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abstract: Patterns in species incidence and compositional turnover
are central to understanding what drives biodiversity. Here we pro-
pose zeta (z) diversity, the number of species shared by multiple
assemblages, as a concept and metric that unifies incidence-based
diversity measures, patterns, and relationships. Unlike other mea-
sures of species compositional turnover, zeta diversity partitioning
quantifies the complete set of diversity components for multiple
assemblages, comprehensively representing the spatial structure of
multispecies distributions. To illustrate the application and ecological
value of zeta diversity, we show how it scales with sample number,
grain, and distance. Zeta diversity reconciles several different bio-
diversity patterns, including the species accumulation curve, the spe-
cies-area relationship, multispecies occupancy patterns, and scaling
of species endemism. Exponential and power-law forms of zeta di-
versity are associated with stochastic versus niche assembly processes.
Zeta diversity may provide new insights on biodiversity patterns, the
processes driving them, and their response to environmental change.

Keywords: macroecology, beta diversity, occupancy, distance decay,
scaling, turnover.

Introduction

Spatial variation in the presence or absence of species in
assemblages, or compositional diversity, underpins the
study of biodiversity. One of the main hurdles to under-
standing relationships between various theories of biodi-
versity is differences in mathematical language and the lack
of unified sets of equations (McGill 2010). There is cur-
rently no single measure that connects the range of
assemblage patterns constructed from species presence-
absence, or “incidence,” data. This prevents the mathe-
matical relationships between them from being formu-
lated. By providing a common currency, a single measure
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would have significant advantages for modeling and un-
derstanding the mechanistic basis of spatial patterns in
diversity. The integration of biodiversity models in this
way is a central goal of ecology (Scheiner and Willig 2008).

How and why biodiversity changes between sites and
habitats, and the consequences of this variation, are often
examined through species richness and composition per se.
Measures of spatial variation in the compositional similarity
of assemblages are commonly based on b diversity. These
are derived from partitioning regional g diversity into a

and b components and use either Whittaker’s (1960) mul-
tiplicative (b p g/a) or Lande’s (1996) additive (g p a �
b) diversity partitioning. A range of assemblage patterns,
such as species-area relationships, interspecific range size
distributions, and patterns of rarity and endemism, are also
used (Gaston and Blackburn 2000; McGill 2010).

All existing measures of compositional similarity and
difference were originally derived for pairwise comparisons
of individual assemblages (sites, samples, or areas), re-
gardless of the partitioning approach used (Jost et al. 2011;
McGlinn and Hurlbert 2012). When comparisons of three
or more assemblages are involved, the average of the pair-
wise similarities is used. As a result, none of the metrics
of presence-absence (incidence)-based species turnover
across sites is able to calculate all diversity components.
In other words, the diversity components of three or more
assemblages cannot all be expressed with only a and b.
For example, in a three-assemblage case, the species shared
exclusively by pairs of assemblages within the comparison
cannot be calculated from only a and b, and neither can
the species shared by all three assemblages. As a result,
pairwise metrics are not sufficient for representing assem-
blage similarity across multiple sites (Chao et al. 2008).

The few existing multiple-assemblage, incidence-based
measures have shortcomings (Koch 1957; Diserud and
Ødegaard 2007). These include (1) inference problems as
a consequence of averaging nonindependent pairwise val-
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Figure 1: Recursive diagram of diversity partitioning across multiple
assemblages (sites or samples). Initially, there are S� unknown species
in the assemblage (lower left). With an increase in number of samples,
the number of unknown species gradually declines to S� � Sn. With
each site added, F1, n/n new species are added to the species inventory,
and the cumulative number of known species increases from Sn � 1

to Sn. The addition of a site also increases by 1 the occupancy of
some discovered species, while the occupancy of other discovered
species remains unchanged (those that do not occur in the newly
added site). The Venn diagram inset shows the diversity partitioning
of three assemblages with species partitioned into seven disjoint sets
(components A–G). Let AB represent the joint set of species in com-
ponents A and B and FAF the number of species in component A.
Using the z component definition, z1 p (FABCDF � FEFBCF �
FGFCDF)/3, z2 p (FBCF � FCDF � FFCF)/3, and z3 p (FCF); the
number of species newly discovered in one, two, and three samples
are S1 p z1, S2 p (FABCDEFF � FEFCBDGF � FGFCDABF)/3 p
2z1 � z2, and S3 p FABCDEFGF p 3z1 � 3z2 � z3, respectively;
also, F1, 3 p FAEGF p 3z1 � 6z2 � 3z3, F2, 3 p FBDFF p 3z2 �
3z3, and F3, 3 p z3. As z3 represents a unique diversity component,
it cannot be expressed as a function of z1 and z2 (the b-diversity
component) only.

ues and (2) the fact that when the number of sites con-
sidered is large, the values become less reliable and more
difficult to interpret (Jost 2007). Another approach used
for accommodating multiple samples in comparisons is
incremental pooling of nested samples or areas by means
of a hierarchical sample design (Crist et al. 2003). This
approach has contributed significantly to understanding
how b diversity changes with spatial scale, but it does not
also allow for complete partitioning of diversity compo-
nents across multiple assemblages. Ideally, the diversity
metric should show how species incidence and turnover
vary continuously with the addition of independent or
nested sites across space.

Here we propose zeta (z) diversity as a concept and
metric that captures all diversity components produced by
assemblage partitioning. As a result, it reconciles existing
descriptors of species incidence and compositional turn-
over. We illustrate the scale dependence of z diversity by
showing how it changes with sampling grain and extent,
and we relate this to hierarchical b diversity partitioning
and to the distance decay of similarity. Using 291 real
species-by-site matrices (Atmar and Patterson 1995), we
identify the most common forms of z diversity (power
law and exponential), the ecological implications of these,
and their relationship with incidence-based assemblage
patterns. We also show how z diversity can be used to
produce general formulas for a range of biodiversity pat-
terns. These include sample-based species accumulation
curves, the endemics-effort relationship, and the diverse
forms of species occupancy frequency distributions. We
conclude by recommending z diversity as a concept and
metric that unifies incidence-based biodiversity patterns.
The use of z diversity may provide new insights about the
drivers of species composition and turnover, co-occur-
rence, community assembly processes, and the conse-
quences of environmental change for biodiversity.

