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1 Introduction

This paper was written in the first half of 2005 as my graduate thesis in math-
ematics and deals with the study of polynomial equations in one variable of
degree ≤ 5. It is written in such a way that almost all students with some
interest in algebra will be able to understand it. Especially while attending
one of the introductory algebra courses, this manuscript might prove a welcome
addition, because it offers elementary introductions to field theory, Galois the-
ory, projective geometry and elliptic curves, while at the same time presenting
interesting applications and illuminating examples.

Mathematically more mature readers on the other hand will be able to go
through the material quickly, refreshing their memory on things that are al-
ready known, like the unsolvability of the quintic or the associativity of the
group law of an elliptic curve and probably learning a few new things, like the
method of reducing the quintic to the Brioschi form and the close relations
between the icosahedron, various forms of the quintic and the 5-torsion on an
elliptic curve.

In chapter 2, we tell some of the history of the subject. The problem of solving
algebraic equations in one variable is very old, in fact it is as old as mathematics
itself. Therefore the history of this subject reflects the state of mathematics from
the Babylonians (300 BC) to the present time. This history is mainly based on
biographies from the internet database of the university of St. Andrews[11] and
has a personal human touch to it.

In chapter 3, we give the solutions of the general equations up to degree four
(the quadratic, cubic and quartic equation), clearing the way for the study of
the quintic.

In chapter 4, we will develop field theory, mainly because the solution of a poly-
nomial equation by radicals can be described by a property of a field extension
of the coefficient field. We develop it from scratch, so no prior knowledge of field
theory is presupposed. We will see that algebraic field extensions can be seen
as vector spaces, but also as polynomial rings modulo a certain ideal. We will
explain how to construct root fields and splitting fields, while at the same time
presenting many clear examples of them. Afterwards, we uncover the proper-
ties of field extensions, by a study of their morphisms, leading eventually to the
study of the group of automorphisms.

In chapter 5, we will introduce the notion of a normal extension, in which
the degree of the extension equals the number of automorphisms and show its
equivalence to a Galois extension, which is defined as the splitting fields of a
polynomial. Next we prove the main theorem of Galois theory, by which we will
capture the symmetry of Galois extensions in a finite group. Because we have
have a direct link between polynomials (and their roots), Galois extensions, and
finite groups, we can now relate properties of this group to polynomials and
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6 INTRODUCTION

their field extensions (or solutions). Finally, we prove that the Galois group
of the general quintic has no tower of normal subgroups that correspond to a
solution by radicals. This proves it is impossible to solve the quintic by radicals.
We also give an example of a specific polynomial over that is not solvable by
radicals.

In chapter 6, we will describe various ways to transform the general quintic into
”normal” forms. We will first eliminate some of the coefficients by Tschirnhaus
transformations, reaching the principal quintic x5 + a2x2 + a1x + a0 and the
Bring-Jerrard quintic x5 +ax+a and finally the Brioschi quintic that expresses
the coefficients in a parameter B that will play a great role in the next chapters.

In chapter 7, we will extensively treat the theory of the icosahedron. First we
describe its rotation symmetry and reach the conclusion that the rotations form
a group isomorphic to A5. Then, we put the icosahedron inside a Riemann
sphere and project it to a complex equatorial plane. The two rotations that
generate A5 now correspond to functions → . Next we will give three
complex polynomials f(Z), H(Z) and T (Z)1 of degree 12, 20 and 30 that vanish
at the ”special points” (vertices, midpoints of the faces and midpoints of the
edges). These polynomials are invariant under A5 and satisfy the remarkable
relationship 1728f5 = H3+T 2. Afterwards we will describe the ”form problem”,
which for given values for f , H and T , (satisfying the relationship) asks for a
solution for Z. Finally, by linking the Brioschi parameter B to the invariants
f , H and T , we will prove the equivalence of the form problem to the problem
of solving the Brioschi quintic.

In chapter 8, we will develop the theory of elliptic curves. We start by drawing
some cubic curves, embedded in 2 to give a geometrical intuition. Afterwards,
we give an introduction to projective geometry, also shedding some more light
on our use of homogeneous coordinates. We define an elliptic curve as a non-
singular cubic curve in the projective plane and give a full description of the
group structure. The points on the curve of order n form a subgroup Zn × Zn,
called the n-torsion. We will give a detailed description of the 2-, 3-, 4- and
5-torsion, spending attention to the algebra, while keeping in close contact to
the geometry. Finally all of the elements in this work come together by linking
the Brioschi parameter B (and thus f , H and T ) to the j-invariant of an elliptic
curve and using Galois theory to prove that the splitting field of the quintic is
equal to the splitting field of x(P ) + x(2P ) for P a 5-torsion point.

The use of 5-torsion points on an elliptic curve to solve the quintic has a nice
analogy with the use radicals of to solve equations of degree lower than 5. Using
radicals means that we allow a solution to xn = a to appear in our solution. By
using the roots of unity, or in other words, the solutions to xn = 1, we then find
all solutions to the equation. The analogy with solving the quintic equation is
that instead of the ”torsion equation” xn = a on ∗ for n < 5, we need the

1In fact we will use homogeneous (projective) coordinates, but this boils down to the same
thing.
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torsion equation nP = Q for n = 5 on an elliptic curve E : y2 = x3 + ax + b.
The parameter Q can be set to zero, but the parameters a, b for E depend on
the equation.

The conclusion is that solving the quintic is equivalent to solving the form
problem of the icosahedron and to finding the 5-torsion on an elliptic curve.

Beyond the solvable equation -7-
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2 History

2.1 Mathematics in the ancient civilizations

Since the dawn of mathematics, mathematicians have occupied themselves with
solving equations. This was done for their practical reasons such as economics
and architecture, but also since the very beginning as a goal of its own. Mo-
tivated by pure curiosity, mathematicians pushed the limits of what equations
could still be solved further and further.

The Babylonians (± 400 BC) had already developed some arithmetic for prob-
lems that in modern terms correspond to quadratic equations. They totally
lacked however the notion of equation and negative numbers. The ancient Greek,
or more specifically Euclid (± 300 BC), approached equations very much from
a geometrical point of view. Plane geometry has the great advantage of being
easy to imagine. However if the complexity rises, a higher level of abstraction,
in particular equations with unknown variables and negative, are essential for
further development.

Brahmagupta (598-665 AD), a Hindu mathematician, was the first to use un-
known variables (most of the times the first letter of a color) and negative
numbers.

The Arabs however did not know from these advances and still did not use neg-
atives or zeros. However al-Khwarizmi (± 800) made the distinction between
”roots” x, ”squares of roots” x2 and ”numbers” to write down quadratic equa-
tions. His method for solving these equations rests on the geometrical method
of completing the square.

In 1145 Savasorda published the first book in Europe that gives the complete
solution of the quadratic equation.

2.2 A new Italian wave of development

Around 1500 a new wave of development started in Italy, where Luca Pacioli
discussed quartic equations for the first time, although he was not able to solve
all of them.

Soon afterwards, Scipione dal Ferro (1465-1526) solved all cubic equations of the
form x3 + ax = b. However without the use of the Hindu concept of negative
numbers, he probably was not able to perform the substitution y = x − c to
bring all cubics into this form.

Instead of letting the world know about his breakthrough, he kept his discovery
a complete secret until short before his death, when he told his secret to his
student, Antonio Fior, who was not so good in keeping secrets and soon rumors
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started to spread that the cubic was solved. Prompted by the rumors, Tartaglia
managed to solve x3 + ax2 = b and he made no secret of his discovery. Fior
challenged Tartaglia to a public contest in which each gave the other 30 problems
they had to solve within 40 or 50 days. Fior gave Tartaglia only problems of
the form x3 +ax = b, which he though Tartaglia was unable to solve. He solved
them all in two hours and was declared the winner. Shortly before the problems
were to be collected, Tartaglia discovered the general method for solving all
cubics.

Cardano was just writing a book Practica Arithmeticae (1539) about the subject
and was very interested in Tartaglia’s discovery, so he invited him to a visit in
Milan. After much persuading, Tartaglia revealed his secret to Cardano under
the promise that he would not publish it, until Tartaglia published it himself.
Cardano did not keep his promise and published it anyway. Even nowadays he
often gets the credits for this discovery.

The quartic finally, was first solved by Lodovico Ferrari, a student of Cardano.
This solution marked to some extend an endpoint in the process. The develop-
ment of mathematics did not stop, it continued more actively than ever before,
but despite great effort, solutions to higher degree equations did not come. It
took centuries before it was realized why the quartic was the equation of highest
degree that was soluble by radicals in its most general form.

2.3 A logical barrier

An important advancement was made by Baron Ehrenfield Walter von Tschirn-
haus (1651-1708). He proposed to reduce some of the terms of the general
equation. His ultimate goal was to give give a number of transformations that
would eliminate all but the first and last term. The equation xn + c = 0 could
then be solved and as long as all of the transformations were of degree < n,
the problem was solved by induction. He did not realize however that finding
the coefficients of the system of all required transformations, was equivalent to
the solution of an equation that rapidly increases in degree if n becomes large.
Leibnitz did realize this and wrote in one of his letters that the total degree
would become (n − 1)!. His method could therefore never reach its intended
goal of solving all polynomial equations in one variable. Cancelling the first few
terms however was very useful and is still used today.

During the first half of the eighteenth century, more and more mathematicians
realized that the old methods were unsuccessful and began working with the
roots of the equation instead of with the coefficients. It seems very obvious to
us now that if x = a1, a2, . . . are solutions to an equation, that equation must be
equal to c

∏

(x − ai), but back then, working formally with the unknown roots
was a revolutionary new way of thinking that turned out to be the key element
in many further developments.

Beyond the solvable equation -9-
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Leibnitz used it to give the first algebraic proof of the method for solving the
cubic by simply constructing the cubic from its roots with the formula above.
All previous proofs were geometric.

Newton found formulas, now called Newton’s identities, that express the coeffi-
cients in terms of the sums of the roots to an equation. This very strong con-
nection between the roots and the coefficients actually leads to the conclusion
that if the coefficients of a polynomial are general, or algebraically unrelated,
the roots also satisfy as few relations as possible.

2.4 The tragedies of Ruffini, Abel and Galois

Ruffini (1756-1822) was the first to prove that the general fifth degree equation
was unsolvable by radicals (square roots, cube roots, etc.). In 1799 he published
a book with the title ”General theory of equations in which it is shown that the
algebraic solution of the general equation of degree greater than four is impossi-
ble” in which he first had to invent group theory, all by himself. He introduced
the notions of the order of an element, conjugacy, the cycle decomposition of
elements of permutation groups and the notions of primitive and imprimitive to
finally give the proof that S5 is not a solvable group and thus that the quintic
cannot be solved by radicals2.

Strangely though, his book was completely ignored by the whole mathematical
community. In 1801 he sent a copy to Lagrange, who was the leading expert in
the field, hoping for a review. Lagrange however did not respond, so because
he was unsure if Lagrange received it, he sent him another copy of the book,
asking if he might have erred himself in any of the proofs. Also if the things he
wrote were already known, or if the book was useless for some other reason he
prayed that it was pointed out to him. Lagrange did not respond.

Some mathematicians accepted Ruffini’s proof, not because they understood it.
Pietra Poali, professor in Pisa, for instance accepted it for dubious nationalistic
reasons, mainly because Ruffini was Italian and developed a theory without the
help of non-Italians. Others did not accept it and raised false objections. Ruffini
figured that his book was too difficult and it has to be admitted that it was very
revolutionary and not easy to understand.

In an attempt to make his ideas more transparent, he published further proofs
in 1808 and 1813, which were in fact very elegant and far ahead of their time.
Nobody responded.

The only mathematician who was influenced by Ruffini’s book was Cauchy.
Cauchy wrote a book on permutation groups between 1813-1815 in which he
generalized many of Ruffini’s ideas. Cauchy was probably the worst of all math-

2The proof contained a small gap that he would no doubt have been able to close, had
somebody pointed it out to him.
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ematicians in giving credit to others, but he did write to Ruffini, one year before
Ruffini’s death

... your memoir on the general resolution of equations is a work which has
always seemed to me worthy of the attention of mathematicians and which,
in my judgement, proves completely the impossibility of solving algebraically
equations of higher than the fourth degree.

This is probably the only credit Ruffini ever got for his work.

Because Ruffini’s ideas remained obscure to the mathematical community, the
fact that the quintic is not solvable by radicals had to be discovered for a second
time. In 1824 the Norwegian mathematician Niels Henrik Abel (1802-1829),
who studied Cauchy’s work on permutation groups, proved the impossibility
of solving the general quintic in radicals. He thought this result would be
impressive enough to gain respect from famous mathematicians in Germany
and France, so he printed the proof on a pamphlet and took it with him on
his travels through Europe. However, he had a lot of difficulties to get his
ideas accepted. Gauss for instance was very unpleased with Abel’s negative
result on the quintic. It is uncertain why Gauss took this attitude towards
Abel’s work since he certainly never read it; the paper was found unopened after
Gauss’ death. Abel also made many other important contributions to algebra,
especially to the theory of elliptic functions, but despite his great talent, the
acknowledgement for his work came too late. Abel died in poverty at the age
of 28.

Evariste Galois (1811-1832) also realized that the general quintic was unsolv-
able by radicals and he was the first of complete the process of capturing the
”ambiguity” of the roots in a group, now called the Galois group. He wrote his
ideas in a manuscript that he finished the night before he died tragically in a
duel for his beloved Stéphanie.

Galois’ brother and his friend Chevalier copied his mathematical papers and sent
them to Gauss, Jacobi and others. It had been Galois’ wish that Jacobi and
Gauss should give their opinions on his work. No record exists of any comment
of these men. However, by a strange coincidence and a great deal of luck,
the papers reached Liouville, 11 years after Galois’ death. Liouville announced
that he had found in Galois’ papers a concise solution of the problem: Given
an irreducible equation of prime degree, decide whether or not it is soluble by
radicals. Three years later he published Galois’ work and the world could finally
behold the beauty of Galois’ theory.

2.5 The neverending story

Now it seems the story is over. The quintic has been proved to be unsolvable,
so that’s that. Still there is another chapter in the history of the theory of the
quintic.

Beyond the solvable equation -11-



12 HISTORY

It starts with the independent discovery of the theory of elliptic functions by
Abel and Jacobi in the 1820s. Instead of studying elliptic integrals, which arise
in the determination of the arc length of an ellipse, they studied their inverse
functions and found that they possess remarkable properties, like the fact that
they are doubly periodic complex functions. As soon as they learned from each
others results, they started to compete with each other, which resulted in many
publications and a rapid development of a new branch of mathematics.

On 9 February 1828, Legendre, who was the leading expert on elliptic integrals
until Jacobi and Abel surpassed him, wrote in a letter to Jacobi:

It gives me great satisfaction to see two young mathematicians such
as you and [Abel] cultivate with such success a branch of analysis
which for such a long time has been my favorite topic of study but
which had not been received in my own country as well as it deserves.
By your works you place yourselves in the ranks of the best analysts
of our era.

At first this theory was not understood by many others, but as the 19th century
progressed, more and more mathematicians started to realize the importance of
Abel’s and Jacobi’s work.

In 1858 this theory inspired Hermite to make a renewed attempt to solve the
quintic. He first noted that the cubic can be solved by using period division by
three on the periodic sine function. More precisely, the roots of

x3 − 3x + 2a, where a = sin(α)

can be described as

2sin(
α

3
), 2sin(

α + 2π

3
) and 2sin(

α + 4π

3
).

He then designed a method to solve the Bring-Jerrard quintic

x5 + x + a,

with period division by five on an elliptic function, which is doubly periodic. He
also knew that every quintic equation can be reduced to one in Bring-Jerrard
form by using only radicals, which means he could find a solution to all quintic
equations, not with only radicals, but with elliptic functions. The quintic was
finally solved. Still this is not the end of the story.

In 1878, Gordan described an alternative method to solve the quintic, based on
invariant theory. He did not use the Bring-Jerrard quintic, like Hermite, but
the Brioschi quintic

x5 + 10Bx3 + 45B2x + B2 = 0.

-12- Beyond the solvable equation
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It has only one parameter and can be obtained from the general quintic by
transformations using only radicals, just like the Bring-Jerrard quintic. Gordan
related the Brioschi quintic to the symmetry functions of the icosahedron.

