI = 0. Let R be the K-
subalgebra of M2�K�t�� generated by X and Y . The K-subalgebra R of M2�K�t�� is
generated also by U and V . Since U 2 = �U , V 2 = �V , the mapping

u → U� v → V

extends to a homomorphism � of the K-algebra F to the K-algebra R.

Step 3. Direct computations give that

�UV�p =
(
t2p �t2p−1

0 0

)
= t2�p−1�UV� �VU�p =

(
0 0

�t2p−1 t2p

)
= t2�p−1�VU�

�UV�qU =
(
�t2q t2q+1

0 0

)
= t2qU� �VU�qV =

(
0 0

t2q+1 �t2q

)
= t2qV�

Hence the maximum degree in t of the entries of a nonzero monomial of degree k
in U� V is equal to k.

Step 4. If the homomorphism � � F → R is not an isomorphism, the kernel
of � contains a nonzero element of F

f�u� v� = 	0 +
∑
p≥1

�	1p�uv�
p + 	2p�vu�

p�+∑
q≥0

�
1q�uv�
qu+ 
2q�vu�

qv��

	0� 	ip� 
iq ∈ K. If degu�v�f� = 2k, then at least one of the coefficients 	1k and 	2k is
different from 0. The diagonal entries of the matrix f�U� V� contain, respectively,
the monomials 	1kt

2k and 	2kt
2k. At least one of these monomials is nonzero and

does not cancel with any other monomial of the corresponding entries of f�U� V�.
Similarly, if degu�v�f� = 2k+ 1, then the entries of the other diagonal of the matrix
f�U� V� contain, respectively, the monomials 
1kt

2k+1 and 
2kt
2k+1. Again, at least one

of these monomials is nonzero and does not cancel with other monomials at the
same position. This implies that � is an isomorphism and F can be embedded into
M2�K�t��. This completes the proof in virtue of Proposition 2. �

As in Weiss [14, 15] the algebra F is a free module of rank 4 over its centre.
We can extend Theorem 3 to arbitrary infinite dimensional algebras generated by
two quadratic elements.

Theorem 4. Let

F = K�x� y � x2 + ax + b = 0� y2 + cy + d = 0��

(i) The centre C�F� of F is isomorphic to the polynomial algebra in one variable and
F is a free C�F�-module of rank 4 generated by 1� x� y� xy.

(ii) All proper ideals of F are of finite codimension in F .
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Proof. (i) We work with the matrix representation of F as the K-subalgebra R of
M2�K�t�� generated by the matrices

X =
(
	2 + �	1 	1t

0 	2

)
� Y =

(

2 0

1t 
2 + �
1

)
�

The Cayley–Hamilton theorem gives

�X + Y�2 − �tr�X + Y���X + Y�+ det�X + Y�I = 0�

�X + Y�2 − �2�	2 + 
2�+ �	1 + �
1��X + Y�

+ ��	2 + 
2 + �	1��	2 + 
2 + �
1�− 	1
1t
2�I = 0�

Using that in F

x2 + ax + b = 0� y2 + cy + d = 0�

which become in R

X2 − �2	2 + �	1�X + 	2�	2 + �	1�I = 0�

Y 2 − �2
2 + �
1�Y + 
2�
2 + �
1�I = 0�

we obtain

XY + YX + cX + aY + f�t2�I = 0� f�t2� ∈ K�t2��

Hence the element

Z = XY + YX + cX + aY ∈ R

belongs to the centre of R. The equations

X2 = −�aX + bI�� Y 2 = −�cY + dI�� YX = −�cY + dI�cX − aY − XY

allow to express every element of R as a linear combination of I� X� Y�XY with
coefficients from K�Z�, i.e., R is a 4-generated K�Z�-module. It is easy to see that
this module is free and the centre of R coincides with K�Z�. Going back to F , we
obtain that

C�F� = K�z�� z = xy + yx + cx + ay

and F is a free C�F�-module freely generated by 1� x� y� xy. In the special case
X = U , Y = V , the above formulas are quite simple:

�U + V�2 − ��+ ���U + V�+ ���− t2�I = 0�

Z = XY + YX − �U − �V = �t2 − ���I ∈ C�R� �
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and the elements of R and the multiplication rules between them are given by

W = �0Z + �1U + �2V + �3UV� Z = �t2 − ���I� �i ∈ K�Z��

U 2 = �U� V 2 = �V� VU = −�U − �I��V − �I�+ t2I�

(ii) If J is an ideal of R, then J is an ideal of R and the codimensions of J
in R as a K-vector space and of J in R as a K-vector space are the same. Hence we
may work in R and show that J is of finite codimension in R. Let