Zeta Diversity Partitioning

Let the z component, zi, be the mean number of species
shared by i sites (fig. 1). Note that z1 (where i p 1) is
simply the mean number of species across all sites. Since
species shared by i sites will necessarily be among those
shared by i � 1 sites, the number of shared species zi

declines monotonically with i. All incidence-based, pair-
wise b diversity metrics can be expressed with z1 and z2.
However, with three or more sites, the diversity compo-
nents (e.g., A–G in the inset of fig. 1, where a component
[or partition] is the subset of species shared by a particular
set of sites; Lande 1996) cannot all be estimated with a

and pairwise b components only (i.e., z1 and z2). The
higher-order z components are needed to do so.

This procedure for diversity partitioning can be illus-

trated in a cumulative and recursive way (fig. 1). Let Sn

be the total number of species across n sites and Fi, n the
number of species that occupy i sites out of the total n
sites surveyed. Using the inclusion-exclusion principle (see
“Incidence-Based Zeta Diversity Partitioning” in the ap-
pendix, available online), the following general formulas
can be derived deductively using z components:

n

k�1 kS p (�1) 7 C 7 z , (1)�n n k
kp1

n�i�1

i k�1 k�1F p C 7 (�1) 7 C 7 z , (2)�i, n n n�i i�k�1
kp1

where (p n!/[i!(n � i)!]) is the number of combina-iCn

tions of choosing i from n sites and k is the standard index
of summation.

Adding one extra site to a survey with n � 1 sites will
add F1, n/n new species (fig. 1). A species occupying i sites
is either present in the new site (i.e., now occupies i � 1
sites) or absent from it (i.e., its occupancy remains i sites).
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This means that the number of species in the region (S�),
with the number of surveyed sites increasing to infinity,
can be estimated as follows (see “Incidence-Based Zeta
Diversity Partitioning” in the appendix):

�
F1, kS p S � . (3)�� n kkpn�1

When sampling within a habitat or region, the number of
unique species per sample F1, n/n declines monotonically
with n. If the series !F1, n/n1 is mathematically convergent
to 0 (meaning that the limit of is finite, as it� (F /n)1, n

would be for a clearly delimited sampling extent), there
will be an asymptote to S�; otherwise, there will be no
asymptote. z diversity thus represents the first approach
for analyzing continuous changes in multispecies occu-
pancy (presence-absence) and turnover across discrete, in-
dependent sites.

Zeta Diversity, Sample Number, Grain, and Distance

In the previous section, we expressed z as a function of
the number of sites or samples (i). However, z can also
be expressed as a function of other survey design param-
eters, such as distance, area, or grain, and for either ag-
gregate (including hierarchical, nested) or independent
sampling schemes (sensu Scheiner et al. 2011). z diversity
relationships can therefore be used for estimating sampling
completeness, for understanding how diversity is affected
by the spatial properties of the samplings scheme (grain,
distance, and extent), and for analyzing multiscale patterns
of species diversity (Veech and Crist 2010; McGlinn and
Hurlbert 2012). Here we examine the form of the rela-
tionship between z diversity and these ecologically relevant
parameters.

Zeta Diversity Decline with Sample Number

The number of species shared by samples declines mon-
otonically with sample number (i). However, the exact
form of the relationship between z diversity and i (here-
after, “z diversity decline”) is variable. We examined the
fit of seven parametric models to z diversity decline with
increasing sample number, using 291 empirical species-
by-site matrices (Atmar and Patterson 1995) and the ad-
justed R2 (see “Form of the Relationship between Zeta
Diversity and Sample Number (Zeta Decline)” in the ap-
pendix). The power law provided the best fit in 57% (167)
of cases and the exponential in a further 26% (76) of cases
(fig. A1; figs. A1–A3 available online), with the selected
model fitting extremely well (adjusted R2 1 0.95 for all
matrices; adjusted R2 1 0.99 for more than 80% of the
matrices; supplementary table, available online). Together,

these two forms accounted for more than 80% of observed
relationships. As a result, here we discuss only the impli-
cations of these two specific forms of z diversity decline
for incidence-based biodiversity patterns. The exponential
and power-law forms of z diversity decline are under-
pinned by distinct hypotheses about ecological process;
that is, they represent species turnover as either largely
stochastic (exponential z) or driven principally by niche
differentiation processes (power-law z; Munoz et al. 2008;
Scheiner et al. 2011).

First, the probability that a species shared by i � 1 sites
is also found to be shared by i sites can be expressed as
the z component ratio, zi/zi�1. If this probability is inde-
pendent of i (e.g., z2/z1 p z101/z100), then the form of z

diversity decline is exponential (p a 7 e�b 7 i; fig. 2A). This
means that with every new site, the chance of an already
discovered species being found again in the new site does
not depend on the species’ current occupancy. Species with
high or low regional occupancy will have, counterintui-
tively, an equal chance of being found in the new site. A
null model with all the species having the same probability
of occurring in a site, regardless of the heterogeneity across
sites, will produce this exponential form of z diversity
decline. In this null model, the predicted number of oc-
cupied sites is the same for all species, and variation in
realized occupancy and turnover arises from stochastic
species assembly. This can happen, for example, when spe-
cies with relatively similar or large range sizes overlap spa-
tially to form a local assemblage or where strong envi-
ronmental flows (wind or water) result in stochastic
establishment of propagules and occurrence patterns (fig.
2A).

Alternatively, if the z component ratio (zi/zi � 1) is de-
pendent on i, in most cases increasing with i (e.g., z2/z1 !

z101/z100), this means that the chance of finding a common
species in a new site is larger than finding a rare one. This
case is consistent with the scale-heritage assumption,
which holds when each species in the community has an
occupancy status that is partially inherited across spatial
scales (Hui and McGeoch 2008). In other words, the status
of a species as either common or rare, based on current
sampling effort, is a useful predictor of its likely occupancy
status with the addition of new sites. The simplest two-
coefficient model of z diversity that exhibits this scale-
heritage property is the power law, zi p c 7 i�d (fig. 2B).
Null models for the species-by-site matrix with species
differing in their probability of occupying a site (e.g., spe-
cies have different site or habitat preferences) commonly
produce this power-law form of the z diversity decline
with sample number. Communities with nonrandom co-
occurrence patterns, such as those with clear niche or
range differentiation, and competitively structured com-
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Figure 2: A, B, The two dominant forms of z decline (the relationship between z and sample number i): the exponential (A) and the power
law (B). A, Freshwater fish in the Greenbrier River, West Virginia, with 35 species occurring in 30 sites (1; Hocutt et al. 1978); 41 marine
fouling organisms on 12 tile plates (2; Sutherland and Karlson 1977). B, 20 # 20-m quadrate samples of 307 tree species in the 50-ha plot
on Barro Colorado Island (3; Condit 1998; Hubbell et al. 1999, 2005); quarter-degree cells of 761 bird species in southern Africa (4; Harrison
et al. 1997). C, The z scaling relationship (z-diversity as a function of sampling grain a [in m]). D, The distance decay of z diversity (average
distance between samples u [in m] due to expanding sampling extent) for data set 3 in B. Lines from top to bottom in C, indicated by
the arrow, are for z1–z10; those in D are for z2–z5 at a grain of 20 m # 20 m.

munities would be expected to have a power-law form of
z diversity decline (fig. 2B).