Shortly afterwards, also in 1878 Kiepert designed an algorithm for the solution
of the quintic with elliptic functions. Later however Kiepert’s work appeared
to have been forgotten for more than a century until the Georgian chemist
and mathematician R. Bruce King read the article of Kiepert and successfully
implemented the algorithm on a modern PC in 1996. To quote King:

This work lay fallow for more than a century since the algorithm
for roots of the general quintic equation appeared intractable before
the era of computers. Many of the key ideas appear to have been
forgotten by the subsequent generations of mathematicians during
the past century so that some of the underlying mathematics has the
status of a lost art.

The work of Kiepert was probably overshadowed by that of Klein, who wrote the
very successful book ”Vorlesungen über das Ikosaeder“, in which he presents the
relations between the quintic and the icosahedron and a solution to the quintic
in terms of elliptic and hypergeometric functions.

It also has to be mentioned that in 1926, Dickson worked out some of Klein’s
ideas in the book Modern Algebraic Theories and made the key ideas accessible
to undergraduate students. After Dickson however, interest started to diminish.
Serre wrote in 1978 that Dickson’s book was still the most modern treatment
of the theory. Recently however, with the increasing interest in elliptic curves,
the interest in Klein’s theory is also rising.

A very nice recent result, published by Edray Goins in 2003, is that some of the
elliptic curves that are attached to quintic equations have remarkable properties.
They are so called -curves and they have an ”absolutely irreducible mod 5”
representation.

Results like this show that, even though a piece of mathematics has been studied
for centuries, or even millennia, there is always the possibility of further research
and deeper understanding.
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3 Equations until fourth degree

3.1 Solving Equations

An important first step we have to make before we can start solving an equation
is to begin with a field K. We need this field for the coefficients of our equation,
but also for the multiplication and the addition. The field gives us everything
we need to write down a polynomial equation in one variable x. For instance:

2x2 + 3x3 = −3x − 4 − x2 (1)

To solve this equation, we first reduce the equation to zero, sort the terms by
powers of x and divide the equation by the coefficient of the largest power of x.
In our example

x3 + x2 + 4/3 = 0 (2)

The problem of solving an equation can thus be reduced to the problem of
finding the zeroes (roots) of a polynomial with the first coefficient equal to 1.

Definition 3.1
xn + a1x

n−1 + ... + an−1x + an,

where a1, . . . , an ∈ K is called a monic polynomial of degree n over K.

The roots of a first degree polynomial always lie in K, so solving first degree
equations requires nothing else than the elements and operations already defined
in K. With second degree polynomials however it can occur that the roots lie
outside of K. To solve this problem, we extend K to a larger field L that, apart
from K, also contains at least one of the roots of f . Of course we also need a lot
of other elements to make L into field. The next example is meant as a preview
of some of the terminology and concepts that will play a great role in the next
chapters.

Example 3.2 Define f over as f(x) = x2 − 2. Find solutions in , or
construct some field extension that contains them.

We do not suppose that
√

2 is already a known element of some large field like
or . We first prove that we cannot find a solution in .

Proof: If there is an element α ∈ such that α2 = p2/q2 = 2 for two relatively
prime integers p and q ̸= 1 then p2 = 2q2, and so p must have 2 as a divisor, but
that means p2 must have 22 as a divisor, so q must also have at least one 2 as
a divisor, making p and q no longer relatively prime, which is a contradiction.
The conclusion is that α /∈ .

-14- Beyond the solvable equation
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So, because no root of f has yet been defined in , we can give one a name,
let’s say

√
2. We extend our field of coefficients to a larger field called (

√
2)

that apart from also contains
√

2. It turns out that {a + b
√

2|a, b ∈ } is a
field that fulfills the criteria and what’s more, it also contains the other root.
The other root is namely the additive inverse of

√
2, −

√
2. At first sight it looks

like we have a negative and a positive root, but actually this difference is just
in the name. We are really free to interchange the names of the two roots.3

More precisely, (
√

2) = {a+b
√

2|a, b ∈ } and (−
√

2) = {a+b(−
√

2)|a, b ∈
} are isomorphic field extensions of , under an isomorphism that is well

defined by stating that it sends
√

2 to −
√

2 and leaves fixed. So the only
difference in these two extensions is just the names of the elements, not the
algebraic structure! These concepts are hints towards a bigger theory, explaining
the close connection between roots of polynomials, field extensions and their
isomorphisms. That theory will be studied later in much more detail and is the
main subject of the first part of this paper.

Definition 3.3 A root of the polynomial xn − a over some field K containing
a that lies in some field extension L is written as n

√
a. It is called an n-th root

of a and n
√ an n-th root function. We can also omit the part function or of a

if it is clear or unimportant weather we mean the element or the function. In
particular √ = 2

√ is called a square root and 3
√ a cube root.

Note that there can be more than one n-th root in the field L (maximally n). In
particular if L contains n different n-th degree roots of unity, which are solutions
to the equation xn = 1, called ζ1, . . . , ζn, the other roots of xn−a can be written
as ζi

n
√

a for i = 1 . . . n.

As we will prove later, as long as xn−a is irreducible over K (which means that
we cannot write it as a product of two polynomials with degree > 1 over K),
the choice of an n-th degree root in some larger field L will not change (up to
isomorphism) our field extension K( n

√
a) that we need to build to find a root of

xn − a. In fact we will see later that all fields K(α), with α ∈ L different roots
of an irreducible polynomial, are isomorphic in much the same way as (

√
2)

and (−
√

2) are isomorphic.

We saw that with the help of a square root function (and the fact that already
contains the two second degree roots of unity, 1 and -1), we could find the roots
of x2−2 in the previous example. In fact it is a well known fact that square roots
are sufficient to write down the solution to the general second degree equation
over a general field K (provided char(K )̸= 2, which means as much as 1+1 ̸= 0,
so we can divide by 2 in K).

p(x) = x2 + a1x + a0 = 0 (3)

3It is also possible to introduce
√

2 ∈ >0 in other ways, so that we can make the distinction
between positive and negative.
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16 EQUATIONS UNTIL FOURTH DEGREE

has as a solution

x± =
−a1

2
±

1

2

√

a2
1 − 4a0 (4)

∆ = a2
1 − 4a0 is called the discriminant of p and it is easy to see that our field

extension and the number of solutions in some extension L of K depend entirely
on ∆. ∆ = 0 means there exist 1 solution in L, 0 ̸=

√
∆ ∈ L leads to 2 solutions

in L and
√

∆ /∈ L implies no solutions in L.

Similarly, the general third degree equation can be solved using a square root
and a cube root. We shall look in more detail at this solution, first discovered
by Tartaglia and, by breaking a promise of secrecy, first published by Cardano
in detail.

3.2 The general cubic equation

We look for a solution of the equation

x3 + a1x
2 + a2x + a3 = 0

The coefficients a1, a2 and a1 are taken from a general field K, char(K )̸= 2, 3.
First we eliminate the x2-term by a substitution

x = z − a1/3

This leads to the equation

z3 + b2z + b3 = 0

where

b2 =
3a2 − a2

1

3

b3 =
2a3

1 − 9a1a2 + 27a3

27

Now we make things seemingly more complicated by substituting

z = u + v

which leads to:

u3 + v3 + 3(uv + b2/3)(u + v) + b3
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THE GENERAL CUBIC EQUATION 17

This equation will be satisfied if both of the following relationships hold

u3 + v3 = −b3

uv =
−b2

3

Eliminating v from the above equations leads to the sixth degree equation

u6 + b3u
3 − b3

2/27 = 0

which is a quadratic equation in u3. Using the formula for the second degree
equation leads to

u3 =
−b3

2
±

√

b2
3

4
+

b3
2

27

Having to use the formula for the second degree equation, means we need an
element that is the square root of the discriminant ∆ in that formula. If that
element is not yet present in our field K (or in other words: if ∆ is not a square
in K) we need to add this element to K, giving us an extension of K to K(

√
∆)).

Note that there are up to two possible choices for this square root, but again,
just as in example 4.1, this choice doesn’t influence K(

√
∆) up to isomorphism.

Now it is clear that the u we are searching for is a cube root of an element
of K(

√
∆). We use our definition of the cube root and note that if K(

√
∆)

doesn’t contain any cube root of this element, we need to add one. We will later
prove that if K(

√
∆) doesn’t contain a cube root, there exist three isomorphic

extensions that do contain such a cube root, for now we will assume it. Note
further that adding one cube root doesn’t necessarily mean our final extension
contains all the roots! The extension ( 3

√
2)/ for instance only contains one

root of x3 − 2. We can solve this problem by adding, apart from one cube root,
also a third degree root of unity (unequal to 1) to our field. Its square will then
give the other one, thus providing us with all third degree roots of unity and
thus with all the u’s we need.

What remains is to calculate back from u via v and z to x, but because all the
equations are linear, we don’t encounter any more problems there.

To make things more concrete we turn to K = and try to find the solutions
in the already given field . There are up to two solutions for the square root
and up to three for the cube root in . By convention we take the square and
cube root with the smallest complex argument and find the other square root
to be minus the first and the other two cube roots with the use of ζ3 = e2πi/3,
which is a primitive cube root of unity (primitive means that ζi

3 for i = 1, 2, 3
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18 EQUATIONS UNTIL FOURTH DEGREE

give all the three different roots of unity). This will give all the solutions for u
and thus for x.

Note finally that there are possibly six different solutions for u. Won’t this give
too many solutions? As we will see, the answer is no.

For convenience define p to be −b3/2 and q to be
√

b2
3/4 + b3

2/27. We can now
write down our six solutions for u:

u =
3
√

p + q , ζ3
3
√

p + q , ζ2
3

3
√

p + q
3
√

p − q , ζ3
3
√

p − q , ζ2
3

3
√

p − q

which have to satisfy

u3 + v3 = 2p

uv = 3
√

p2 − q2

Now it is clear that there can only be three solutions for z = u + v, namely:

z1 = 3
√

p + q + 3
√

p − q

z2 = ζ3
3
√

p + q + ζ2
3

3
√

p − q

z3 = ζ2
3

3
√

p + q + ζ3
3
√

p − q

3.3 The general quartic equation

To conclude this chapter, let’s look at the general fourth degree equation, which
was first solved by Ferrari, a student of Cardano.

x4 + a1x
3 + a2x

2 + a3x + a4 = 0 (5)

As we will see, this does not give rise to new functions. Square roots and cube
roots are sufficient to formulate the solution.

Determine the numbers a, b and k such that

x4 + a1x
3 + a2x

2 + a3x + a4 + (ax + b)2 = (x2 +
a1

2
x + k)

2
(6)

by comparing the coefficients of the equal powers of x. This leads to three
equations that have to be solved simultaneously:
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THE GENERAL QUARTIC EQUATION 19

a2 + a2 = 2k + a2
1/4

2ab + a3 = ka1 (7)

b2 + a4 = k2

After eliminating a and b, the solution to this set of equations can be found to
be

k3 −
1

2
a2k

2 +
1

4
(a1a3 − 4a4)k +

1

8
(4a2a4 − a2

3) = 0

This cubic equation is called the Resolvent Cubic and it can be solved with the
solution of the general cubic. Substituting k in (7) gives a and b and all we need
to do is combining (5) and (6) to get

(x2 +
a1

2
x + k)

2
= (ax + b)2

Taking square roots gives the following quadratic equations:

x2 +
a1

2
x + k = ax + b

x2 +
a1

2
x + k = −ax − b

The four roots can now be found easily by using the formula for the general
second degree equation.

So it turns out that we can solve the general quadratic equation with square
roots and the general cubic and quartic equations with square and cube roots.
A logical guess would be to state that all n-th degree equations can be solved
with n-th degree roots. This guess turns out to be wrong. As we will see later,
it fails for n = 5, but before we can understand why, we first need more field
theory.
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20 FIELD THEORY

4 Field theory

4.1 Field extensions

In this chapter we will develop some theory around field extensions. We start
with some definitions.

Definition 4.1 A ring is a commutative group under addition together with
a multiplication that is associative and has a unity element, together with the
distributive laws x(y + z) = xy + xz and (x + y)z = xz + yz.

Example 4.2 The set K[X] of all polynomials over a field K is a ring.

An ideal I is a non-empty subset of a ring R that is closed under + and for
which ab ∈ I for all a ∈ I and b ∈ R. If it can be generated by a finite set of
elements a1, . . . , an, then it is written as (a1, . . . , an).

Definition 4.3 A field is a non-zero ring with commutative multiplication for
which every non-zero element has a multiplicative inverse.

The only two ideals in a field F are (0) and (1) = F .

Definition 4.4 If K and L are fields, L is called a field extension of K if K ⊂ L.
We write “L/K” and read “L over K”, or “L is an extension of K”.

Definition 4.5 An element α ∈ L (with L an extension of K) is called algebraic
over K if ∃f ∈ K[X] : f(α) = 0. If every element of L is algebraic over K, L/K
is called an algebraic extension of K.

Example 4.6 Some elements of are algebraic, such as
√

2, 3 + 3
√

2/8, 3.54.1

and e
2πi

n (a root of xn − 1), but not all of them. For instance π is non-algebraic
(transcendental) over . To prove that a number is transcendental can be very
hard, but to prove that there are many transcendental numbers is easy, for there
are only countably infinitely many numbers algebraic over , but uncountably
infinitely many complex numbers.

Definition 4.7 Let K be a field. L is called a vector space over K or a K-
vector space, if L is an abelian group for + together with a multiplication K×V :
(x, v) *→ xv that satisfies the following conditions:

a) If 1 ∈ K, then 1v = v for all v ∈ V
b) If c ∈ K, then c(v + w) = cv + cw for all v, w ∈ V
c) If x, y ∈ K, then (x + y)v = xv + yv for all v ∈ V
d) If x, y ∈ K, then (xy)v = x(yv) for all v ∈ V
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Definition 4.8 A set of elements in a vector space L is called a basis of L if
they are linearly independent over K and if every element of L can be written
as a linear combination of these elements over K. The number of elements in a
basis is called the dimension of L.

Theorem 4.9 If L/K is a field extension, then L is a K-vector space.

Proof: L is a field, so certainly an abelian group. The 1 in K is also the 1 in
L, because K ⊂ L, which proves a). Finally the multiplication of elements of L
with those in K happens completely in L and L is a field, so it satisfies b), c)
and d). ✷

Definition 4.10 If L/K is a field extension such that L is a finite-dimensional
vector space over K, then L/K is called a finite field extension. We write the
dimension dimKL as [L : K] and call it the degree of L over K.

Example 4.11 / is finite with basis {1, i}, / is not finite and (
√

2)
is finite with basis {1,

√
2}.

Theorem 4.12 For an extension L/K, L = K ⇐⇒ [L : K] = 1

Proof: If L = K, then {1} (1 ∈ L) is a basis for L as a vector space over K, so
[L : K] = 1. In the other direction we have [L : K] = 1, so {α} with α ∈ L is a
basis of L over K and because L is a field and thus contains a unity, the first
condition for a vector space gives us 1Kα = 1L, so α = 1, so L = 1K = K. ✷

Theorem 4.13 If L/K is finite, then L/K is algebraic.

Proof: Suppose [L : K] = n For all α ∈ L the elements 1,α, . . . ,αn must
be linearly dependent over K, otherwise [L : K] ≥ n + 1. And this linear
dependency gives us a relation a0 +a1α+ . . .+anαn = 0, with αi ∈ K and that
means exactly that α is a root of the polynomial f(X) =

∑n
i=0 aiXi ∈ K[X],

so every α ∈ L is root of a polynomial over K and therefore algebraic. ✷

Theorem 4.14 If α ∈ L is algebraic over K then the monic polynomial of
smallest degree over K that has α as a root is unique.

Proof: I = {f ∈ K[X]|f(α) = 0} is a non-zero ideal of K[X]. Suppose
0 ̸= p ∈ I is a polynomial of smallest degree and f ∈ I, then by the Euclidian
algorithm for polynomials [10, Lang, p.113], we can find polynomials r, s ∈ K[X]
such that f = rp + s, with deg s < deg p. Now s = f − rp must also be in I
because I is an ideal. Since p is of minimal degree, s must be zero and it follows
that f = rp, so p is a generator of I.