0 
= W = �0I + �1U + �2V + �3UV ∈ J� �i ∈ K�Z��

We shall show that J contains a nonzero central element W0 = �I , � ∈ K�Z�. Hence,
modulo J , the elements of R have the form

�0I + �1U + �2V + �3UV� �i ∈ K�Z�� degZ�i < degZ��

and the factor algebra R/J is finite dimensional. This is true if �1 = �2 = �3 = 0 in
the presentation of the element W ∈ J . Hence, we may assume that W is not central.
Direct computations give

�W�U�2 = �2��2 + ��3�t
2�t2 − ���I� �W� V�2 = �1��1 + ��3�t

2�t2 − ���I�

Hence, if �1� �2� �2 + ��3� �1 + ��3 
= 0, then J contains a nonzero central element.
We have to consider three more cases:

(1) �1 = �2 = 0. Hence �3 
= 0 and �W�U + V�2 = �2
3t

2���− t2�I 
= 0;
(2) �1 = 0, � = 1, �2 = −�3 
= 0. Then �W�U + V�2 = �2

3t
2��− t2�I 
= 0. The case

�2 = 0, � = 1, �1 = −�3 
= 0 is similar;
(3) � = � = 1, �1 = �2 = �3 
= 0. Then �W�U + V�2 = �2

3t
4�1− t2�I 
= 0.

In all the cases, J contains a nonzero central element and hence is of finite
codimension in R. �

Remark 5. An embedding similar to that in Theorem 3 appears also in group
theory. For example, it is well known that for t ∈ �, t ≥ 2, the matrices

U =
(
1 t

0 1

)
� V =

(
1 0
t 1

)

generate a free subgroup of SL2���.

Remark 6. Our embedding of the monomial algebra

F = K�x� y � x2 = 0� y2 = 0�
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is the same as the embedding which follows from the proof of Belov [1]. When the
characteristic of K is different from 2, the embedding of Weiss [14, 15] into M2�K�v��
of the algebra

F = K�x� y � x2 = x� y2 = y�

generated by two idempotents is given by the formulas

x →
(
1+ v t

1 1− v

)
� y →

(
1+ v −t

−1 1− v

)
�

where t = 1− v2. (In fact these matrices are idempotents only up to a multiplicative
constant because they satisfy the equations x2 = 2x and y2 = 2y. Clearly, this is not
essential for the embedding of F into M2�K�v��.) Then F is isomorphic to the algebra
of matrices of the form (

f1 + f3v t�f2 − f4v�

f2 + f4v f1 − f3v

)
�

where fi ∈ K�t�. Hence our embedding of F is simpler than that of Weiss.

Remark 7. Fixing an admissible ordering on the set of monomials �x1� � � � � xd�,
the transfer of combinatorial results for a monomial ideal J of K�x1� � � � � xd� to
an arbitrary ideal of K�x1� � � � � xd� with the same set of leading monomials as J
does not hold automatically. For example, Irving [6] showed that the algebra with
presentation

B = K�x� y � x2 = 0� yxy = x�

satisfies the polynomial identities of Mn�K� (or of Mn�K� if K is finite) for a suitable
n but cannot be embedded into any matrix algebra Mk�C� over a commutative
algebra C. More precisely, it follows from his proof that B satisfies the polynomial
identity �x1� x2��x3� x4��x5� x6� = 0 which as is well known generates the T-ideal of
the 3× 3 upper triangular matrices. Hence B satisfies all polynomial identities of
M3�K� (or of M3�K� if K is finite). As a vector space B has a basis consisting of
ya� yax� xya+1� xya+1x, a ≥ 0, which is the same as of the monomial algebra

B0 = K�x� y � x2 = 0� yxy = 0��

By the result of Borisenko [3] the algebra B0 can be embedded into a matrix algebra
over K�t�. It is interesting to mention that B0 can be realized as a homomorphic
image of a subalgebra of M3�K�t�� in the following way. Let S be the algebra
generated by

X =


0 1 0
0 0 1
0 0 0


 � Y =



0 0 0
0 t 0
0 0 0


 �
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Then YXY = 0. Every vector subspace of K�t�e13 is an ideal of S. Choosing

J = tK�t�e13 =


0 0 tK�t�

0 0 0
0 0 0


 �

we obtain that X2 ∈ J , and it is easy to see that B0 � S/J .
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