Zeta Diversity Scaling with Sample Grain

As with all biodiversity metrics, z diversity is sensitive to
the scale at which a study is conducted, that is, the grain
and extent (Scheiner et al. 2011). When sampling grain

increases, the species richness in each sample and the num-
ber of species shared by multiple samples will increase (fig.
2C). This incremental pooling of samples to form larger
sampling grains, so that samples at the finest grain are
nested within samples forming larger grain sizes, is termed
a “hierarchical sample design.” Crist et al. (2003) and Crist
and Veech (2006) used such a design in their framework
for b diversity partitioning. The general form of z diversity
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when pooling m samples to form n larger grain clusters
in this way (see “Zeta Diversity Scaling with Sample Grain
and Hierarchical Diversity Partitioning” in the appendix)
is

n
xjn#m � � Cmx ≥1,Sj x pkj jp1

z (m) p F . (4)�n k, n#mkCkpn n#m

This provides the general form of the relationship between
z diversity and sample grain, or the “z diversity scaling
relationship” (fig. 2C). The number of species shared by
two clusters, that is, the hierarchical partitioning of b di-
versity, where the first cluster is formed by pooling m1

samples and the second by pooling another m2 samples
(see “Zeta Diversity Scaling with Sample Grain and Hi-
erarchical Diversity Partitioning” in the appendix) is

k�1 i k�im �m1 2 � C Cm mip1 1 2

z (m , m ) p F . (5)�2 1 2 k, m �mk 1 2Ckp2 m �m1 2

If we define and , then Crist andz (m ) p S z (m ) p S1 1 m 1 2 m1 2

Veech’s (2006) hierarchical b diversity partitioning can be
expressed using z diversity. Both b and z diversity com-
ponents are nonindependent across hierarchical levels, or
nested sample grains, because they represent part-to-whole
associations (sensu Scheiner et al. 2011). Nonetheless, z

diversity scaling can also be used for nonhierarchical sam-
pling schemes, to better understand how diversity changes
across spatial scales and, for example, the contribution of
different habitats to regional diversity (Veech and Crist
2010).

Zeta Diversity Decay with Distance

An increase in the distance between samples or the average
distance between random samples (see “Zeta Diversity De-
cay with Distance” in the appendix) results in a decline
in the similarity of species composition (fig. 2D). This is
known as the “distance decay of similarity” in applied
ecology and biogeography (Nekola and White 1999; re-
lated to the n-point correlation function in physics [for
n p 2]; e.g., Weinberg 1996). Distance decay relationships
are valuable for estimating the rate of species turnover
with distance and the importance of dispersal in driving
the similarity of species assemblages at various scales (Qian
and Ricklefs 2012). Traditionally, b diversity, for example,
using the Jaccard index, is plotted against distance. z di-
versity can be used in a similar way and is likely to provide
a more accurate estimate of the rate of species turnover
with distance.

To formulate how z diversity decays with the increase
in the mean distance between random samples, we used
pair approximation from statistical physics. This is used

to convert the spatial structures of species distributions to
correlations between adjacent samples. As in Hui et al.
(2006), the number of species shared by two random sam-
ples an average distance of u apart is

z (u) p zQ(u), (6)2 1

where Q(u) is an iterative function with Q(0) p 1 and
Q(1) p z2/z1 (see “Zeta Diversity Decay with Distance”
in the appendix for the full formulation). A direct for-
mulation of zn(u) for n ≥ 3 is rather formidable, and indeed
higher-order n-point correlation functions tend to be used
only in complicated fields of physics (e.g., in quantum
field theory; Weinberg 1996). Instead, we formulate
higher-order zn(u) (see “Zeta Diversity Decay with Dis-
tance” in the appendix; fig. 2D), using the Bayesian rule
for inferring the presence/absence of a species in additional
samples, given its occurrence in known samples.

In summary, the scale dependence of species turnover
is well known, but the specific forms of these scaling re-
lationships are not well established and remain central to
understanding diversity dynamics and its context depen-
dence (Soininen et al. 2007; McGlinn and Hurlbert 2012).
Here we provide the general form of z diversity relation-
ships with scale. The z diversity component zi(u) declines
with both the number of sites i (z diversity decline) and
the average distance between random sites u (distance de-
cay of similarity) and increases with grain (z diversity scal-
ing; figs. 2, A2).

Zeta Diversity and Incidence-Based
Biodiversity Patterns

z diversity can be used to derive several familiar and com-
monly used biodiversity descriptors and macroecological
relationships. These include (1) the species accumulation
curve (SAC), used to estimate species richness and the
number of samples needed to achieve reliable richness
estimates and richness comparisons (Colwell et al. 2004),
(2) the endemics-effort relationship (EER), used to quan-
tify the level of endemism and the sensitivity of local ex-
tinctions to habitat loss (Green and Ostling 2003; Storch
et al. 2012), and (3) the occupancy frequency distribution
(OFD), used to examine interspecific patterns in species
range sizes (McGeoch and Gaston 2002; Hui and McGeoch
2007a). To illustrate the value of z diversity, below we show
how z diversity informs debates about these relationships
and the patterns in biodiversity that they represent.