If p1 and p2 are generators of I, then p1 = qp2, so deg p1 ≤ deg p2 and by sym-
metry deg p2 ≤ deg p1, so q must be constant and can be chosen in such a way
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that the generator becomes monic. So there exists a unique monic polynomial
of smallest degree that is a generator of the ideal of all polynomial for which α
is a root. ✷

Definition 4.15 This polynomial is called the minimal polynomial of α over
K and the degree of p is called the degree of α over K.

Theorem 4.16 The minimal polynomial p of α ∈ L/K is irreducible over K.

Proof: Suppose p reducible, then p = fg, with deg f < deg p > deg g.
Furthermore 0 = p(α) = f(α)g(α) ⇒ f(α) = 0 or g(α) = 0, so (p) must contain
an element with degree smaller than deg p, contradiction. ✷

Theorem 4.17 (Eisenstein’s criterion) Let

f(X) = anXn + . . . + a0

be a polynomial of degree ≥ 1 with integer coefficients. Let p be a prime and
assume for all i < n

an ̸= 0mod p, ai = 0mod p, a0 ̸= 0mod p2.

Then f is irreducible over .

Proof: For the proof see [10] Lang, p.139-140. ✷

Example 4.18 Let p be a prime number and ζp a p-th degree root of unity
unequal to 1. ζp is a root of Xp − 1 and because it is not 1, also a root of

f(X) =
Xp − 1

X − 1
= Xp−1 + . . . + X + 1.

We want to show that this is the minimal polynomial of ζp over , so we need
to show it is irreducible over . We substitute X = Y + 1 and find after some
easy calculations that

g(Y ) =
(Y + 1)p − 1

Y + 1 − 1
=

p−1
∑

i=0

(
p

i

)

Y p−i−1.

Since p|
(p

i

)

for i ̸= 0, p, Eisenstein’s criterion implies that g(Y ) is irreducible
over , so therefore f is irreducible over .

Remark 4.19 Suppose L/K a field extension and α ∈ L. Just like we can
make the polynomial ring K[X], we can also make the ring

K[α] := {f(α)|f ∈ K[X]} ⊂ L (8)
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generated by α. If α is algebraic over K of degree n, this ring has 1,α, . . . αn−1

as a basis.

Similarly, we define the ring generated by a finite number of elements {α1, . . . αn}
of L by evaluating polynomials in n variables over K in α1, . . . αn.

K[α1 . . . αn] = {f(α1, . . . ,αn)|f ∈ K[X1, . . . ,Xn]} (9)

Theorem 4.20 If α ∈ L/K is algebraic with minimal polynomial p, then

K[X]/(p) ∼= K[α] (10)

Proof: I = (p) = {f ∈ K[X]|f(α) = 0} is the kernel of the evaluation-in-
α-homomorphism evα : K[X] → K, f(X) *→ f(α), so K[X]/(p) ∼= im evα =
{f(α)|f ∈ K[X]} = K[α] under an isomorphism that evaluates the polynomials
of K[X]/(p) in α. 4

✷

Example 4.21 Consider the field extension / . Note that i ∈ is alge-
braic over with minimal polynomial x2 + 1. We can now construct the ring

[X]/(X2 +1). From the previous theorem it now follows that this polynomial
ring is isomorphic to

[i] = {f(i)|f ∈ [X]} = {a + bi|a, b ∈ }

which is a field. So we have the field extensions ⊂ [i] ⊂ . The following
theorem states that K ⊂ K[X]/(p) ⊂ L is always a tower of field extensions.

Theorem 4.22 Suppose α ∈ L/K algebraic over K, then

K ⊂ K[α] ⊂ L

is a tower of field extensions and [K[α] : K] = degKα.

Proof: We have
K ⊂ K[α] ⊂ L

and, as we said before in remark 4.19, {1,α, . . . ,αn} is a basis for K[α] over
K, so what remains to be proven is that K[α] is a field. K[α] is a commutative
ring that is not 0, so we only need multiplicative inverses.

Suppose f(α) ∈ K[α]. If f(α) ̸= 0, then the irreducible minimal polynomial
p of α and f are relatively prime, so by the Euclidean algorithm there exist
a, b ∈ K[X] with

a(X)p(X) + b(X)f(X) = 1. (11)

4This follows directly from the first isomorphism theorem, found in most elementary algebra
textbooks, for instance [1].
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If we evaluate this in X = α, we get b(α)f(α) = 1, so f(α) has an inverse in
K[α]. Since every element of K[α] is of the form f(α) every element has an
inverse, thus K[α] is a field. ✷

Remark 4.23 If α is algebraic, K[α] is a field and therefore equal to its own
quotient field, which we denote by K(α). If α is transcendental K[α] is not a
field and therefore not equal to K(α).

Remark 4.24 In an extension L/K, K[α1, . . . ,αn] can be constructed by
subsequently constructing the K-vector space K[α1], the K[α1]-vector space
K[α1][α2], etc.

Example 4.25 Finite extensions are algebraic, but algebraic extensions need
not to be finite. L = [

√
2, 3

√
2, 4

√
2, . . .] is algebraic over , but not finite,

because ⊂ [ n
√

2] ⊂ L is a tower of field extensions which implies [L : ] ≥
[ [ n

√
2] : ]. Now [ [ n

√
2 : ] = n because xn − 2 is irreducible over . So

[L : ] ≥ n for all n and therefore infinite.

Theorem 4.26 If K ⊂ L1 ⊂ L2 is a tower of field extensions, with L2/K
finite, then [L2 : K] = [L1 : K][L2 : L1]

Proof: If {αi|i ∈ } is a basis for L1/K and {βi|i ∈ } a basis for L2/L1, then
{αiβj |i, j ∈ } is a basis for L2/K: this set generates L2, because an element
of L2 can be written as linear combination of βj with coefficients in L1 and
those coefficients can be written as linear combination of αi with coefficients in
K. It also is linearly independent: if

∑

aijαiβj = 0, then
∑

j(
∑

i aijαi)βj = 0
is a combination for which the βj are linearly independent for the coefficients
∑

i aijαi in L1, which means they must be zero for all j, and because the αi are
independent over K, we have aij = 0 for all i, j. ✷

Example 4.27 Consider α = 3
√

2 and β = αζ3, as elements of , where

ζ3 = e
2πi

3 = −1+
√
−3

2 . They are both roots of the irreducible polynomial X3 − 2
over , so [ (α) : ] = [ (β) : ] = 3. We also have (α,β) = (α, ζ3).
[ (α, ζ3) : (α)] can be seen to be 2 because the degree of ζ3 over (α) is
2. This follows from the fact that it has minimal polynomial X2 + X + 1 over

(α), which is irreducible, because it has no roots in , so in particular not in
(α) ⊂ . We know now that [ (α) : ] = 3 and [ (α, ζ3) : (α)] = 2, so

because of theorem 4.26, [ (α,β) : ] = 3 · 2 = 6. In particular it is not equal
to [ (α) : ][ (β) : ] = 9.

In the next theorem it will be proved that, if we cannot find a root in our
coefficient field, we do not need to have any previous knowledge of a larger field
in which the polynomial does have a root. We can namely always construct a
larger field from our coefficient field that contains a root.
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Theorem 4.28 Suppose K is a field and f(X) is a non-constant polynomial
over K. There exists a finite field extension L/K such that L contains a root
of f .

Proof: Suppose f is irreducible, then K[X]/(f) is a ring for which the class
X mod f(X) is a root of f , because f(X) = 0 mod X. Just like in the proof
of theorem 4.22 we use the Euclidian algorithm to show that K[X]/(f) has
multiplicative inverses, and hence must be a field and therefore a finite field
extension of K that contains a root of f .

Suppose f is reducible, then f =
∏

pi
νi with pi irreducible. The fields K[X]/(p)

are finite field extensions of K that contain a root of f . ✷

Remark 4.29 It is very important to see that, given an irreducible polynomial
p over K, the field extension that we need to construct to find a root of p, is in
fact the field K[X]/(p) and that the root in this field is the class X mod p.

Now if L = K[α] is a larger field, generated by a root α of p, we know that p is
the minimal polynomial of α over K, because p is irreducible. We also know by
theorem 4.20, that K[X]/(p) is isomorphic to K[α] under an isomorphism that
evaluates the polynomials of K[X]/(p) in α. Note that this means that although
p has multiple roots in L it doesn’t matter which one we take to construct
K[α], because that field is always isomorphic to K[X]/(p). The root X mod p
is mapped to α by this isomorphism and in fact the basis {1,X, . . . ,Xn−1} of
K[X]/(p) as a vector space over K, is mapped to {1,α, . . . ,αn−1}, the basis of
L as a vector space over K.

Definition 4.30 Suppose f =
∏m

i=1 pi
νi , with pi irreducible. The m fields

K[X]/(pi) are called the root fields of f .

Theorem 4.31 All root fields of an irreducible polynomial p over K are iso-
morphic.

Proof: As we saw in remark 4.29, the root fields of an irreducible polynomial
are all isomorphic to K[X]/(p), so we see that the root fields of a polynomial
are uniquely defined by its irreducible factors. ✷

Example 4.32 We have another look at the polynomial f = X3 − 2, which
is irreducible over . We can construct the root field [X]/(X3 − 2) and note
that, by theorem 4.28, it is a field extension that contains a root, namely X mod
X3−2. In the complex numbers f has three roots, namely r1 = 3

√
2, r2 = 3

√
2 ζ3

and r3 = 3
√

2 ζ2
3 , where ζ3 is a third degree root of unity. By theorem 4.31, the

three field extensions [ri], i = 1, 2, 3 are isomorphic to [X]/(X3 − 2), under
three isomorphisms that send X mod X3 − 2 to ri for i = 1, 2, 3 respectively.

Note that if we define 3
√

2 as a positive real number, the three field extensions
[ri] are still isomorphic, but they are not the same subspaces of . For instance
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[r1] has {1, 3
√

2, ( 3
√

2)2} as a basis, so [r1] ⊂ and r2 /∈ . Note furthermore
that this means that [r1] does not contain the roots r2 or r3.

The example above shows that although [X]/(X3−2) is a field extension that
contains a root, this does not mean [X]/(X3 − 2) contains all the roots of f .
If we want all the roots of f to be contained in our construction, we could for
instance add a third degree root of unity. As we saw in example 4.27, such an
element is a root of Y 2 + Y + 1, which is irreducible over [X]/(X3 − 2). If we
now follow our construction method rigourously, this leads us to construct the
field extension

( [X]/(X3 − 2))[Y ]/(Y 2 + Y + 1) ∼= [ 3
√

2, ζ3].

We could also have noticed that in this third degree root of unity is equal to
−1+

√
−3

2 and divide by the minimal polynomial of
√
−3 to get

( [X]/(X3 − 2))[Y ]/(Y 2 + 3) ∼= [ 3
√

2,
√
−3].

Yet another possibility would have been to divide the root X in [X]/(X3 − 2)
out of the polynomial Y 3 − 2, by using the division algorithm for polynomials.
This leads to Y 3 − 2 = (Y − X)(Y 3 + Y X + X2) and consequently to the
construction:

( [X]/(X3 − 2))[Y ]/(Y 2 + Y X + X2) ∼= [ 3
√

2, 3
√

2 ζ3].

So we see that there are at least three different ways of constructing a field
extension of degree 6 that contain the roots of X3 −2. Now the question is: are
they the same? If we look at them as subspaces of (the right hand sides), we
notice that, because they contain all the roots of f , they must be subspaces of

[r1, r2, r3] and because [r1, r2, r3] is also of degree 6 over , we can apply
theorem 4.12 and conclude that they are all the same subspaces of .

Definition 4.33 Let f be a polynomial over K and L a field extension of K
that contains all the roots of f , so that f can be written as a product of linear
factors over L. We say that f splits completely in L. Adding all the roots of f
to K defines a subfield of L. This field is called the splitting field of f .

Theorem 4.34 For every polynomial f over K there exists a splitting field.

Proof: If f is a linear polynomial we are done. If not, decompose f into
irreducible factors over K. Apply theorem 4.28 on one of its irreducible factors
to find a field extension L that has a root of f . By doing this you always find
at least one linear factor of f (we may find more than one, or find that other
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irreducible factors become reducible, but that only speeds up the process). If
there still exists an irreducible factor of degree > 1 over L, apply 4.28 again to
construct a field extension of L that has a root of this irreducible factor. Do
this until you have a field extension that has all the roots of f and therefore f
spits completely into linear factors. The number of steps we have to take is less
than the degree of f over K. ✷

Theorem 4.35 Let f be a polynomial over and let L ⊂ be its splitting
field. L is a unique subset of .

Proof: We know that all the roots of f are contained in , so our splitting field
is the unique field attained by evaluating all polynomials in n variables over K
in the roots r1, . . . , rn of f . ✷

The theorem also holds for the splitting field of a polynomial over a general field,
but then ”unique” must be seen as ”unique up to isomorphism”. The proof also
becomes a little bit longer.

Theorem 4.36 The splitting field L of a polynomial f over K is unique up to
isomorphism.

Proof: We prove this by induction on the degree of f . If f has degree 1, then
L = K and the theorem is trivial. Suppose that all splitting fields of polynomials
of degree < n are unique up to isomorphism, then we prove that splitting fields
of n-th degree polynomials are isomorphic. Suppose f is of degree n. First
decompose f into irreducible factors. If f has only linear factors over K, then
L = K and we are done, so let p be an irreducible factor of f . If a root α of p is
added to K, we get K[α], which is a unique root field of p (theorem 4.31) and
we note that L is also a splitting field of p

x−α over K[α], which, by the induction
hypothesis, is unique up to isomorphism. ✷

To further expand our understanding of field extensions, we need to study their
morphisms. This will be done in the next section.

4.2 Morphisms

When studying the algebraic structure of a mathematical object such as a group,
a ring or a field extension, the first goal is to understand the morphisms between
the objects, that is, the functions that map such an object to a similar object
while preserving the algebraic structure. A homomorphism between two addi-
tive groups for instance preserves the addition and the zero and a ring homomor-
phism preserves the addition, the zero, the multiplication and the unit element.
In the study of field extensions, we already used the concept of isomorphism,
by which we actually meant a bijective morphism between field extensions or
between vector spaces.
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The next goal should be to understand how a mathematical object can be mor-
phed into itself. How can such an object be changed, without changing it in
an essential way? This can be compared to studying the symmetry of a geo-
metrical figure, like a tetrahedron. There are twelve rotations which send the
tetrahedron to itself. These rotations may move the individual points of the
tetrahedron, but the object as a whole remains the same. These rotations form
a group, which completely describes the symmetry of a tetrahedron. To quote
the introduction from [1] Groups and symmetry: Numbers measure size, groups
measure symmetry.

In a similar way the automorphisms on a splitting field form a group that
describes the symmetry of a field extension. The elements of the field may be
moved around, but the algebraic structure remains unchanged. Now because
splitting fields are directly linked to polynomials, this group also describes the
symmetry of a polynomial. By studying this group, called the Galois group, we
will see that the general equation of degree 5 cannot be solved by radicals.

In this paragraph, we will start with the study of morphisms of field extensions
(or vector spaces) and lay the basis for our final goal: a theory of automorphisms
of splitting fields.

Definition 4.37 A morphism φ between two fields L and L′ is a ring homo-
morphism between L and L′, so it is a function φ : L → L′ such that

• φ(a + b) = φ(a) + φ(b)

• φ(ab) = φ(a)φ(b)

• φ(1) = 1

Lemma 4.38 A morphism σ : L → L′ between two fields L and L′ is injective.

Proof: The kernel of σ is an ideal in L, so (0) or (1), but σ(1) ̸= 0, so it is
(0). ✷

Remark 4.39 Because a morphism σ : L → L′ between fields is always injec-
tive, that means we can find a copy of L in L′. Therefore they are also called
embeddings. Such a copy does not have to be unique. As we saw in example
4.32, there are three copies of [X]/(X3 − 2) in . They are of course unique
up to isomorphism.

Definition 4.40 If L/K and L′/K are field extensions of K, then a morphism
σ : L → L′ is called a K-morphism or a morphism of field extensions over K if
σ is K-linear.

Note that K-linearity effectively makes a morphism between L and L′ into a
morphism between K-vector spaces, because if σ is K-linear it preserves all the
conditions of a K-vector space.
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Theorem 4.41 σ : L → L′ is a K-morphism if and only if σ|K = idK .

Proof: Let k ∈ K and l ∈ L. If σ is K-linear, we have σ(kl) = kσ(l) which
implies σ(k1) = kσ(1) = k. On the other hand if σ|K = idK , we have σ(k) = k,
which implies σ(kl) = σ(k)σ(l) = kσ(l). ✷

Remark 4.42 So we have proved that for a field extension L/K, the morphisms
on the K-vector space L are injective morphisms that are the identity on K, in
other words they leave K fixed. Now because every element in L can be written
as a K-linear combination, a K-morphism is completely defined by stating what
it does on the basis elements of L.

The following theorem shows a stronger result for the morphisms on an al-
gebraic extension of the form K[α], called a simple extension, namely that a
K-morphism on K[α] is completely defined by stating what it does on the roots
of the minimal polynomial of α.

Theorem 4.43 Let L/K be a field extension and α ∈ L an algebraic element
over K with minimal polynomial p. The number of embeddings of K[α] into L
is equal to the number of different roots of p in L and such an embedding can
be defined by stating that it sends α to (another) root of p.

Proof: If σ is an embedding of K[α] into L, then p(α) = 0 implies p(σ(α)) =
σ(p(α)) = σ(0) = 0, so σ(α) is also a root of p. So every embedding gives a root
in L.

On the other hand, every root β of p in L, induces a morphism σ that sends the
root field K[α] to K[β] which is an isomorphism K[α] → K[β] by theorem 31,
so σ : K[α] → L is an embedding. ✷

Remark 4.44 Note that if L = K[α], the theorem applies to embeddings of
L into itself.

Definition 4.45 A morphism, resp. a K-morphism is called an isomorphism
resp. a K-isomorphism if it is bijective.
An isomorphism, resp. a K-isomorphism is called an automorphism resp. a K-
automorphism if it is a function from L to L.
The automorphisms, resp. the K-automorphisms on L form a group under com-
position that is written as Aut(L), resp. AutK(L).

Example 4.46

• The identity map id : L → L, x *→ x is an automorphism. It is the
identity element of Aut(L).
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• Complex conjugation (sending a + bi to a− bi) defines an -isomorphism
σ on . Together with the identity, they are all -automorphisms on

, because (theorem 4.43) the number of embeddings from [i] into
is equal to the degree of the minimal polynomial of i, which is 2, so
Aut ( ) = {id, σ} ∼= 2, the cyclic group of order 2.

• The two embeddings of [
√

2 ] into itself send
√

2 either to itself or to
−
√

2, the other root of x2 − 2, so Aut [
√

2 ] ∼= 2.

• Similarly AutK(K[
√

α ]) ∼= 2 if α is not a square in K.

• Let p be a prime and ζp a p-th degree root of unity. As we saw in example
4.18, the minimal polynomial of ζp is xp−1 + . . . + x + 1, so the auto-
morphisms on [ζp] are induced by the p− 1 embeddings that send ζp to
another root of xp−1+ . . .+x+1. For instance if p = 5: the automorphism
induced by ζ5 *→ ζ2

5 , acts on the other roots as

ζ2
5 *→ ζ4

5 ζ3
5 *→ ζ5 ζ4

5 *→ ζ3
5 .

Note that composition of the automorphisms, boils down to multiplication
modulo p, for instance the composition of the automorphism induced by
ζp *→ ζ2

p by the automorphism induced by ζp *→ ζ3
p is induced by ζp *→ ζ6

p .
Therefore they form the multiplicative cyclic group ( /p )∗ of order p−1.

• There are no automorphisms on [ 3
√

2] except the identity, because there is
only one root of x3−2 contained in [ 3

√
2], so there is only one embedding

of [ 3
√

2] into itself, which is the identity.

• Consider the extension ⊂ K ⊂ L, where K = [ 3
√

2 ] and L =
[ 3
√

2, ζ3], the splitting field of f = x3 − 2 over . K is a root field
of f , so sending 3

√
2 to another root ( 3

√
2 ζ3 or 3

√
2 ζ2

3 ) of f induces three
embeddings of K into L:

σ1|K = id σ2|K : 3
√

2 *→ 3
√

2 ζ3 σ3|K : 3
√

2 *→ 3
√

2 ζ2
3

These embeddings are not yet automorphisms on L because their domain
is K, which is not the whole L, but they can be extended to automor-
phisms on L, by defining them on ζ3, the primitive element of the second
extension. Sending ζ3 to itself gives three automorphisms, which act on
the roots of f as follows:

σ1 = id
σ2 : 3

√
2 *→ 3

√
2 ζ3 , 3

√
2 ζ3 *→ 3

√
2 ζ2

3 , 3
√

2 ζ2
3 *→ 3

√
2

σ3 : 3
√

2 *→ 3
√

2 ζ2
3 , 3

√
2 ζ3 *→ 3

√
2 , 3

√
2 ζ2

3 *→ 3
√

2 ζ3

But we could also have extended the three embeddings on K by sending
ζ3 to ζ2

3 , the other root of the minimal polynomial Y 2 + Y + 1 of ζ3 over
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K. This gives three more automorphisms that act on the roots of f as
follows.

τ1 : 3
√

2 *→ 3
√

2 , 3
√

2 ζ3 *→ 3
√

2 ζ2
3 , 3

√
2 ζ2

3 *→ 3
√

2 ζ3

τ2 : 3
√

2 *→ 3
√

2 ζ2
3 , 3

√
2 ζ3 *→ 3

√
2 ζ3 , 3

√
2 ζ2

3 *→ 3
√

2
τ3 : 3

√
2 *→ 3

√
2 ζ3 , 3

√
2 ζ3 *→ 3

√
2 ζ2

3 , 3
√

2 ζ2
3 *→ 3

√
2 ζ2

3

This gives a group of 6 elements {id,σ2,σ3, τ1, τ2, τ3}, generated by σ2,
which is of order 3 and τ1, which is of order 2 (note that τ1 is in fact
the restriction of complex conjugation to L). Furthermore, σ and τ don’t
commute, since

σ2τ1(
3
√

2ζ3) = σ2(
3
√

2) = 3
√

2ζ3

while
τ1σ2(

3
√

2ζ3) = τ1(
3
√

2ζ3) = 3
√

2ζ2
3

so this group of order 6 cannot be isomorphic to 6, so the only possibility
is that it is isomorphic to 2 × 3

∼= D3
∼= S3. So in fact all permutations

of the three roots of f induce automorphisms on the splitting field of f .

We see in the examples above that if L is a splitting field of a polynomial, the
degree of the extension (the dimension of L as a vector space over K) is equal
to the number of elements in the group of automorphisms of L. If L is not a
splitting field, this does not seem to be the case, as is seen in the case of [ 3

√
2].

This holds in general.

Definition 4.47 Field extensions that are splitting fields of a polynomial are
also called normal extensions.

Definition 4.48 A finite extension L/K is called a Galois extension if

#AutK(L) = [L : K].

In the case of a Galois extension #AutK(L) is also written as Gal(L/K).

In the following section we will prove that for infinite fields a finite extension is
Galois if and only if it is normal.
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5 Galois theory

5.1 Normal extensions, Galois extensions

Convention: In this chapter, we will assume all fields have characteristic 0.

To prove the next theorem for fields of characteristic p, we need the additional
condition of separability, which is not treated here. For more information, see
for instance [10].

Theorem 5.1 If L/K is a normal extension, then it is a Galois extension, so
#Gal(L/K) = [L : K].

Proof: Let α1, . . . αn be the roots of the polynomial f of which L is the splitting
field. Let K = K0, Ki = K[α1, . . . ,αi] (i = 1, . . . n) and let pi be the minimal
polynomial of αi over Ki−1. We know that all the roots of pi are contained
in L, because otherwise Ki would contain elements not in L, but L is unique.
So the number of Ki−1-embeddings σi : Ki → L is equal to the degree of the
minimal polynomial pi. Now each of the deg p1 K-embeddings of K1 into L can
be extended to a K-embedding of K2 into L in deg p2 ways (namely by sending
a root of p2 to another root of p2). By induction we see that the number of
embeddings of L into L (K-automorphism on L) is equal to

n
∏

i=1

deg pi =
n

∏

i=1

[Ki : Ki−1]

Which is equal to [L : K] by theorem 5.26. ✷

So we proved that normal extension implies Galois extension. To prove the
converse, we need the following lemma.

Lemma 5.2 If L and L′ are field extensions of K, then the number of different
K-morphisms σ : L → L′ is smaller than or equal to [L : K]. In particular, we
have AutK(L/K) ≤ [L : K].

Proof: For a simple extension L = K(α) this follows from theorem 5.39, be-
cause in that case, every morphism must send α to another root of its minimal
polynomial p over K and there exist at most [L : K] different roots of p.

For a general finite extension the proof is more difficult and requires e.g. Dedekind’s
lemma, which will not be treated here (see [3]). We will later prove indepen-
dently that every extension can be written as a simple extension, so then the
proof above becomes sufficient. ✷
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Now we hope that by demanding the inequality above to be an equality (which
would make L/K Galois), we end up getting a splitting field. In that case the
converse of theorem 5.1 would be proven.

Theorem 5.3 If a finite extension L/K is a Galois extension, it is a normal
extension.

Proof: Let L/K be Galois, L = K(α1, . . . αn) and pi be the minimal polyno-
mial of αi. We can construct a field extension M in which f =

∏n
i=1 pi splits

completely into linear factors. We want to prove that all roots of f are contained
in L, in which case L would be the splitting field of f and therefore a normal
extension.

Suppose β ∈ M is a root of f that is not contained in L. Without loss of
generality, we can assume β to be the root of p1 (we can rearrange the α’s if
necessary). Now we know by theorem 5.2 that the number of K-morphisms
from L → M is smaller than or equal to [L : K]. Because every K-morphism
of L gives such a morphism and since #Gal(L/K) = [L : K], it follows that all
morphisms from L → M are elements of #Gal(L/K). Now by theorem 5.43,
we know that there exists a morphism σ : K[α2 . . . αn][α1] → M that maps α1

to β. Since σ ∈ #Gal(L/K), it follows that σ(α1) = β ∈ L. So we proved that
every root β of f is contained in L, so L is the splitting field of f and L is a
normal extension of K. ✷

Theorem 5.4 A finite extension is normal if and only if it is Galois.

Proof: Combine theorem 5.1 and theorem 5.3. ✷

There is yet another requirement that an extension can fulfill that is equivalent
to it being Galois or normal.

Theorem 5.5 If L/K is Galois, then L contains a splitting field of all irre-
ducible polynomials over K that have a root in L. In other words: if an irre-
ducible polynomial over K has one root in L, it has all its roots in L.

Proof: This follows directly from the proof of theorem 5.3: the other roots are
found by applying a morphism σ in the Galois group that sends a root of an
irreducible polynomial to another root of that polynomial. ✷

5.2 Main theorem

In our attempt to understand the symmetry of field extensions and polynomials,
we now have three equivalent requirements for a Galois extension. The next goal
is to break up that symmetry into smaller parts. We want to do this because
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the steps that need to be taken, or in other words the radicals that are needed,
to solve a polynomial equation is related to breaking up the splitting field in
smaller parts, which in turn is related to breaking up the Galois group. If the
Galois group of L over K is G, then the Galois group of L over M ⊂ L must
be something smaller, so let’s look at fields that lie between K and L and their
Galois groups. This finally leads to the proof of the main theorem of Galois
theory: the correspondence between intermediate fields and subgroups of the
Galois group.

Theorem 5.6 If K ⊂ L′ ⊂ L is a tower of field extensions and L/K is Galois,
then L/L′ is Galois and its Galois group Gal(L/L′) is a subgroup of Gal(L/K).

For the first half of the theorem note that if L is a splitting field of a polynomial
over K, it is also a splitting field of a polynomial over L′, so L/L′ is also Galois.

For the second half, note that the automorphisms that leave L′ fixed form a
subgroup of the automorphisms that leave K fixed.

Remark 5.7 Although L/L′ is always Galois in the theorem above, this
doesn’t have to be the case for L′/K. The well known extension ⊂ [ 3

√
2] ⊂

[ 3
√

2, 3
√

2 ζ3] is an example of this.

Remark 5.8 Although not every extension is Galois, every extension is con-
tained in a Galois extension, namely in the splitting field of f from the proof of
theorem 5.3. This field is called a Galois closure.

Definition 5.9 Let L/K be a Galois extension and H ⊂ Gal(L/K). The field
LH = {z ∈ L | σ(z) = z for all σ ∈ H} is an intermediate field (a subfield of L
that contains K), which is also called the fixed field of H.

The next lemma states that the number of elements in a subgroup of the Galois
group is equal to the degree of the fixed field, defined by that subgroup. We
need this lemma for the proof of the main theorem, which comes directly after
it.

Lemma 5.10 Let L/K be a Galois extension and H ⊂ Gal(L/K), then

#Gal(L/LH) = [L : LH ] = #H

and Gal(L/LH) = H.

Proof: The proof is not given here but can be found in [3]. ✷

We now have everything we need to prove the main theorem of Galois theory:
the link between subgroups of the Galois group and intermediate fields.
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Theorem 5.11 (Main theorem of Galois theory) Let L/K be Galois, then

Gal(L/K) ⊃ H *→ M = LH

defines a bijection between subgroups of Gal(L/K) and fixed fields (extensions
of K that are subfields of L).

Proof: It is clear that for every subgroup H of Gal(L/K), we can define the
field that is fixed under all automorphisms of L and for every intermediate field
M , we can define the subgroup of all automorphism that leave M fixed, so this
function is well defined in both directions. We will first prove surjectivity.

Let M be a field such that K ⊂ M ⊂ L. From theorem 5.6, we know that L/M is
Galois. We also know that M ⊂ MGal(L/M), because the elements of Gal(L/M)
leave at least M fixed. Furthermore we know that #Gal(L/M) = [L : M ]
because L/M is Galois and from theorem 5.10 it follows that [L : LGal(L/M)] =
[L : M ], so (apply theorem 3.12) we have that LGal(L/M) = M .

Now we prove injectivity. Let H be a subgroup of Gal(L/K) and H ′ ⊂ Gal(L/K).
Suppose LH = LH′

= M . By theorem 5.10 we know that #H = #H ′ = [L : M ].
Note that L/M is a Galois extension (theorem 5.6), so #Gal(L/M) = [L : M ].
Note furthermore that we chose H and H ′ to be subgroups of this Galois group,
so it follows from #H = #H ′ = #Gal(L/M) that H = Gal(L/M) = H ′. ✷

Remark 5.12 This theorem is so important because it translates problems
about intermediate fields to problems about finite groups. The theory of finite
groups is very well known and has some very strong results (e.g. the Sylow
theorems). Galois theory lead to a great interest in the study of finite groups,
which eventually lead to the classification of all finite simple groups.5

For us this theorem is also important, because for every polynomial f , the
splitting field is Galois, so to understand something about the fields that lie
between the field of coefficients and the splitting field (and thus can tell us
something about a solution of f(x) = 0), we need to understand the subgroups
of the Galois group.

We already know that if L/K is Galois and K ⊂ M ⊂ L, that L/M is Galois,
but M/K need not be Galois. The next theorem gives a condition on Gal(L/K)
so that it is Galois. We suppose that the reader is familiar with some elementary
group theory.

Theorem 5.13 Let L/K be a Galois extension and K ⊂ M ⊂ L. Then M/K
is Galois if and only if Gal(L/M) is a normal subgroup of G = Gal(L/K). In

5For a long time some doubts remained on whether there exists a complete and correct
proof, due to the sheer length and complexity of the published work and the fact that parts
of the supposed proof remain unpublished. The latest news is that the work has finally been
finished this year (2005).
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that case we have

Gal(M/K) ∼= Gal(L/K) / Gal(L/M).

Proof: We use the condition for a Galois extension from theorem 5.5. If M is
a normal extension of K then if an irreducible polynomial over K has one root
in M , it has all its roots in M . Furthermore we know that all elements in G can
be defined by stating that they send roots of an irreducible polynomial over K
to another root of that polynomial. So M/K is Galois if and only if σ(M) = M
for all σ ∈ G.