Species Accumulation Curves

The SAC based on z components (eq. [1]) not only pro-
vides a general formula for forecasting species discovery
with increasing effort but also illustrates how species turn-
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Figure 3: Species accumulation curves Si (A, B), endemics-effort relationships Ei, n (C, D), and occupancy frequency distributions Fi, n (E,
F) derived for the negative exponential form (A, C, E) and the power-law form (B, D, F) of z diversity based on equations (1), (8), and
(2), respectively, with a p 100, c p30, n p 20, and the values of b or d being 2/3, 3/4, 1, 4/3, and 3/2 for curves moving along directions
of the arrow in each plot.

over affects the exact form of the SAC. z diversity provides
a general estimator of richness for any particular number
of samples (or areas; see below) without the need to as-
sume the existence of an asymptote. The parameter Sn

provides the SAC for n samples (or sites; eq. [1]). With
an exponential form of z diversity decline, the series
!F1, n/n1 is convergent and the SAC has an asymptote (fig.
3A). Under this specific form of z diversity decline, the

regional species richness can be specified with equation
(3), which gives

2n � 1 F1, nS p S � p S , (7)� n Chao2n 2F2, n

where SChao2 is the Chao2 estimator that provides the re-
gional species richness for n samples (sites; Chao 1984).
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Figure 4: Relationship between the coefficient d of the power-law form of z diversity and the exponent z for the Arrhenius species-area
relationship (SAR). Crosses represent estimates of z based on equation (1) for d ranging from 1/4 to 3. The z-d relationship can be
complicated but resembles a polynomial function, z p �0.024d2 � 0.286d, for large values of n (see “Zeta Diversity Decline and the
Species-Area Relationship” in the appendix, available online). The inset shows the histogram of 167 estimates of d for the power-law form
of z diversity, selected from 291 empirical species-by-assemblage matrices (supplementary table, available online) with the adjusted R2.
Dashed lines indicate the geometric mean of the inset histogram (0.96) and the corresponding z exponents (0.25) and the lower and upper
95% confidence intervals (details of estimates and related statistics are available in the supplementary table).

The general estimator of regional species richness (eq. [3])
therefore includes the Chao2 estimator as a special case.
By contrast, the conditions of the power-law form of z

diversity imply that the series !F1, n/n1 is not convergent,
and therefore there is no asymptote to the regional SAC
(i.e., S� is unbounded; fig. 3B). The difference between z

diversity and nonparametric richness estimators such as
Chao2 is that with z diversity, estimates are based on
changes in the composition of both common and rare
species across samples and not only on the frequencies of
rare species.

When the SAC is derived from a hierarchical sample
design, it is equivalent to the species-area relationship
(SAR; Chase and Knight 2013). Efforts to describe the
shape of empirical SARs (Drakare et al. 2006; Dengler
2009) have to date mostly involved curve fitting (but see
He and Legendre 1996, 2002). A general formula for sam-
ple-based SARs that describes the range of forms of the
relationship has been lacking (Gotelli and Colwell 2011),
except under specific conditions (Colwell et al. 2004). With
exponential z diversity decline, the SAR follows Fisher et
al.’s (1943) “limiting form”: Sn p a[1 � (1 � e�b)n] (fig.
3A). When z diversity decline follows a power law (zi p

c 7 i�d; see “Zeta Diversity Decline and the Species-Area
Relationship” in the appendix), the SAR resembles Ar-
rhenius’s (1920) power-law form, Sn ∼ nz. Based on the
167 empirical species-by-site matrices fitting the power-
law form of z diversity (supplementary table), the coef-
ficient d ranges from 0.38 to 2.32, with a geometric mean
at 0.96. From this we estimate the SAR exponent z to range
between 0.11 and 0.53, with a mean of 0.25 (fig. 4), con-
sistent with empirical results (Drakare et al. 2006). The
SAR generated from z diversity therefore encompasses
both Fisher et al.’s (1943) negative exponential form and
Arrhenius’s (1920) power-law form, with the power-law
exponent predicted to center around 0.25.

z diversity can also be used to examine the empirical
relationship between the SAR and species turnover (as
Sizling et al. 2011 and Grilli et al. 2012 did for b diversity).
The relationship between the exponent z and the coeffi-
cient d of z diversity follows the general form z p ln(Sn/
Sn � 1)/ln(n/(n � 1)), from equation (1). It is complicated
to specify the exact form for larger n (fig. A3), but the
general form resembles a polynomial function (fig. 4).
Tjørve and Tjørve’s (2008) formula of pairwise species
turnover as a function of the exponent (z), z2/z1 p 2 �
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2z, becomes a special case of the general form using z for
n p 1 (see “Zeta Diversity Decline and the Species-Area
Relationship” in the appendix). This particular expression
is dependent on the number of samples and applies only
when species distributions are scale invariant (McGlinn
and Hurlbert 2012).

The Endemics-Effort Relationship

Patterns in species endemism, essential to effective con-
servation planning (Green and Ostling 2003; Sandel et al.
2011), can also be examined with z diversity. The endem-
ics-area relationship was originally formulated as the num-
ber of species confined to smaller patches within a larger
biome (Kinzig and Harte 2000). Here we express the num-
ber of endemics, using z diversity as a function of the
number of sites sampled rather than of area per se. As we
have shown above, area, grain, or distance can also be
used. Let Ei, n be the number of locally endemic species.
These are species that occur only in the selected i sites
within the total n sites surveyed. When n approaches in-
finity, Ei, n will converge toward the number of globally
endemic species, Ei (He and Legendre 2002; Green and
Ostling 2003). Because of logistic constraints on sampling
effort (which increase as n approaches infinity), the
endemics-effort relationship (EER) is usually referred to
as the number of locally endemic species (i.e., Ei, n), which
is a function of the number of selected i sites. For selected
i sites within a total of n sites surveyed, the number of
local endemics (i.e., the local EER) can be expressed as

i n
F Fk, n 1, kkE p C 7 p S � S p (8)� �i, n i n n�ikC kkp1 kpn�i�1n

(see also “Incidence-Based Zeta Diversity Partitioning” in
the appendix). When n is much greater than i, the number
of local endemics approximates i times the derivative of
Sn, . This means that the local EER is approx-˙E ≈ i 7 Si, n n

imately linear for low sampling effort. The roughly linear
form of the EER has strong empirical support at large
spatial scales (Storch et al. 2012). The multiple, specific
forms possible for the EER across scales based on z di-
versity are specified in equation (8).

When z diversity decline is exponential (fig. 2A), the
local EER follows

�b n�i �b iE p a(1 � e ) 7 [1 � (1 � e ) ]. (9)i, n

The number of local endemics increases monotonically
with i, exponentially for small values of b and following
a power law for large values of b (fig. 3C). When z diversity
decline follows a power law, the number of local endemics
largely also follows a power law, with an exponent close
to, but slightly greater than, 1 (fig. 3D). This is consistent

with empirical results for endemics-area relationships
(Storch et al. 2012). z diversity can therefore be used to
compare empirical EERs within and across regions to bet-
ter understand the consequences of environmental change
for endemic species diversity.