Now let’s look at the Galois groups of M and of σ(M). Suppose H = Gal(L/M),
then M = {x |h(x) = x ∀h ∈ H}. Now if h leaves x fixed, then we know that
σhσ−1 leaves σx fixed, so σ(M) = {σx | (σhσ−1)(σx) = σx ∀h ∈ H}. So we
see that M is the fixed field of H and σ(M) is the fixed field of σHσ−1, so
σ(M) = M if and only if σHσ−1 = H for all σ ∈ G, which is exactly the
definition of H being a normal subgroup of G.

Finally there is a group homomorphism ρ : G → Gal(M/K), namely restriction
: σ *→ σ|M . This is surjective because every σ|M can be extended to L (see [3])
and its kernel is H, so Gal(M/K) = G/H. ✷

There is another very remarkable consequence of the main theorem, which is
the theorem of primitive elements. Galois in fact proved this theorem before the
main theorem and many of his proofs relied on it. We will give two proofs. The
first proof uses the main theorem, which has the benefit that the proof becomes
shorter and easier, and the second proof is independent of the main theorem,
which has the benefit that we do not need Dedekind’s lemma in the proof of
theorem 5.2.

Theorem 5.14 (Primitive elements) Let L/K be a finite extension.

1. There are only a finite number of intermediate fields M , such that K ⊂
M ⊂ L.

2. L is a simple extension. There exists an element γ ∈ L such that L =
K[γ].

Proof: 1. This follows directly from the main theorem, because Gal(L/K) has
only a finite number of elements.
2. It is not difficult to see that it is sufficient to prove this for finite extensions
of the form K[α,β].

Let 0 ̸= c ∈ K and consider the elements α+cβ ∈ K[α,β]. Because K[α+cβ] ⊂
K[α,β] for all c and because there are infinitely many c and only a finite number
of intermediate fields (point 1), there must be c, c′ ∈ K, with c ̸= c′ such that

K[α + cβ] = K[α + c′β].
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But then (c− c′)β ∈ K[α+ cβ], which implies β ∈ K[α+ cβ], because c− c′ ̸= 0.
We also have α = (α+cβ)−cβ ∈ K[α+cβ], so it follows that K[α+cβ] = K[α,β]
which we had to prove. ✷

We now give a proof that does not rely on the main theorem.

Proof: Suppose L = K[α,β] is of degree n and σi, i = 1, . . . , n are the n
extensions of idK to L. Consider the polynomial

f(X) =
n

∏

i=1

∏

j ̸=i

(σjα − σiα + X(σjβ − σiβ)). (12)

This is not the zero polynomial, so it has only a finite number of roots. There-
fore there exists a c ∈ K such that f(c) ̸= 0 and that means that σiα + cσiβ
are different for all i = 1, . . . , n. Suppose γ = α + cβ, then K[γ] has n dif-
ferent embeddings in L that are the identity on K, namely the restrictions of
the σi’s. Consequently [K[γ] : K] ≥ n and because K[γ] ⊂ K[α,β], we get
K[γ] = K[α,β]. ✷

Note that this is a constructive proof. As soon as we found our c, we have found
γ = α + cβ.

Example 5.15 Consider the extension ⊂ [
√

2,
√

3] = L. Following the
steps in the proof given above, we are now able to find a primitive element. The
four extensions of the identity on to L are

σ1 = idL σ2 :
√

2 *→ −
√

2,
√

3 *→
√

3
σ3 :

√
2 *→

√
2,

√
3 *→ −

√
3 σ4 :

√
2 *→ −

√
2,

√
3 *→ −

√
3.

The polynomial from equation 12 now becomes (for some d ∈ L, p ∈ ):

f(X) = dXp(
√

2 +
√

3X)(−
√

2 +
√

3X)(
√

2 −
√

3X)(−
√

2 −
√

3X)

We see that f(c) ̸= 0 for c = 1, so ⊂ [
√

2,
√

3] = [
√

2 +
√

3].

5.3 The Galois group of polynomials

The following definition should come as no surprise.

Definition 5.16 The Galois group of a polynomial f over a field K is defined
as the Galois group of a splitting field L of f over K : Gal(f/K) := Gal(L/K).

The following theorem gives a modernized version of the definition Galois gave
of the Galois group. The problem is that it uses infinitely many “polynomial
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relations between the roots”. The modern concept of a splitting field brings it
back to a finite dimensional vector space and the main theorem reduces it to
the study of a finite group. The advantage of Galois’ definition is that it stays
closer to the polynomials, which are the main object of study in this paper.

Theorem 5.17 Suppose X = {α1 . . . ,αn} are the roots of a polynomial f ∈
K[X] in a splitting field L of f . Then Gal(f/K) is isomorphic to the group

H = {σ ∈ SX |∀g ∈ K[x1, . . . , xn] : g(α1 . . . ,αn) = 0 ⇒ g(σ(α1), . . . ,σ(αn)) = 0}

that is, the group of permutations of the roots of f that preserve all the polyno-
mial relations between those roots.

Proof: Indeed we can see an element σ of G := Gal(f/K) as a permutation of
the roots of f , because if f(α) = 0, then σ(f(α)) = f(σ(α)) = 0, because f has
coefficients in K. Furthermore the polynomial relations are preserved, because
g has coefficients in K. So we have a group homomorphism of G into H, which
is clearly injective. Finally if σ ∈ H is a relation preserving permutation of the
roots, then we define a field extension of L as follows: any element of L is a
polynomial g(α1, . . . ,αn) that we send to g(σ(α1), . . . ,σ(αn)). This is clearly
a non-zero ring homomorphism, which is well defined, for if g(α1, . . . ,αn) = 0,
than also its image under σ. ✷

Consequence 5.18 #Gal(f/K) ≤ deg(f)!

Proof: The number of permutations of the roots of f is at most #SX =
deg(f)!. ✷

Now that we have enough understanding of the Galois group of a polynomial,
we can start relating properties of the Galois group to properties of the polyno-
mials. We already saw that subgroups of the Galois group relate to intermediate
fields and that normal subgroups relate to intermediate fields which are normal
extensions. Another property I would like to show is that transitivity relates to
irreducibility.

We saw that the elements of a Galois group G are permutations on the set
of roots X of a polynomial, so every element of G can be seen as a function
g : X → X. We say that G acts on X.

Definition 5.19 A permutation group G on a set of elements X = {X1, . . . ,Xn}
is said to be transitive if it has only one orbit, where an orbit of an element x ∈ X
is defined as G(x) = {g(x) ∈ X : g ∈ G}.

Note that the orbits define a partition of X.
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Example 5.20 The group {e, (123)(132), (45), (123)(45), (132)(45)} has two
orbits, {1, 2, 3} and {4, 5}, whereas Sn is a transitive group because it has only
one orbit.

Theorem 5.21 A polynomial has a transitive Galois group if and only if it is
irreducible.

Proof: Let p over K be an irreducible polynomial, r a root of p and L the
splitting field of p. Then by theorem 3.43, there exist embeddings of K[r] into
L that send a root of p to any other root of p. These embeddings extend to
automorphisms on the splitting field of p, so the Galois group contains all the
elements that send a root of p to any other root of p and is therefore a transitive
group.

On the other hand, if a polynomial p has a transitive Galois group, then the
automorphisms on L send a root of p to any of the other roots of the same
irreducible factor, so p must be irreducible. ✷

Example 5.22 Consider the reducible polynomial

f = x5 + x3 − 2x2 − 2 = (x3 − 2)(x2 + 1)

over . Its roots in are { 3
√

2, 3
√

2ζ3,
3
√

2ζ2
3 , i,−i}. As we saw in example 3.46,

the Galois group of x3 − 2 is S3 = {e, (123), (132), (12), (13), (23)}. The other
irreducible factor, gives us another morphism, namely sending i to −i. We can
extend this to an automorphism (complex conjugation) by also sending ζ3 to
ζ2
3 and leaving 3

√
2 fixed, so (23)(45) must also be in the Galois group of f .

Composition with the other elements gives us at least the elements

G =

{

e, (123), (132), (12), (13), (23),
(45), (123)(45), (132)(45), (12)(45), (13)(45), (23)(45)

}

Now the degree of the splitting field M of x3 − 2 over is 6 and the degree of
M over the splitting field of f is 2, because X2 − 1 is irreducible over M , so
the degree of L over must be 12 so the Galois group contains 12 elements, so
G is the Galois group of f . Note that this group has two orbits: {1, 2, 3} and
{4, 5}, which correspond to the two irreducible factors of f .

5.4 Unsolvability of the quintic by radicals

This paragraph will deal with the final goal of this chapter: the proof that the
general equation of degree 5 or more is not solvable by radicals. We will see how
this relates to a property of the Galois group of that polynomial, namely that
the Galois group has to be a solvable group. It turns out that the Galois group
of the general fifth degree polynomial is not a solvable group and that therefore
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the general fifth degree equation cannot be solved by radicals. There even exist
specific polynomials of degree 5 that are not solvable by radicals. We will give
an example at the end of this paragraph.

Remark 5.23 Intuitively a polynomial f over K is solvable by radicals if all
the roots of f can be obtained from elements of K by applying the operations

+ , − , × , n
√

.

a finite number of times.

Example 5.24 All equations of degree less than 5, as well as Xn − a are
solvable by radicals.

It is not difficult to see that the condition that the roots of f over K can be
expressed as radical functions of elements of K, is equivalent to the condition
that there exists a tower of field extensions that starts with K, is then extended
with n-th roots, and finally ends in a splitting field of L. Therefore the following
definition is equivalent to our intuitive “definition” 5.23.

Definition 5.25 A polynomial f over K with splitting field L is solvable (by
radicals) if and only if there exists a tower of field extensions

K = K0 ⊂ K1 ⊂ · · · ⊂ Km ⊃ L

with Ki = Ki−1(αi) and ∃ni with αni

i ∈ Ki−1.

Definition 5.26 A group G is solvable if there exists a tower of subgroups

e = H0 ⊂ · · · ⊂ Hn = G

such that

• the subsequent groups are normal subgroups of the next one: Hi ✁ Hi+1

for all i = 0, . . . , n − 1

• the subsequent quotients Hi+1/Hi are commutative.

Theorem 5.27 A solvable polynomial f over K ⊂ has a solvable Galois
group Gal(f/K).

Proof: Let L be the splitting field of f . Because f is solvable we have a tower
of field extensions

K = K0 ⊂ K1 ⊂ · · · ⊂ Km ⊃ L

with Ki = Ki−1(αi). By bringing the roots of unity to the front of the tower,
incorporating them in one extension and possibly enlarging the tower, we see
that there is also a tower

K = K0 ⊂ K1 ⊂ · · · ⊂ Km ⊃ L
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with K1 splitting field of Xn − 1 over K0 for n = n1 · · · · · nm and for i > 1,
Ki = Ki−1[αi] with αni

i = βi−1 ∈ Ki−1.

K1 is a splitting field, so a Galois extension and in example 3.46 we saw that
Gal(K1/K0) ∼= ( /n )∗ and thus in particular a commutative group.

Now look at Ki/Ki−1 for i > 1. Ki is a root field of Xni − βi−1 over Ki−1 and

Ki−1 contains K1, so in particular it contains ζni
= e

2πi

ni . Choose a root α =
ni

√

βi−1. Now all the roots of Xni −βi−1 are given by αζa
ni

for a = 0, . . . , ni−1.
They are all contained in Ki, so Ki/Ki−1 is a Galois extension. Now for all
σ, τ ∈ Gal(Ki/Ki−1), we have σ(α) = αζa

ni
, τ(α) = αζb

ni
, for some a and b, so

it follows that στ = τσ, so Gal(Ki/Ki−1) is also commutative.

So we have proved that all extensions Ki+1 ⊂ Ki in the tower are Galois exten-
sions with commutative Galois groups.

The extensions K ⊂ L ⊂ Km are all Galois, so suppose H =Gal(Km/L) and
G =Gal(Km/K). We know by the main theorem that Gal(L/K) ∼= G/H.

We first prove that G is a solvable group. We have the following tower of
subgroups of G:

{e} = Gal(Km/Km) ⊂ · · · ⊂ Gal(Km/K0) = G.

From theorem 5.13 it follows that the subgroups are all normal subgroups and
that the subsequent quotients are

Gal(Km/Ki)/Gal(Km/Ki+1) ∼= Gal(Ki+1/Ki)

which are all commutative as we already proved, so G is a solvable group.

To prove that Gal(L/K) = G/H is solvable we apply a theorem from group
theory that states that the quotient of a solvable group G by one of its normal
subgroups H is again a solvable group. For the proof, suppose that

{e} = G0 ⊂ · · · ⊂ Gm−1 ⊂ Gm ⊂ G

where Gi/Gi−1 is commutative. We take this chain modulo H and find that:

e = G0/(G0 ∩ H) ⊂ · · · ⊂ Gm−1/(Gm−1 ∩ H) ⊂ Gm/(Gm ∩ H) ⊂ G.

The subsequent quotients are

(Gi/(Gi ∩ H))/(Gi−1/(Gi−1 ∩ H)) ∼= GiH/Gi−1H

where the last group is the image under the homomorphism “modulo H” and
consequently also commutative. ✷

Remark 5.28 The converse is also true: a polynomial with a solvable Galois
group is solvable. The proof is not included here. This raises the question on
how to solve solvable equations. This topic will be not be treated here. For
more information, I refer to the article [5].
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Definition 5.29 Suppose that t1, . . . , tn are all algebraically independent over
K, which means that K[t1, . . . , tn] is isomorphic to the polynomial ring in n
variables over K. We define the general n-th degree polynomial over K as:

fgen(X) =
n

∏

i=1

(X − ti) =
n

∑

i=0

siX
i.

A solution in radicals is exactly an expression of all ti in terms of radical func-
tions of si over the field K(s0, . . . , sn−1) (we take sn = 1). We saw in chapter
2 that the general second degree, the third degree and the fourth degree poly-
nomial are all solvable by radicals.

We now calculate the Galois group of the general n-th degree equation and we
will see that for n > 4 this is not a solvable group.

Theorem 5.30 Gal(fgen/K(s0, . . . , sn−1)) ∼= Sn.

Proof: L = K(t1, . . . , tn) is the splitting field of fgen. Furthermore we know
that Gal(fgen/K(s0, . . . , sn−1)) ⊂ Sn, because an element of the Galois group
gives a permutation of the roots (see theorem 5.17). On the other hand for
every σ ∈ Sn a permutation on {1, . . . , n} there is an isomorphism

φ : K[t1, . . . , tn] → K[tσ(1), . . . , tσ(n)], ti *→ tσ(i)

because the {ti} are algebraically independent. So there is also an isomor-
phism between their quotient fields K(t1, . . . , tn) and K(tσ(i), . . . , tσ(n)) (both
equal to L) for all σ ∈ Sn. Now because {si} remain unchanged if the {ti}
are permuted (see the definition of si), all φ’s are automorphisms of L over
K(s0, . . . , sn). So all permutations σ ∈ Sn are in the Galois group, which im-
plies that Gal(fgen/K(s0, . . . , sn−1)) ∼= Sn. ✷

Theorem 5.31 Sn is not a solvable group for n ≥ 5, so the general n-th degree
equation is not solvable by radicals for n ≥ 5.

Proof: Suppose H is a subgroup containing all 3-cycles and N is a normal
subgroup of H such that H/N is commutative. We want to prove that N also
contains all 3-cycles.

Suppose σ = (ijk) and τ = (krs) are two 3-cycles for all possible choices of
5 different i, j, k, r and s. Note that this is possible because n ≥ 5. For all
such choices σ, τ ∈ H, because H contains all 3-cycles. It is easily verified that
στσ−1τ−1 = (rki).

Consider the group homomorphism φ : H → H/N with kernel N . Because H/N
is commutative, we have στσ−1τ−1 = 1, so στσ−1τ−1 ∈ ker(φ). Consequently
N contains all 3-cycles (rki) for all possible choices of three different r, k and i.
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Now if Sn is a solvable group, there is a tower

Sn = H0 ⊃ H1 ⊃ · · · ⊃ Hr = {e}

with subsequent quotients commutative. Because Sn contains all 3-cycles, we
now know by induction that Hr contains all 3-cycles, which is a contradiction.

✷

Theorem 5.32 For n < 5, Sn is a solvable group.

Proof: S1 and S2 are commutative. We denote with A ✄ B that B is a normal
subgroup of A.

S3 = D3 ✄ 3 ✄ {e},

with D3/ 3 = 2 and 3/{e} = 3. And finally

S4 ✄ A4 ✄ 2 × 2 ✄ {e}

with S4/A4 = 3, A4/( 2 × 2) = 3 and 2 × 2 is commutative. ✷

The last thing we want to prove in this chapter is that there exist specific fifth
degree polynomials that are not solvable by radicals. For that we first prove the
following lemmas.

Lemma 5.33 For a prime p, Sp is generated by any 2-cycle τ and a p-cycle σ.

Proof: It is not difficult to see that Sp is generated by (1 2) and σ.6 The
difficulty lies in proving that we can make (1 2) with τ and σ. We renumber so
that τ = (1 n) and σ = (1 2 . . . p). We first note that

σ(1 n)σ−1 = (2 n + 1).

Now replace σ by σn−1 to make the first number equal to n.

m1 = σn−1τσ−(n−1) = (n 2n − 1)

so if we repeat this procedure k times we get

mk = (1 + k(n − 1) n + k(n − 1)).

Let m0 = (1 n) and calculate

m0m1 . . . mk = (1 n + k(n − 1)).

Because p is prime, n+k(n−1) runs through all integers mod p, so in particular,
there is a k such that we get (1 2). ✷

6It is entertaining to convince yourself of this fact by writing the numbers 1 to 7 on small
pieces of paper and see that you can put them in any order by moving the first two and moving
the last to the front.
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Lemma 5.34 If p is prime and f is an irreducible polynomial over of degree
p with exactly p − 2 real roots, then G = Gal(f/ ) ∼= Sp.

Proof: Suppose L is a splitting field of f and α ∈ L a root of f . We know
now that [ [α] : ] = deg f = p, so p is a divisor of [L : ] = |G|. Cauchy’s
theorem (a well know result from group theory) states that there is an element
of order p, so G contains a p-cycle.

There also is a transposition (a 2-cycle), namely the one switching the two
complex roots and leaving all real roots fixed, or in other words the restriction
of complex conjugation to L.

We apply lemma 5.32 to finish the proof. ✷

We can now prove the existence of a specific fifth degree polynomial unsolvable
by radicals.

Theorem 5.35 The polynomial f(x) = x5 − 6x + 3 over is not solvable by
radicals.

Proof: This polynomial is irreducible because of Eisenstein’s criterium (theo-
rem 3.17) for p = 3. From the graph of f we conclude that f has at least three
simple real roots. If there are four or more, then f ′ has three or more, so f ′′

has two or more, but f ′′ = 20x3. It follows that f exactly three real roots and
we can apply lemma 5.34, so the Galois group of f is S5 which is not a solvable
group. ✷
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6 Reduction of the quintic to normal forms

6.1 Tschirnhaus transformations

We have proven that the general fifth degree equation is not solvable by radicals,
but perhaps there are other functions that do allow us to write down a solution
of the general fifth degree equation. It turns out that we need elliptic curves,
but before we start developing the theory of elliptic curves, we will look if we
can transform the general equation to a form that is easier to handle. We can
do this using so called Tschirnhaus transformations.

Definition 6.1 The transformation of an algebraic equation

xn + a1x
n−1 + . . . + an−1x + an = 0 (13)

by introducing a new variable

y = xm + b1x
m−1 + . . . + bm−1x + bm (14)

to an equation of the form

yn + c1y
n−1 + . . . + cn−1y + cn = 0 (15)

is called a Tschirnhaus transformation.

Tschirnhaus aimed with this method to cancel out some of the coefficients of
(13) by a suitable choice of b1, . . . , bm.

Example 6.2 The first coefficient of equation (13) can be cancelled by a trans-
formation y = x + a1/n as can easily be verified by substituting x = y − a1/n
in (13).

So if we take (14) to be a first degree polynomial y = x + b1, we can cancel out
one term of (13) with a suitable choice of b1. Now, Tschirnhaus reasoned, if
we take (14) to be a polynomial of degree n − 1, the choices of the coefficients
b1, . . . , bn−1 give us n−1 degrees of freedom that can be used to fulfill the n−1
conditions c1 = c2 = . . . = cn−1 = 0. This would transform (13) into yn + c0,
which is solvable by radicals. Plugging in the solution y = n

√
c0 into (14), we

then obtain a solution of (13) by solving an equation of degree n − 1.

By induction it follows that the general n-th degree equation is solvable by
radicals, which is not the case, so there must be something wrong. The problem
is that the conditions which ensure that all the coefficients c1, . . . , cn−1 vanish,
yield a system of equations of various degrees in the parameters bi and this
system is very difficult to solve. In fact, as is explained in [15], solving this
system actually amounts to solving a single equation of degree (n − 1)!, so it
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appears that this method does not work for n > 3, unless the resulting equation
of degree (n − 1)! has some particular features which makes it reducible to
equations of degree less than n. This turns out to be the case for n = 4:
the resulting sextic can be seen to factorize into a product of factors of degree
2 whose coefficients are solutions of cubic equations, but for n ≥ 5 no such
simplification is apparent.

We can still use Tschirnhaus transformations to cancel out some more coeffi-
cients and make the resulting equation easier to handle. We will see that a
transformation y = x2 + ax + b with a suitable choice of a and b can be used
to cancel out the first two coefficients. To calculate the right a and b and the
resulting coefficients we need Newton’s identities.

Theorem 6.3 (Newton’s identities) Let x1, . . . , xn be the roots of the equa-
tion

xn + a1x
n−1 + . . . + an−1x + an = 0

and let sk =
∑n

i=1 xk
i . Then the following relations hold:

s1 = −a1

s2 = −a1s1 − 2a2

s3 = −a1s2 − a2s1 − 3a3

and in general for k ≤ n

sk = −
k−1
∑

i=1

aisk−i − ksk

and for k > n

sk = −
k−1
∑

i=1

aisk−i

Proof: A proof can be found in [15] p.54-55. ✷

Using these relations, we can find a Tschirnhaus transformation that cancels
out two terms in the general n-th degree equation.

6.2 Principal equation

Theorem 6.4 By a linear transformation or by a quadratic Tschirnhaus trans-
formation, whose coefficients can be found by solving a quadratic equation, the
general n-th degree equation (13) can be transformed to a principle equation,
that is an equation of the form

xn + a3x
n−3 + a4x

n−4 + . . . + an = 0 (16)
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Proof: We saw in example 5.2 that with the help of a linear transformation
we could transform (13) into an equation in which a1 = 0. Suppose that a2 ̸=
0. We know from Newton’s identities that s1 = 0 and s2 = −2a2. Use the
transformation y = x2 + ax + b. Write yk for the value of y when x = xk. Then
∑

yk = s2 + nb will be zero if we take b = −s2/n. Next,

y2 = x4 + 2ax3 + (a2 + 2b)x2 + 2abx + b2,

which implies
∑

y2
k = s4 + 2as3 + (a2 + 2b)s2 + nb2 = 0

is a quadratic equation for a in which the coefficient s2 of a2 is not zero, and
hence has two roots from which we can pick one. Note that

∑

y2
k = 0 means

that also the term for xn−2 is cancelled out in the resulting equation (15). We
may compute similarly

∑

y3
k,

∑

y4
k, . . . and then compute by Newton’s identities

the coefficients of our resulting equation, which is of the form (16). ✷

For n = 5 we call (16) the principal quintic.

6.3 Bring-Jerrard normal form

We shall now transform the principal equation (16) to an equation of the form

xn + a4x
n−4 + . . . + an = 0 (17)

in which the coefficients of xn−1, xn−2 and xn−3 are all zero.

Theorem 6.5 By means of a Tschirnhaus transformation whose coefficients
can be found by solving a cubic equation and three quadratic equations, the
principal equation (16) can be transformed to (17).

Proof: Consider (16). By hypothesis a1 = a2 = 0. If also s3 = 0, then by
Newton’s identities, a1 = a2 = a3 = 0 and no transformation is necessary.
Next, let s3 ̸= 0. The functions

g(x) = x3 + ax2 − s3/n, h(x) = x4 + bx2 − s4/n (18)

evidently have the property
∑

g = 0 and
∑

h = 0, where
∑

g denotes
∑

g(xk).
The conditions for

∑

xg = 0,
∑

xh = 0 are s4 + as3 = 0, s5 + bs3 and may be
satisfied by choice of a and b. The function

ψ(x) = zg + wh (19)

will have the property
∑

ψ2 = 0 if

z2
∑

g2 + 2zw
∑

gh + w2
∑

h2 = 0 (20)
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This homogeneous quadratic equation7 in z and w can evidently be satisfied by
values of z and w not both zero. Then x and ψ have the properties

∑

x = 0,
∑

x2 = 0,
∑

ψ = 0,
∑

ψ2 = 0,
∑

xψ = 0. (21)

Write y = ux + vψ. Then
∑

y = 0,
∑

y2 = 0 for every u and v. The condition
for

∑

y3 = 0 is a cubic equation in u/v and hence can be satisfied by values of
u and v not both zero. In the resulting equation in y, the coefficients of yn−1,
yn−2, yn−3 are therefore all zero. ✷

This theorem is usually ascribed to Jerrard, but for n = 5 it was obtained much
earlier by E.S. Bring. We therefore call

y5 + dy + e = 0 (22)

the Bring-Jerrard normal form of the quintic equation.

If we now apply a transformation y = (e/d)x, and then set a = d5/e4 we get a
form that involves only a single parameter:

x5 + ax + a = 0. (23)

6.4 Brioschi normal form

We saw that any quintic equation can be reduced to a normal form involving a
single parameter by means of transformations involving only square roots and a
cube root. By means of a transformation involving only square roots, we shall
now reduce any sufficiently general quintic equation to a remarkable form which
also involves a single parameter and which plays a central role in the theory of
quintic equations.

By sufficiently general we mean that certain polynomials in the coefficients are
non-zero, so the transformation does not involve division by 0. For convenience
we will assume therefore that the general quintic has algebraically independent
coefficients. This also implies that the roots are algebraically independent, be-
cause we have Newton’s identities, so the general quintic has Galois group S5.

We will see in the next chapter that the Brioschi quintic has Galois group A5,
so the square root in the transformation is really essential.

Theorem 6.6 The principal quintic

x5 + a3x
2 + a4x + a5, (24)

7A homogeneous polynomial of degree d is a linear combination of monomials x
n1

1
x

n2

2
. . .

with
∑

ni = d. See paragraph 8.1 for more details.
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with algebraically independent coefficients and a5 ̸= 0 can be reduced to the
Brioschi normal form

x5 + 10Bx3 + 45B2x + B2 = 0 (25)

by means of a transformation involving at most one square root.

Proof: We start with a principal quintic f(x), having therefore s1 = 0, s2 = 0.
We assume that s3 ̸= 0, and use the polynomial (19) having the properties (20).
We shall first prove the existence of constants p, q, r, a, b, t (p and q not both
zero) such that

pψ2 + 2qxψ + rx2 − aψ − bx + t ≡ 0 mod f(x), (26)

which means that the right hand side is equal to k(x)f(x) for some polynomial
k(x) in x. It also means that in the roots of f the right hand side equals 0.

First suppose the solution (w, z) to (19) has w = 0. We may then assume z = 1,
so ψ is the cubic g. From ψ2 we eliminate x6 and x5 by subtracting k(x)f(x)
for some k(x), then eliminate x4 by adding 2qxψ for some q and finally x3 by
adding −aψ for some a. We get (26) with p = 1 for some r, b and t.

Second, suppose w ̸= 0. If we take w = 1, we are still able to choose z such that
(20) and (21) hold. We write

ψ = x4 + zx3 + dx2 + e.

For some second degree polynomial Q in x, we have

C := xψ − f(x) − zψ = kx3 + Q, k = d − z2.

If k = 0, this gives (26) with p = 0 and 2q = 1. If k ̸= 0, we eliminate x5 and
higher powers of x from ψ2 by means of f(x) = 0, then x4 by means of ψ and
finally x3 by means of C and obtain (26) with p = 1. This finishes the proof of
(26).

Inserting the five roots of f(x) = 0 into (26), summing and applying (21), we
see that t = 0.

If χ and φ are linear functions of x and ψ, the relations (21) imply
∑

χ = 0,
∑

χ2 = 0,
∑

φ = 0,
∑

φ2 = 0,
∑

χφ = 0, (27)

while (26) implies

pχ2 + 2qφχ + rφ2 − aχ − bφ ≡ 0 mod f(x). (28)

It can be verified that we have the following identity

mF = (dχ + eφ)2 − c(aχ + bφ)2

F = pχ2 + 2qφχ + φ2 (29)
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where

m = pb2 − 2qab + ra2, c = q2 − pr, d = bp − aq, e = bq − ar. (30)

The possibility that a, b, c, d, e or m equals 0 can be excluded because this would
lead to a polynomial relation between the coefficients of f , contradicting the
assumption that they are algebraically independent. Therefore we can safely
apply the following transformation to f(x) = 0:

y =
dχ + eφ

aχ + bφ
. (31)

Note that all parameters d, e, a and b can be determined constructively from f ,
but χ and φ are still some unspecified linear combinations of x and ψ. The only
restriction we put on the choice for χ and φ is that aχ + bψ does not vanish for
any root of f . Denote the resulting equation by

y5 + a1y
4 + a2y

3 + a3y
2 + a4y + a5 = 0. (32)

We determine its coefficients as follows. By (31),

y +
√

c =
dχ + eφ +

√
c(aχ + bφ)

aχ + bφ
.

By combining (28) and (29) we get

m(aχ + bφ) = (dχ + eφ)2 − c(aχ + bφ)2 ≡ 0 mod f(x).

Remember that the possibilities that m or c equals 0 were excluded. Hence, by
division,

m

y +
√

c
≡ dχ + eφ −

√
c(aχ + bφ) mod f(x).

By (27), this implies

∑

z = 0,
∑

z2 = 0 if z =
1

y +
√

c
.

Hence if we replace y by (1 − z
√

c)/z in (32) we obtain

(1 − z
√

c)5 + a1z (1 − z
√

c)4 + a2z2(1 − z
√

c)3 +
a3z3(1 − z

√
c)2 + a4z4(1 − z

√
c) + a5z5 = 0.

Since these hold for both values of
√

c, we get

5c2 − 4a1c + a4 = 0, 4a1c + 2a3 = 0
10c + 3a2 = 0, 6a1c + a3 = 0

which implies a1 = a3 = 0, a2 = −10/3c, a4 = 5c2. The last coefficient, a5

depends on the choices of χ and ψ and can be calculated by substituting (31)
into (32).
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Write c = −3C. Then (32) becomes

y5 + 10Cy3 + 45C2y + a5 = 0 (33)

Remember that we excluded the possibility c = 0 and a5 = 0, so we can intro-
duce a new variable

x = y C2/a5.

We replace y by xa5/C2, multiply by C10/a5
5 and introduce the constant

B = C5/a2
5.

This transforms (33) to the desired equation (25). ✷

Remark 6.7 The assumption of algebraically independent coefficients is actu-
ally too strong. The whole procedure can be carried out as long as a, b are not
both zero, d, e are not both zero and m ̸= 0. If c = 0 the procedure even leads
to a solvable equation of the form x5 + a5. Also if a5 = 0 it is clear we get a
solvable equation.
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7 Solving the quintic by using the icosahedron

The Brioschi normal form of the quintic equation has very close connections to
the symmetry functions of the icosahedron. For that reason we will set up some
theory about the icosahedron. We will first discuss its rotation group, which
will turn out to be a group that consists of quotients of linear transformations.
Next we will discuss invariants of this group and the relations between them.
Finally we will discuss so called form problems. In particular, we will see that
solving the Brioschi quintic is equivalent to solving the form problem of the
icosahedron.

7.1 The symmetry group of the icosahedron

Consider a regular icosahedron I in 3 with center O at (0, 0, 0), top vertex V
at (0, 0, 1).