Occupancy Frequency Distributions

Although the frequency of singleton and doubleton species
in assemblages is useful for regional diversity estimation
(Colwell and Coddington 1994), this represents only the
rare species in an assemblage. A more general pattern that
captures the frequency of species across the full range of
occurrences in an assemblage (common, intermediate, or
rare), is the occupancy frequency distribution (OFD;
Gaston 1996; McGeoch and Gaston 2002). The OFD is
the frequency distribution of the numbers of species oc-
cupying different numbers of sites and is used to quantify
assemblage range patterns (McGeoch and Gaston 2002).
The shape of OFDs has been used to formulate hypotheses
about the mechanisms driving assemblage structure
(Gaston and Blackburn 2000; Jenkins 2011).

Empirical OFDs have a diverse range of forms (Mc-
Geoch and Gaston 2002; Gaston and He 2011). The prev-
alence of bimodality in OFDs, that is, with modes for rare
and common species and comparatively few species with
intermediate occupancies, has been of particular interest
(Raunkiær 1934; Hanski and Gyllenberg 1993). Several
mechanisms have been proposed to explain this bimo-
dality. One explanation is the core-satellite hypothesis,
which explains bimodality as a division of the assemblage
into groups of species with different stochastic immigra-
tion and extinction rates (Hanski 1982; but see Gotelli and
Simberloff 1987; Gaston and Lawton 1989; Magurran and
Henderson 2003). Explanations based on sampling (Nee
et al. 1991; Papp and Izsák 1997) and the scale dependence
of species occupancy (Conlisk et al. 2007; He and Condit
2007; Hui and McGeoch 2007a, 2007b) are also able to
account for this bimodality. However, these explanations
all make the implicit and unrealistic assumption of species
independence. In other words, the occurrence of species
A does not affect the occurrence of species B, and an OFD
can be constructed by simply overlaying each species dis-
tribution independently of all others. Species turnover is
thus assumed to be stochastic. z diversity does not presume
species independence or stochastically driven species turn-
over, and it provides a mechanistic link between the shape
of the OFD and the rates of turnover under which bi-
modality is possible.

The OFD of n samples, Fi, n, is provided by equation (2).
To produce a bimodal OFD, the inequalities F1, n 1 F2, n and
Fn � 1, n ! Fn, n must, at a minimum, be satisfied, from which
we have n ! 2 if zi follows the exponential form. This



692 The American Naturalist

suggests that bimodal OFDs are not possible under the
conditions of the exponential form of z diversity decline.
Instead, the OFD is unimodal, with the mode shifting to
the left with an increase in the exponent b (fig. 3E). On
the other hand, with the power-law form of z diversity
decline, the OFD becomes bimodal if the inequality d !

ln((n � 1)/n)/ln(n/(n � 1)) is satisfied. For instance, to
ensure a bimodal OFD, values of d ! 0.98 for n p 50 and
d ! 0.99 for n p 100 are needed. For large numbers of
sites (1100), d ! 1 ensures the presence of bimodality in
the OFD (fig. 3F).

Low species turnover among the more common species
in the assemblage produces a shallow slope for z diversity
decline and a bimodal OFD. When environmental change
has a disproportionally detrimental effect on rare species,
the slope of z diversity decline will become shallower
(shifting toward a bimodal OFD). When common species
are more severely affected than rare ones, a steeper z di-
versity decline is expected, along with a right-skewed, uni-
modal OFD. The loss of common versus rare species has
significantly different consequences for biodiversity
(Gaston 2010). Because z diversity is sensitive to changes
across species occupancy classes, comparisons of the form
of z diversity decline can be used to signify ecologically
relevant differences in the mechanics of species turnover.

The Relationship between z and b Diversity

z diversity can, of course, be used to calculate the range
of existing incidence-based, pairwise b diversity and mul-
tiple-assemblage metrics. For example, Jaccard’s (1900)
similarity index is z2/(2z1 � z2), and Sørensen’s (1948)
index is z2/z1. For multiple-assemblage similarity metrics,
Koch’s (1957) index of dispersity (i.e., taxonomic ho-
mogeneity) is (z1/Sn � 1/n)/(1 � 1/n), and Diserud and
Ødegaard’s (2007) index is (n � Sn/z1)/(n � 1). Clearly,
pairwise indices are a combination of z1 and z2 only and
do not consider higher-order z components (zi where
i ≥ 3). Existing multiple-assemblage similarity metrics con-
cern only z1 and Sn and do not consider intermediate z

components. For large n, if zi is exponential, Koch’s dis-
persity approaches e�b and Diserud and Ødegaard’s index
approaches 1; if zi follows a power law with d ≥ 1, Koch’s
dispersity approaches 0 and Diserud and Ødegaard’s index
approaches 1. This means that multiple-assemblage met-
rics for large samples do not necessarily reflect assemblage
similarity but rather are biased by the number of sites
involved.

By contrast, the way in which zi declines with i (i.e.,
coefficient 1/b or 1/d) provides an unbiased measure of
multiple-assemblage similarity. Higher coefficients of 1/b
or 1/d suggest that assemblages are comparatively similar,
with more shared species. Lower coefficients reflect sub-

stantially fewer shared species across sites. We propose z

diversity here principally to represent species occupancy
and turnover across independent samples. However, it can
also be used for b diversity partitioning with aggregated
samples in nested or hierarchical sampling schemes (such
as Crist and Veech 2006), as depicted by equation (5).
Finally, while pairwise b diversity does capture species
losses and gains, it is insensitive to occupancy changes in
common species (McGlinn and Hurlbert 2012). As shown
above, z diversity is responsive to changes across the range
of species occupancy classes.

Conclusion

We propose the use of z diversity components, that is, the
average number of species shared by i assemblages, as a
concept that (1) describes the structure of multispecies
distributions and (2) unifies incidence-based assemblage
patterns. z diversity is easy to calculate and provides a
general framework from which other assemblage patterns
can be explored and their distributions derived. We have
shown this here for the SAC, the EER, the OFD, the scale
dependence of diversity, and other indices of diversity par-
titioning. Unlike pairwise turnover measures, z diversity
requires no assumptions to be made about site and species
independence.