Fig. 7.1

We want to describe the group of all rotations that leave I unchanged. Note first
that a rotation R of 2π/5 around the axis through O and V leaves I unchanged.
We define positive rotation as counterclockwise rotation when viewed from V .
Note further that the rotation S of π around the axis through the midpoint of
A0V and O also leaves I unchanged.
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Theorem 7.1 The group R60 of all rotations that leave I unchanged is a group
of order 60, generated by R and S.

Proof: We first prove that with R and S, we can make the five rotations of π
around the axis through the midpoint of AiV for i = 0, . . . , 4. Such a rotation
will be denoted by [AiV ].

Since R carries the midpoint of A0V to that of A1V , R−1SR leaves the latter
point fixed. Since it is not the identity (V does not remain fixed), it must be
[A1V ]. Similarly, R−jSRj = [AjV ] for j = 0, . . . , 4.

We can make five rotations that end up with V on the top. By applying [AiV ]
and then Rj for some j, we see that we can also make five rotations that end
up with Ai on top for all Ai. We will now continue to prove that we can get all
vertices on top. By applying [AiV ] for a proper i when Aj is on top for some
j, we see that we can also get all the vertices connected to Ai on top, so in
particular we can get the vertices connected to V ′ on top. Finally by applying
[AiV ] again when one of the vertices connected to V ′ is on top, we can get V ′

on top.

So we can get all 12 vertices on top and we can make all 5 rotations end up
with that vertex on top. These are all rotations because every rotation ends up
with some vertex on top and S is the only rotation that leaves the top fixed.
Therefore all 5 × 12 rotations of R60 can be made with R and S. ✷

Remark 7.2 Since S interchanges V and A0, as well as A1 and A4, the product
RS = (V A0A4) is a rotation of order 3 whose axis joins O to the mid point of
the face V A0A4. It now follows that R60 consists of

• The identity

• 15 rotations of order 2 about diameters passing through the mid points of
the 15 pairs of opposite edges

• 10×2 rotations of order 3 about diameters passing through the mid points
of the 10 pairs of opposite faces

• 6 × 4 rotations of order 5 about diameters passing through the 6 pairs of
opposite vertices.

It follows that R60 is isomorphic to A5 and that R corresponds to a permutation
of the form (1 2 3 4 5), whereas S corresponds to a permutation of the form
(2 3)(4 5).

7.2 Projection of the Riemann sphere to the complex plane

A regular polyhedron, like the icosahedron can be represented as points on the
surface of a unit sphere, called the Riemann sphere.
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We can project the sphere

S2 = {(x, y, z) |x2 + y2 + z2 = 1} (34)

to its equatorial (complex) plane, by drawing the line from N = (0, 0, 1) through
a point P = (x, y, z) on the sphere and take the intersection of this line with
the equatorial plane. Every point P on the sphere thus corresponds to a point
Z = a + bi in the complex plane, provided we agree to identify all points at
infinity, so that Z = ∞ corresponds to N .

Fig. 7.2

We see that the triangles NSP and NTZ are similar, as are the triangles OFG
and OZH. Furthermore they have the same proportion, because NS = OF
and NT = OZ. Therefore we get

SP : TZ = (1 − z) : 1 = NS : NT = OF : OZ = x : a = y : b.

Which leads to

a =
x

1 − z
, b =

y

1 − z
, Z = a + bi. (35)

Conversely, by using (34) we find that

1 + a2 + b2 =
(1 − z)2 + x2 + y2

(1 − z)2
=

1 − 2z + 1

(1 − z)2
=

2

1 − z
, (36)
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which leads to the following expression of x, y and z in terms of a and b

x = 2a/R , y = 2b/R , z = 1 − 2/R , R = 1 + a2 + b2, (37)

or in terms of Z and Z = a − bi

x =
Z + Z

1 + ZZ
, y =

i(Z − Z)

1 + ZZ
, z =

ZZ − 1

1 + ZZ
. (38)

These formulas establish a one-to-one correspondence between the points of the
unit sphere and the points of the complex plane.

It is a fact (see [4] p.223) that all rotations of the Riemann sphere correspond
to fractional linear transformations on the complex plane. In particular, the
rotations R and S of the previous paragraph that generate the symmetry group
of the icosahedron correspond to such transformations. We will now calculate
which ones.

We take the coordinate axis as in the last paragraph and we embed the icosa-
hedron I into R3 as in figure 7.1. Furthermore we let the vertex A0 correspond
to a real negative number n.

Theorem 7.3 Let ζ = eiπ/5, m = ζ + ζ4, and n = ζ2 + ζ3. The rotations R
and S correspond to transformations

R(Z) = ζZ, (39)

S(Z) =
nZ + 1

Z − n
. (40)

Furthermore all vertices of I are located at

Z = 0, ∞, ζkn, ζkm, where k = 0, . . . , 4 (41)

Proof: The fact that R(Z) = ζZ is obvious, because ζ is exactly a rotation of
2πi/5 counterclockwise around OV when seen from V .

Applying powers of R to n, we see that Ai corresponds to ζk n for k = 0, . . . , 4.
From (38) with Z = Z it follows that −A0, the opposite point of A0, corresponds
to m = −1/n and therefore the vertices −Ak correspond to ζkm. Together with
the fact that V corresponds to infinity and V ′ to 0, we have proved the theorem
except for the values of m and n.

Since S interchanges A0 and V , which correspond to n and ∞ and interchanges
the opposite points m = −1/n and 0, we see that S(n) = ∞ and S(m) = 0,
thus

S(Z) =
nZ + 1

Z − n
.

Since S interchanges A1 and A4, Z = ζn implies S(Z) = ζ4n. Therefore
1 = n2(1 − ζ − ζ4) = n2(ζ + ζ4) and because ζ + ζ4 is positive, but n negative,
we see that n(ζ + ζ4) = −1, so n = ζ2 + ζ3 and m = ζ + ζ3. ✷
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7.3 Invariants of the symmetry group of the icosahedron

Before calculating the invariants under the rotations, we switch to homogeneous
variables by setting Z = u/v. Note that Z = ∞ now corresponds to v = 0. We
see that the polynomial that vanishes at all vertices (41) is

f = uv(u5 − m5v5)(u5 − n5v5).

f is invariant under all rotations of R60.

We want to calculate the coefficients of f . First we write out

f = uv(u10 − (m5 + n5)u5v5 + m5n5v10).

To calculate m5 + n5, we note that m and n are the two roots of x2 + x − 1.
Write sr for the sum of the r-th powers of the roots of this polynomial, multiply
by xr−2 and sum. We get

sr + sr−1 − sr−2 = 0.

Using this recursion formula for r = 5, we get

s5 = −s4 + s3 = 2s3 − s2 = −3s2 + 2s1 = 5s1 − 6 = −11.

Calculating n5m5 is easy because nm = −1, so we get

f = uv(u10 + 11u5v5 − v10). (42)

The Hessian (named after Otto Hesse) of f(u, v) is defined as the determinant

∣
∣
∣
∣
∣
∣
∣

∂2f
∂u2

∂2f
∂u∂v

∂2f
∂u∂v

∂2f
∂v2

∣
∣
∣
∣
∣
∣
∣

which, applied to (42), gives 121H where

H = −u20 − v20 + 228(u15v5 − u5v15) − 494u10v10. (43)

After writing H in inhomogeneous form (divide H by v20 and set Z = u/v),
we see that all powers of Z are multiples of 5, so H is invariant under R(Z) =
ζ5Z. H is also invariant under the transformation F (u, v) = (−v, u), or in
inhomogeneous form F (Z) = −1/Z = −Z. It is not difficult to see that this
transformation is rotation of 180◦ around the x-axis and therefore belongs to
R60. We will prove in the next paragraph that it is of the form (1 2)(3 4).
Because R is of the form (1 2 3 4 5), R and F generate A5, so H is invariant
under A5

∼= R60.
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The Jacobian of f and H is defined as

∣
∣
∣
∣
∣
∣

∂f
∂u

∂f
∂v

∂H
∂u

∂H
∂v

∣
∣
∣
∣
∣
∣

which yields 20T where

T = u30 + v30 + 522(u25v5 − u5v25) − 10005(u20v10 + u10v20). (44)

We calculate R(T ) and F (T ) as we did for H and find that T is invariant under
R60.

Remark 7.4 In fact f , H and T are invariant under the linear homogeneous
icosahedral group H120, because by switching to homogeneous variables, we
got the extra transformation (u, v) *→ (−u,−v), which also leaves f , H and
T invariant. In inhomogeneous variables, this would be the identity, because
z = u

v = −u
−v , but in homogeneous variables it is an extra transformation of

order 2. If we divide H120 by its normal subgroup of order 2, we get R60
∼= A5.

We will now give a geometric meaning to the invariants f , H and T .

Remark 7.5 A special point of the Riemann sphere is defined as a point which
takes fewer than 60 positions under the group R60. Therefore it must be a point
on the axis of one the rotations other than the identity. It follows from remark
7.2 that every special point belongs to one of the following sets: the 12 vertices
(at which f vanishes), the central projections on the sphere of the mid points
of the 20 faces and those of the mid points of the 30 edges. f , H and T all have
degrees < 60, so they must vanish at special points. Since H is of degree 20 and
T is of degree 30, H must vanishes at the central projections on the sphere of
the mid points of the 20 faces and T at those of the mid points of the 30 edges.

Theorem 7.6 The invariants satisfy the identity

T 2 = 1728f5 − H3 (45)

Proof: Consider any homogeneous polynomial in u and v which is invariant
under H120. If it vanishes for a special point, it has one of the factors f , H or T .
After removing such factors, we obtain an invariant quotient Q, which vanishes
for no special point. Let f and g denote any two of the absolute invariants
f5, H3 or T 2, each of degree 60. Then also f − cg is an invariant, if c is any
constant. The condition that it shall vanish at U, V uniquely determines c,
since z′ is not a special point and therefore g(U, V ) ̸= 0. Hence Q has the factor
f − cg. The quotient is either a constant or has another such factor. So every
polynomial in u and v which is invariant under H120 is a product of factors f ,
H, T , f − cg, where the c’s are constants ̸= 0. Hence an invariant of degree

Beyond the solvable equation -57-



58 SOLVING THE QUINTIC BY USING THE ICOSAHEDRON

60 which vanishes at no special point can be expressed in each of the forms
a(f5 − cH3), b(f5 − dT 2), where a, b, c, d, are constants ̸= 0. Thus f5, H3 and
T 2 satisfy a linear identity

kf5 + lH3 + mT 2 = 0.

By comparing the coefficients in inhomogeneous form for Z60, we find that
l = m = 1 and by comparing the coefficients for Z5, we find that

−k − 3 ×−228 + 2 ×−522 = 0

and thus k = −1728. It follows that T 2 = 1728f5 − H3. ✷

To conclude this paragraph, we give f , H and T in their inhomogeneous forms.

f = Z(Z10 + 11Z5 − 1) (42′)

H = −(Z20 + 1) + 228(Z15 − Z5) − 494Z10 (43′)

T = (Z30 + 1) + 522(Z25 − Z5) − 10005(Z20 − Z10) (44′)

7.4 The form problem of the icosahedron

For every regular polyhedron, there exist three invariants under the group of
rotations that leave that polyhedron fixed, namely the one vanishing at the
vertices, the one vanishing at the central projections of the midpoints of the
edges and the one vanishing at those of the faces. The form problem for a
certain regular polyhedron is the problem of finding the pairs (u, v), when the
invariants are given. For the icosahedron, this amounts to the problem of finding
the 120 pairs u, v, when f , H and T are given in accordance to equation (45).

Assume we that the values for f , H and T are known and satisfy (45). We first
try to find a value for Z such that the invariant equations (42’), (43’) and (44’)
hold. We care about finding (u, v) later.

We could for instance try to find a solution to f = Z(Z5 −m)(Z5 − n), but we
can also write out something like fH2 + T 5 in terms of Z and try to find Z so
that it takes the given value. For reasons that are perhaps a little obscure now,
but that will become clear later, we write out

B = −f5/T 2. (46)

in terms of Z and consider the problem of finding a Z for the given B. The
equation we chose to solve has now become f5+BT 2 = 0, which in homogeneous
form is equal to

Z5(Z10+11Z5−1)5+B[Z30+1+522(Z25−Z5)−10005(Z20+Z10)]2 = 0. (47)

This equation of degree 60, having single parameter B is called the icosahedral
equation.
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When we have found Z, we find the corresponding (u, v) by defining

X(u, v) = fH/T.

Since X is of degree 2 in u, v, we have

v2 = X(u, v)/X(Z, 1), Z = u/v,

Which can be solved by taking the square root. So if we know Z, we find

v = ±

√

fH

TX(Z, 1)
, and u = vZ.

Hence the form problem for the icosahedron has been reformulated to the prob-
lem of finding Z, when f , H and T are given, or in other words, finding a
solution to (47).

Our next step will be to prove that that the icosahedral equation can be reduced
to the Brioschi normal form of the quintic, but before we can do that, we first
need to prove the following theorem.

Theorem 7.7 The rotation group of the icosahedron R60 is isomorphic to the
group of all even permutations that permute, the five octahedra t0, . . . , t4 with
vertices on the midpoints of the edges of the icosahedron.

Proof: Consider again f from equation (42’). We note that f is invariant under
the transformations

F (u, v) = (−v, u), so F (Z) = −1/Z. (48)

Therefore the corresponding rotation F leaves I unchanged, so that (48) belongs
to H120. We note that it sends A0 = n to m and leaves i and −i fixed. Therefore
it is rotation of π around the x-axis. Remember that S is rotation of π around
OP , where P is the mid point of A0V . The product SF must therefore be
rotation of π around the axis which is a common perpendicular to the x-axis and
OP . Note that these three rotation axis are perpendicular. The points where
they intersect the sphere are therefore the vertices of a regular octahedron.
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Fig. 7.3

The fixed points of F can be found by setting F (Z) = Z, which gives Z2+1 = 0.
Similarly we can find the fixed points of S from setting S(Z) = Z in (40). Finally
for SF we calculate S(−1/Z) = Z. After setting Z = u/v we find that the fixed
points of F , S and SF are respectively those for which

A0 = u2 + v2, B0 = u2 − 2nuv − v2, C0 = u2 − 2muv − v2 (49)

vanish. Hence the points for which

t0 = A0B0C0 = u6 + 2u5v − 5u4v2 − 5u2v4 − 2uv5 + v6 (50)

vanish correspond to the vertices of the octahedron. If we now apply R to this
octahedron, we find another octahedron with one vertex at the mid point of
A1V . We see that by applying Rk for k = 0, . . . 4 we find 5 octahedra.

To find the homogeneous polynomials that vanish at the vertices of these octa-
hedra, we first write Rk in one of its homogeneous forms

Rk : U = ζ3ku, V = ζ2kv

and apply this to (49) to find

Ak = ζku2 + ζ4kkv2, Bk = ζku2−2nuv− ζ4kv2, Ck = ζku2−2muv− ζ4kv2.

We write tk = AkBkCk.

Since the rotations of R60 merely changes the places of the 5 octahedra, R and
S permute the 5 octahedra. With some geometrical insight and help of the
following picture
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Fig. 7.4

one can see that S interchanges the octahedra t1 and t2 as well as the octahedra
t3 and t4. Therefore we get

R = (t0t1t2t3t4), S = (t0)(t1t2)(t3t4).

Together these permutations generate A5. ✷

Theorem 7.8 The octahedral functions t0, . . . , t4 are the roots of a quintic
equation in the Brioschi normal form (25).

Proof: Writing out the expression

(t − t0)(t − t1)(t − t2)(t − t3)(t − t4) = 0

gives a fifth degree polynomial

t5 + c1t
4 + c2t

3 + c3t2 + c4t + c5 = 0

whose coefficients are symmetric polynomials of the roots t0, . . . , t1. Because ti
is of degree 6 in u, v, we see that ck is of degree 6k in u, v. The largest 6k is 30,
which is < 60, so from remark 7.4 it follows that ck is a product of factors f , H
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and T , whose degrees are 12, 20 and 30. Since no such product is of degree 6
or 18, we have c1 = c3 = 0. Also, c2 = af , c4 = bf2, c5 = cT , where a, b, c are
constants.