Perhaps the most important question is whether the use
of z diversity will result in new insight or improved un-
derstanding of biodiversity pattern and process. We have
already shown how z diversity partitioning informs a num-
ber of macroecological debates and how specific forms of
z diversity relationships are directly related to particular
ecological processes. With a and b as functions of z di-
versity, higher-order z components may better differentiate
assemblages that are not distinguishable on the basis of a

and b alone. z diversity may prove more sensitive to the
detection of drivers of environmental change than pairwise
turnover measures when used to examine changes in di-
versity across gradients or with declines in habitat quality.
We suggest, for example, that the dynamics of rare and
common species in assemblages and the mechanisms un-
derpinning these may be better understood by using z

components than by using pairwise turnover measures. In
sum, z diversity provides a common currency for inci-
dence-based biodiversity patterns and relationships, en-
abling direct and multivariate comparisons among them.
It provides a measure of diversity and its scale dependence
more comprehensive than existing metrics. As a result,
future comparisons of z diversity within and across regions
and systems may provide new insights on the processes
that drive patterns in biodiversity.
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Appendix from C. Hui and M. A. McGeoch, “Zeta Diversity as a
Concept and Metric That Unifies
Incidence-Based Biodiversity Patterns”
(Am. Nat., vol. 184, no. 5, p. 684)

Zeta Diversity Partitioning Unifies Species Accumulation, Endemism, and Assemblage
Occupancy Patterns
Incidence-Based Zeta Diversity Partitioning

Here we derive the equations presented in “Zeta Diversity Partitioning” and “The Endemics-Effort Relationship.” Recall
the definition of zi being the average number of shared species among a number i of sites. Let (p n!/(i!(n � i)!)) beiCn

the number of combinations of choosing i from n sites. For n p 1, it is straightforward to have

1S p z p C z , (A1)1 1 1 1

1 0F p z p C C z . (A2)1, 1 1 1 0 1

For n p 2, according to the Venn diagram in figure 1, we have

1 2S p 2z � z p C z � C z , (A3)2 1 2 2 1 2 2

1 0 1F p 2z � 2z p C (C z � C z ), (A4)1, 2 1 2 2 1 1 1 2

2 0F p z p C C z . (A5)2, 2 2 2 0 2

For n p3, we have

1 2 3S p 3z � 3z � z p C z � C z � C z , (A6)3 1 2 3 3 1 3 2 3 3

1 0 1 2F p 3z � 6z � 3z p C (C z � C z � C z ), (A7)1, 3 1 2 3 3 2 1 2 2 2 3

2 0 1F p 3z � 3z p C (C z � C z ), (A8)2, 3 2 3 3 1 1 1 2

3 0F p z p C C z . (A9)3, 3 3 3 0 3

Comparing S1, S2, and S3, we can have equation (1),

n

k�1 kS p (�1) 7 C 7 z . (A10)�n n k
kp1

Comparing F1, 1, F1, 2, F2, 2, F1, 3, F2, 3, and F3, 3, we can derive equation (2),

n�i�1

i k�1 k�1F p C (�1) 7 C 7 z . (A11)�i, n n n�i i�k�1
kp1



Appendix from C. Hui and M. A. McGeoch, Zeta Diversity Partitioning

2

1 Code that appears in the American Naturalist has not been peer-reviewed, nor does the journal provide support.

Now, considering the difference between Sn and Sn�1, we have

n n�1

k�1 k k�1 kS � S p (�1) 7 C 7 z � (�1) 7 C 7 z� �n n�1 n k n�1 k
kp1 kp1

n�1

k�1 k k n�1 np (�1) (C � C )z � (�1) C z� n n�1 k n n
kp1

n�1

k�1 k�1 n�1 n�1p (�1) C z � (�1) C z (A12)� n�1 k n�1 n
kp1

n

k�1 k�1p (�1) C z� n�1 k
kp1

F F1, n 1, np p .1C nn

That is, adding one extra site to a survey with n � 1 sites will add F1, n/n new species. Therefore, we have

F1, n�mS p S �n�m n�m�1 n � m

F F1, n�m�1 1, n�mp S � �n�m�2 n � m � 1 n � m (A13)

…
n�m F1, kp S � .�n kkpn�1

When m approaches infinity, we have equation (3),
�

F1, kS p S � . (A14)�� n kkpn�1

For i selected sites within a total of n sites surveyed, the local endemics represent species that occur only in k (p 1, 2,
3, ..., i) sites of these selected i sites. These local endemics with occupancy k are also species occupying only k sites
among the n sites. Therefore, the number of local endemics with an occupancy of k is . Alternatively, we cank kC F /Ci k, n n

also count the number of local endemics by subtracting those species that do not occur exclusively in the n � i sites
from the total surveyed species, Sn� Sn � i, or we can sum the number of new species discovered when sequentially
adding the i sites to the rest of n � i sites, . These three different ways are mathematically equivalent, and

n� F /k1, kkpn�i�1

thus we have equation (8),
i nF Fk, n 1, kkE p C 7 p S � S p . (A15)� �i, n i n n�ikC kkp1 kpn�i�1n

Given a binary (0/1) species-by-site matrix as a .csv file named test.csv in the working directory of R, with rows
representing different species and columns different sites, z diversity can be calculated with the following R script:1

data!-read.csv(“test.csv”,headerpFALSE)

x!-dim(data)[2]

zeta!-numeric()

u!-numeric()

for(j in 1:x){

for(z in 1:1000){

sam!-sample(1:x,j,replacepFALSE)

u[z]!-sum(apply(data[sam],1,prod))}

zeta[j]!-mean(u)}

plot(1:x,zeta)

write.csv(zeta,filep“zeta.csv”)
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Results of this R script will be presented as a figure (as fig. 2A, 2B) in the RGui, and the exact values of z diversity, zi

for i p 1, ..., n (the number of sites), will be exported to a file named zeta.csv in the working directory. A fully
functioning R package with all incidence-based metrics and macroecological patterns, together with z diversity
calculation, is currently under development.

Form of the Relationship between Zeta Diversity and Sample Number (Zeta Decline)

We compared the performance of seven parametric models of z diversity decline, that is, zi as a function of i, for the 291
species-by-site matrices listed in the supplementary table. Specifically, we tested all six models that have been proposed
in literature for abundance or occupancy rank curves (Jenkins 2011), plus the power-law model, which satisfies the
positive and monotonically declining trajectory of z diversity:

Exponential convex:

z p c � c 7 exp (c 7 i), (A16)i 1 2 3

linear:

z p c � c 7 i, (A17)i 1 2

sigmoidal symmetric (sig_sym):

c1
z p , (A18)i 1 � exp (c � c 7 i)2 3

sigmoidal asymmetric (sig_asym):

c3z p c (1 � exp (c 7 i )), (A19)i 1 2

exponential (p lognormal p exponential concave):

z p c exp (c 7 i), (A20)i 1 2

power law (power):

c2z p c 7 i , (A21)i 1

logarithmic (log):

z p c � c 7 log (i). (A22)i 1 2

In the above parametric models, c1, c2, and c3 are model parameters. The nonlinear fit of the model to each of the 291
species-by-site matrices was tested with “NonlinearModelFit” in Mathematica 8.0 (Wolfram Research). For each matrix,
we report in the supplementary table the estimate, standard error, t statistics, and P value for each parameter and the
adjusted R2 and Akaike Information Criteria (AIC) scores for each model. For the 291 matrices, adjusted R2 suggests that
the power-law model is the best fit for 167 matrices, the exponential model for 76 matrices, the sig_sym model for 25
matrices, the sig_asym model for 9 matrices, the logarithmic model for 12 matrices, the linear model for 2 matrices, and
the exponential convex model for no matrices (see fig. A1 for a summary). Use of the AIC produced very similar results,
suggesting that the power-law model is the best fit for 166 matrices, the exponential model for 72 matrices, the sig_sym
model for 29 matrices, the sig_asym model for 12 matrices, the logarithmic model for 10 matrices, the linear model for 2
matrices, and the exponential convex model for no matrices (see the supplementary table). The power-law and
exponential models are the best-fitting parametric models for z diversity scaling, together representing more than 80% of
the matrices. We therefore discuss only these two specific forms of z diversity scaling and their incidence-based diversity
patterns in detail.
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Figure A1: Percentage of different parametric models that best fit the relationship between z diversity and sample number (z decline) for
291 species-by-site matrices (see the supplementary table for details of the results), according to the adjusted R2. Sig_sym p sigmoidal
symmetric; sig_asym p sigmoidal asymmetric.

Zeta Diversity Scaling with Sample Grain and Hierarchical Diversity Partitioning

As with all diversity metrics, z diversity changes with sampling grain; when the sampling grain increases, the number of
species in each sample increases. This is a consequence of the scale dependency of species distributions, as demonstrated
by numerous models based on either point-process or probability theory (e.g., Nachman 1981; Wright 1991; Hanski and
Gyllenberg 1997; Kunin 1998; He and Gaston 2000, 2003; He et al. 2002; Hui et al. 2006; Hui 2009; Zillio and He
2010; Azaele et al. 2012; see a review by Barwell et al. [2014]). Similarly, when a collection of samples are pooled to
form increasingly larger sample grains, the a, b, and d diversity components of this hierarchical sample design will also
change. Crist et al. (2003) and Crist and Veech (2006) provide a framework for a and b diversity partitioning across
hierarchical levels. Here we derive the general form of z diversity partitioning when pooling multiple samples to form
increasingly larger sample grain in the same way.

Consider the simplest scenario where two samples are pooled, that is, the sampling grain increases from the original a

to 2a. We have

z (2a) p S (a) p 2z (a) � z (a). (A23)1 2 1 2

z diversity z2(2a) represents the number of shared species between two clusters, with each cluster formed by two
samples. The number of shared species between two clusters can be expressed by a combination of species with specific
occupancies and occurring in both clusters,

1 1 1 2 2 1 2 2C C C C � C C C C2 2 2 2 2 2 2 2
z (2a) p F � F � F . (A24)2 2, 4 3, 4 4, 42 3 4C C C4 4 4

Following the same logic, the number of shared species among three clusters can be estimated as follows,

1 1 1 1 1 2 1 2 1 2 1 1C C C C C C � C C C � C C C2 2 2 2 2 2 2 2 2 2 2 2
z (2a) p F � F3 3, 6 4, 63 4C C6 6 (A25)

1 2 2 2 1 2 2 2 1 2 2 2C C C � C C C � C C C C C C2 2 2 2 2 2 2 2 2 2 2 2� F � F .5, 6 6, 65 6C C6 6
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Consider a slightly complicated scenario where four samples are pooled together as a cluster. We have the number of
shared species between two clusters as follows:

1 1 1 2 2 1 1 3 2 2 3 1C C C C � C C C C � C C � C C4 4 4 4 4 4 4 4 4 4 4 4
z (4a) p F � F � F2 2, 8 3, 8 4, 82 3 4C C C8 8 8

1 4 2 3 3 2 4 1 2 4 3 3 4 2C C � C C � C C � C C C C � C C � C C4 4 4 4 4 4 4 4 4 4 4 4 4 4� F � F (A26)5, 8 6, 85 6C C8 8

3 4 4 3 4 4C C � C C C C4 4 4 4 4 4� F � F .7, 8 8, 87 8C C8 8

By deduction, we have the general form of the number of shared species among n clusters when pooling m samples to
form a cluster as (eq. [4])

n
xjn#m � � Cmx ≥1,Sj x pkj jp1

z (m) p F . (A27)�n k, n#mkCkpn n#m

This provides a general form that describes the relationship between z diversity and sample grain. Of particular interest to
hierarchical diversity partitioning is the number of species shared by two clusters, where the first cluster is formed by
pooling m1 samples and the second cluster by pooling another m2 samples, z2(m1, m2). Slightly modifying the above
equation, we have equation (5),

k�1 i k�im �m1 2 � C Cm mip1 1 2

z (m , m ) p F . (A28)�2 1 2 k, m �mk 1 2Ckp2 m �m1 2

Together with and , Crist and Veech’s (2006) hierarchical diversity partitioning approach canz (m ) p S z (m ) p S1 1 m 2 2 m1 2

readily be adopted for z. A clear message here is that both b and z diversity components are sensitive to sample grain
and that their values are not independent across scales, echoing the scale-heritage assumption, as shown in Hui and
McGeoch (2008).

Zeta Diversity Decay with Distance

Here we discuss how z diversity components are affected by the average distance between random samples. The average
distance u between two random samples within a compact convex sampling area A can be estimated as

u p s 7 l(A) (A29)

(Burgstaller and Pillichshammer 2009), where l(A) is the maximum distance between two samples within the area (or
sampling extent), often called the diameter of A; s is a constant depending on the shape of A (e.g., s p 1/3 for a transect,
s p 0.452 for a disk, and s p 0.369 for a square). Specifically, if we have n samples within the sampling area, with uij

the distance between samples i and j, the average distance between two samples, u2, is

1
u p u . (A30)�2 ij2C i(jn

The average of the distances between three random samples, u3, is

1 u � u � uij jk kiu p p u . (A31)�3 23C 3i(j(kn

Therefore, the average distance between a number i of random samples is a constant,

u p u, (A32)i

for 1 ≤ I ≤ n. Consequently, when we increase the sampling extent, the average distance between samples will increase.
The distance decay of similarity is a pervasive characteristic of geographical and ecological patterns (Taylor 1971;

Nekola and White 1999). On the basis of a comparison of 10 models that predict the downscaling of occupancy (that is,
extrapolating fine-scale occupancy values from coarse-scale occupancy), Barwell et al. (2014) concluded that our model
based on joint-count statistics and pair approximation performed best (Hui et al. 2006; Hui 2009). Therefore, here we
derive the distance decay of similarity for z2, using the same method. Let z2(u) be the number of shared species between
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two random samples with the average distance between them being u, and let z2(1) p z2 be the number of shared species
between two random samples that are one distance unit apart. Moreover, let p� and p0 be the respective probabilities of
finding a species present and absent in one randomly selected sample. Let q0/� be the conditional probability that,
knowing a species is present (�) in a focal sample, the species is found absent (0) in a random sample one distance unit
away from the focal sample. Similarly, we can further define q�/�, q�/0, and q0/0. We have

p p 1 � p (A33)0 �,

q p 1 � q , (A34)0/� �/�

(1 � q )p�/� �q p , (A35)�/0 1 � p�

(1 � q )p�/� �q p 1 � . (A36)0/0 1 � p�

That is, all these probabilities and conditional probabilities can be expressed by p� and q�/�. Let Q(u) be the conditional
probability of finding a species present in a sample to be also present in another sample distance u away. We have Q(0) p
1 and Q(1) p q�/�. Following Hui et al. (2006), we can have

Q(2) p q q � q q . (A37)0/� �/0 �/� �/�

This can be explained as follows: there are three samples A, B, and C, aligned along a line consecutively, with A and B
one distance unit apart, B and C one distance unit apart, and therefore A and C two distance units apart. The above
formula depicts the probability that a species, already occurring in sample A, also occurs in sample C, regardless of
whether it occurs in sample B. It equals the sum of probabilities for the occurrences of ABC being �0� and ���,
where � and 0 indicate presence and absence, respectively. The first term on the right of equation (A37) represents the
first scenario and the second term the second scenario. Similarly, we have

Q(3) p q q q � q q q � q q q � q q q (A38)0/� 0/0 �/0 0/� �/0 �/� �/� 0/� �/0 �/� �/� �/�.

The four terms on the right represent, in order, the scenarios �00�, �0��, ��0�, and ����. It is worth noting that
we already know that the species occurs in both the first and the last samples; thus, only the statuses of those samples in
the middle are unknown (i.e., they can be either � or 0). Deductively, we have

u�1

i�1Q(u) p q 7 Q(u � 1) � q q q 7 Q(u � 1 � i). (A39)��/� 0/� �/0 0/0
ip1

Let q�/� p z2/z1 and p� p z1/S, where S is the number of species in the sampling extent. We then have the following
distance decay of similarity for z (eq. [6]),

z (u) p z Q(u), (A40)2 1

where Q(0) p 1, Q(1) p z2/z1, and

i�1
u�12z (z � z ) z � z2 1 2 1 2Q(u) p Q(u � 1) � 1 � Q(u � 1 � i). (A41)� ( )z z (S � z ) S � zip11 1 1 1

Clearly, Q(u) is a function of u, z1, z2, and S.
The direct deduction of zn(u) for n ≥ 3 is rather formidable. Indeed, zn(u) is related to the n-point correlation function,

which remains a hotly contested dilemma in theoretical physics, astronomics, quantum mechanics, and material science
(e.g., Weinberg 1996; Baniassadi et al. 2012). Instead, following Hui et al.’s (2006) method, we here provide the
Bayesian solution for higher orders of zn(u). Given n � 1 samples an average distance u apart from each other and a
known zn � 1(u), we have

n�1z (u) p Q(u)n �p , (A42)n�1 ′ n�1z (u) p Q(u) � p Q (u)n�1 � 0

where

u�1

′ iQ (u) p q 7 Q(u � 1) � q q 7 Q(u � 1 � i). (A43)��/0 �/0 0/0
ip1
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As shown in figure A2, with the increase in sampling extent, the average distance between random samples u will
increase, and thus z diversity components will decline. Clearly, according to the above equations and figure A2, zi(u)
declines with both the number of samples i (i.e., z diversity decline) and the average distance between samples u (i.e.,
distance decay). When u p 0, all samples collapse into one, and z diversity components become a constant (pz1); when
i p 2, z2(u)/z1 becomes the typical distance decay of similarity, declining from 1 with an increase in distance u. Of
course, other indices, such as Jaccard’s index J p z2(u)/(2z1 � z2(u)), can also be used for depicting the distance decay
of similarity, although the z diversity ratio z2(u)/z1 provides a normalized index for expressing assemblage similarity.

Figure A2: z diversity zi(u) as a function of the number of random samples i (z decline; green lines) and the average distance between
random samples u (distance decay of z diversity; red lines).

Zeta Diversity Decline and the Species-Area Relationship

Here we provide the detailed derivation for the relationship between the coefficient d of the power-law form of z decline
(zi p c 7 i�d) and the exponent z of the power-law species-area relationship (SAR; Si ∼ iz). For the power-law SAR, we
have

1/z

S nn p . (A44)( )S n � 1n�1

Therefore, we have the general form of z-d relationship as follows:

ln (S /S )n n�1z p . (A45)
ln (n/(n � 1))

Clearly, the z-d relationship is dependent on n. According to equation (1) of Sn and zi p c 7 i�d, we have, for n p 1,

z2z2 � 2 p , (A46)
z1

that is,

�dln (2 � 2 )
z p . (A47)

ln 2
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Note that z2/z1 represents the proportion of species shared between two areas. This special form has been derived by
Tjørve and Tjørve (2008) and shown to be scale dependent by McGlinn and Hurlbert (2012), analogous to the n
dependency in the above general formula (eq. [A45]) of the z-d relationship. For n p 2, we have

�d �d �dln ((2 � 2 )/(3 � 3 7 2 � 3 ))
z p . (A48)

ln (2/3)

For larger values of n, the z-d relationship can become complicated but can still be readily calculated according to the
above general formula (eq. [A45]; e.g., see the z-d relationship under different values of n in fig. A3). Practically, for
larger values of n (120), the z-d relationship resembles a polynomial function, z p �0.024d2 � 0.286d, which can be
estimated directly via nonlinear regression on the empirical data (as in fig. 4).

Figure A3: Relationship between coefficient d of the power-law form of z diversity and the exponent z for the Arrhenius species-area
relationship (SAR), under different values of n in its general form z p ln(Sn/Sn � 1)/ln(n/(n � 1)).
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