Let sk be the sum of the k-th powers of the roots. Since c1 = c3 = 0 two of
Newton’s identities reduce to s2 + 2c2 = 0 and s4 + c2s2 + 4c4 = 0. Thus

s2 + 2af = 0, s4 + (4b − 2a2)f2 = 0, cT + t0t1t2t3t4 = 0. (51)

We want to calculate a, b and c by comparing terms from s2, s4 and t0t1t2t3t4.
Writing out a few terms of tk = AkBkCk gives

tk = ζ3ku6 + 2ζ2ku5v − 5ζku4v2 + . . .

and thus
t2k = ζku12 + 4u11v − 6ζ4ku10v2 + . . .

t4k = ζ2ku24 + 8ζku23v + 4u22v2 + . . . .

Comparing the coefficients of u11v, u22v2 and u30 in the respective functions
(51) gives

20 + 2a = 0, 20 + 4b − 2a2 = 0, c + 1 = 0

which implies a = −10, b = 45, c = −1. This means that we have

t5 − 10ft3 + 45f2t − T = 0. (52)

Introduce in place of t the new variable x = −tf2/T , which is of degree zero in
u and v and hence a function of Z. Replace t by −xT/f2, multiply all terms by
−f10/T 5 and write B for −f5/T 2, in accordance to (46). We get the Brioschi
quintic

x5 + 10Bx3 + 45B2x + B2 = 0.

✷

Note that because the B we have here is precisely the B we have used to
formulate the icosahedral equation, we have reduced the icosahedral equation
(and thus the form problem) to the Brioschi quintic equation.

We now have enough to conclude with a theorem that sums up all results in
this and the previous chapter.

Theorem 7.9 Solving the general quintic equation is equivalent (up to radicals)
to solving the form problem of the icosahedron.

Proof: We first prove we can solve the general quintic if we know a solution
to the form problem. From the coefficients of the general quintic, we determine
the coefficients of a corresponding principal quintic, by following the procedure
in the proof of theorem 6.4. From the coefficients of this principal quintic we
determine the parameter B of the Brioschi quintic by following the proof of
theorem 6.6.
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Now if we are somehow able to solve the form problem of the icosahedron, we
can find (u, v) for given values of f and T . We choose B, such that B = f5/T 2

and consider u and v known. From (u, v), we calculate a solution t0 to (52).
Therefore x0 = t0f2/T is a solution to the Brioschi quintic as desired.

On the other hand, if we are able to solve the general quintic equation, then
in particular, we can solve (52) for any given invariants f , H and T such that
1728f5 = T 2 + H3. The t0, . . . , t4, can be used in tk = AkBkCk to obtain 5
equations of degree 6. We can use the first few to lower the degree of the last
one and obtain a solvable equation in (u, v). This means we can solve the form
problem. ✷
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8 Solving the quintic by using elliptic curves

In this section we will develop some theory on elliptic curves, which are cubic
curves of the form y2 = x3 + ax + b in the projective plane. We will see that
the points on such a curve form a group under a remarkable addition that is
defined by a geometric construction on the graph.

Next we will look at group elements of finite order, called torsion points. We
will focus our attention both on the algebra as on the geometry of these points.

Following this, we will see how we can associate to each Brioschi quintic a certain
elliptic curve in such a way that finding the 5-torsion points on this elliptic curve
is equivalent to solving the quintic. We will also see that the associated elliptic
curves have a lot of connections to the icosahedron, in particular to the functions
f , H and T .

Finally we will look at the field extensions that arise from the various quintics,
the icosahedral equation and the 5-torsion polynomial and we will use Galois
theory to bring all of them together.

8.1 Introduction to elliptic curves in the projective plane

We will study cubic curves of the form

C : y2 = x3 + ax + b. (53)

If we consider solutions in 2, we can draw the graph. We can distinguish four
different curves:

1. f(x) has three real roots, for instance y2 = x3 − x, with ∆ = 64:

Fig. 8.1
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2. f(x) has one real and two complex roots, for instance y2 = x3 − 3x + 3,
with ∆ = −2160 or y2 = x3 + x, with ∆ = −64:

Fig. 8.2

3. f(x) has a double root, for instance y2 = x3 + x2, with ∆ = 0:

Fig. 8.3

4. f(x) has a triple root, for instance y2 = x3, with ∆ = 0:

Fig. 8.4

Beyond the solvable equation -65-



66 SOLVING THE QUINTIC BY USING ELLIPTIC CURVES

A curve C(x, y) = 0 is called a singular curve if both partial derivatives vanish
at a certain point. If we write (53) as C(x, y) = y2 − f(x) = 0 and calculate the
partial derivatives

∂F

∂x
= −f ′(x),

∂F

∂y
= 2y,

we see that this happens only on the last two curves. On the other hand, we
see that on the first two curves, every point has a well-defined tangent line.

In section 2.2 we saw that the discriminant ∆ of f is equal to

∆ =
a3

27
+

b2

4
.

This means that C is singular if and only if ∆ = 0.

We are only interested in non-singular curves. In fact, we want to study non-
singular curves over the so called projective plane 2. We give two definitions
of 2, one algebraic and one geometric. First the algebraic one:

Definition 8.1 (Projective Plane 1)

2 =
{(X,Y,Z) : X,Y,Z not all zero}

∼
,

where ∼ is an equivalence relation defined by the rule that (x, y, z) ∼ (X,Y,Z)
if there is a non-zero t such that

X = tx, Y = ty, Z = tz. (54)

The numbers X,Y,Z are called homogeneous coordinates.

Remark 8.2 The reason for calling X,Y,Z homogeneous coordinates is that, if
we have an algebraic curve of degree d in the affine plane defined by f(x, y) = 0
and we apply the substitutions x = X/Z, y = Y/Z, we get a homogeneous
curve in X,Y,Z (after multiplication by Zd). On the other hand, if we have
a homogeneous curve defined by F (X,Y,Z) = 0, we can find its affine part by
dividing it by Zd and substituting X = Zx, Y = Zy.

If we apply these substitutions to (53), we can formulate our first definition of
an elliptic curve.

Definition 8.3 (Elliptic Curve 1) An elliptic curve E(K) ⊂ 2 over a field
K is a set of points that satisfy a non-singular homogeneous equation in the
projective plane of the form

E : Y 2Z = X3 + aX2Z + bXZ2 + cZ3, a, b, c ∈ K. (55)
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Note that if Z ̸= 0, we can divide by Z3 to get back equation (53). This holds
in general, for if we have a homogeneous equation in the projective plane and
make the substitution (54) with t = 1/Z, we see that (X,Y,Z) ∼ (X/Z, Y/Z, 1),
so the part of 2 with Z ̸= 0 is just the two dimensional Affine plane. We will
call (53) the affine part of (55).

If Z = 0 however, equation (55) has a solution that (53) seems to lack. In fact
this solution lies “at infinity”. This term comes from the fact that, if we take
the limit for Z → 0 in the substitution (x, y) = (X/Z, Y/Z), the coordinates x
and y go to infinity. In general, the points with Z = 0 form a line (X,Y, 0) ∼
(1, Y/X, 0), together with a point (0, 1, 0) that lies “at the end of the line”.
Together these point form a projective line at infinity, which we will denote by

. This leads to our second definition of the projective plane.

Definition 8.4 (Projective Plane 2)

2 = 2 ∪ .

The geometric intuition we should follow here is that we have the usual affine
plane, together with a set of (non-oriented) directions in 2. The direction of a
line ax+by = 0 is best characterized by its derivative dy/dx. Note that, because
a direction is an element of , we don’t exclude vertical lines with dy/dx = ∞.
So we can define a direction as a set of equivalence classes of all lines that have
the same derivative as a given line. This means that two “parallel” lines in

2, have a point in common, namely their direction point, which is a point at
infinity. In fact 2 has no parallel lines at all!

Because the points at infinity also form a projective line, every line in 2 inter-
sects the line at infinity in a single point corresponding to its direction. Further-
more it is not difficult to see that there is a unique line going through every two
distinct points. This means that every two distinct lines intersect each other at
exactly one point. Bezout’s theorem states a more general result:

Theorem 8.5 (Bezout’s theorem) Two projective curves C1, C2 with no com-
mon components intersect at (deg C1)(deg C2) points in , counting multiplic-
ity.

Proof: A detailed proof can be found in Silverman [1] page 242-251. ✷

Now where does the elliptic curve (54) intersect the line at infinity? The right
intuition we should follow here is that the curve is somehow “missing” a point
that lies at the end of the curve. If we move along the curve the derivative
dy/dx goes to ±∞, so it must be the infinite direction (0, 1, 0). Because the
line at infinity intersects the curve only at this point, Bezout’s theorem theorem
implies this is an intersection of multiplicity three.

We can now formulate a simpler definition of an elliptic curve that is equivalent
to our first definition.
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Definition 8.6 (Elliptic Curve 2) An elliptic curve E over a field K is a set
of points (x, y) in K2 that satisfy a non-singular cubic equation of the form

E : y2 = x3 + ax + b, a, b ∈ K

together with the infinite direction point O ∈ 2.

8.2 The group structure

In this section we will see that points on an elliptic curve form a group under an
addition law that is best described by a geometrical construction on the graph
of the curve. We define this addition as follows:

Definition 8.7 (Group law) To add two points P and Q, we first draw the
line through P and Q and find a third intersection point P ∗ Q. Then we draw
the line through P ∗Q and O, which is just the vertical line through P ∗Q and
intersect it with the curve to find P + Q. An elliptic curve is symmetric about
the x axis, so to find P + Q, we only have to reflect P ∗ Q in the x-axis. We
illustrate this procedure with the following picture:

Fig. 8.5

Remark 8.8 Note that P and Q need not be distinct. If P = Q, the curve
intersects the line through P and Q twice at P , which means that this line is
the tangent line to the curve. Note furthermore that, because we are working in

2 and take multiplicity into account, we always find a third intersection point
P ∗ Q, so our addition is well-defined. Moreover it is immediately clear that it
is commutative.
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The zero element of this addition is the element O. A look at figure ?? (and
considering some special cases) shows that P + O = P for all P on E. Finding
the additive inverse is also not difficult. If, for a point P = (x, y), we define
−P = (x,−y), we find that P + (−P ) = O, so all we need to check to complete
our definition of the group is associativity. This turns out to be more difficult.
We first give explicit formulas for the addition.

We start with an elliptic curve E of the form (58) with two distinct points P
and Q on E and set

P = (x1, y1), Q = (x2, y2), P ∗ Q = (x3, y3), P + Q = (x3,−y3).

We first assume that P ̸= Q, so we can look at the equation of the line joining
P and Q. This line has the equation

y = λx + ν, where λ =
y2 − y1

x2 − x1
and ν = y1 − λx1 = y2 − λx2.

To find the x-coordinate of the third intersection point on this line, we substitute

y2 = (λx + ν)2 = x3 + ax + b.

Working out the brackets and putting everything on one side yields

x3 − λx2 + (a − 2λν)x + b − ν2 = 0.

This is a cubic equation in x and its three roots x1, x2, x3 give us the x coordi-
nates of the three intersections. Thus

x3 − λx2 + (a − 2λν)x + b − ν2 = (x − x1)(x − x2)(x − x3) = 0.

Comparing the coefficients of the x2 term on both sides, we find that λ2 =
x1 + x2 + x3, so we can express x3 in terms of x1 and x2 and then calculate y3

with the equation of the line:

x3 = λ2 − x1 − x2, y3 = λx3 + ν. (56)

These formulas give a way to compute the sum of two points. Note that the
result of this computation does not depend on the coefficients a and b of the
elliptic curve. This means that, if we have two distinct points on an elliptic
curve of the form (58) and if we assume that the addition does not involve
intersections with multiplicity > 1, we can compute the sum without having to
know the coefficients of the curve!

If P = Q, we can calculate P +Q by calculating an equation for the intersection
of the tangent line to P with E. By implicit differentiation we find that

λ =
dy

dx
=

f ′(x)

2y
=

3x2 + a

2y
.

Beyond the solvable equation -69-



70 SOLVING THE QUINTIC BY USING ELLIPTIC CURVES

If we substitute this into the formulas we found earlier, put everything over a
common denominator, and replace y2 by f(x), we find that

x coordinate of 2(x, y) =
x4 − 2ax2 − 8bx + a2

4x3 + 4ax + 4b
.

This formula is often called the duplication formula.

It is now possible to check that the addition is associative by direct calculation
with the formulas above. This is a lot of tedious work and there are a lot of
special cases to consider, like when one point is the negative of the other or when
two points coincide. On top of that there is very little learning in writing or
reading such a proof. To my knowledge no such a proof has ever been published.

Fortunately there exist more elegant ways of proving associativity. We need the
following lemma in which we use the ”language” of Bezout’s theorem, so we
count points by their multiplicities and allow complex and infinite points.

Lemma 8.9 Let C,C1 and C2 be three cubic curves. Suppose C goes through
eight of the nine intersection points of C1 and C2, then C goes through the ninth
intersection point.

Sketch of proof:8 The trick is to consider the problem of constructing a cubic
curve which goes through a certain set of points. To define a cubic curve

ax3 + bx2 + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0

we have to give ten coefficients. If we multiply all the coefficients by a constant,
then we get the same curve, so really the set of all possible cubics is, so to speak,
9-dimensional. Now if we want the cubic to go through a point, that imposes
one linear condition on the coefficients so the set of all possible cubics that go
through one given point is 8-dimensional. Each time you impose a condition
that the cubic should go through a given point, that imposes an extra linear
condition on the coefficients. Thus the family of all cubics which go through
the eight points of intersection of the two given cubics C1 and C2 forms a 1-
dimensional family.

Let F1(x, y) = 0 and F2(x, y) = 0 be the cubic equations giving C1 and C2. We
can then find cubics going through the eight points by taking linear combinations
λ1F1(x, y)+λ2F2(x, y). Because the cubics going through the eight points form
a 1-dimensional family and because the set of cubics λ1F1(x, y) + λ2F2(x, y) is
a 1-dimensional family, we see that the cubic C has an equation λ1F1(x, y) +
λ2F2(x, y) = 0 for a suitable choice of λ1,λ2.

Now how about the ninth point? Since that ninth point is on both C1 and
C2, we know that F1(x, y) and F2(x, y) vanish at that point. It follows that

8Silverman [1] page 17
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λ1F1(x, y) + λ2F2(x, y) also vanishes there and this means C also contains that
point. ✷

Now we are ready to prove associativity.

Theorem 8.10 The group law on an elliptic curve E is associative. In other
words, for all points A,B,C on E, we have

(A + B) + C = A + (B + C).

Proof: It is enough to show that

−((A + B) + C) = −(A + (B + C)).

Consider the following lines:

L1 is the line through A, B, −(A + B)
L2 is the line through A + B, C, −((A + B) + C)
L3 is the line through B + C, O, −(B + C)
N1 is the line through A + B, B, −(A + B)
N2 is the line through B, C, −(B + C)
N3 is the line through A, B + C, −(A + (B + C)

We can draw a picture to represent all the above information. We also label a
point D where L2 intersects N3.

Fig. 8.6
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Remember that our elliptic curve is in the background, also passing through
these points:

Fig. 8.7

Note that these pictures should not be taken as accurate drawings, but as a
reminder of which lines pass through which points. Also note that we don’t
know E passes through D. This is what we want to show.

By the definitions of L2 and N3, we know that −((A + B) + C) lies on L2 and
−(A + (B + C)) lies on N3. But we’d like these points to be equal. In fact we
will prove they are both equal to D, which is L2 ∩ N3.

Now we have the following two cubic curves

L1L2L3 = 0 and N1N2N3 = 0.

We know by construction that these both pass through the eight points

O, A, B, C,
A + B, B + C, −(A + B), −(B + C).

By Bezout’s theorem we know that two cubics intersect in 9 points and we call
the ninth point D, so since E goes through these 8 points, lemma 8.9 implies it
also passes through D. Now on N1N2N3 ∩ E we have the points

O, A, B, C,
A + B, B + C, −(A + B), −(B + C),

−(A + (B + C)), D.
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But since there are only 9 points on the intersection of two cubics, two of these
must be equal. By definition the first 8 are different and D is not equal to any
of these, so we have D = −(A + (B + C)).

Similarly, by considering the 10 labelled points on L1L2L3 ∩ E, we find D =
−((A + B) + C).

So we have

−(A + (B + C)) = D = −((A + B) + C).

This completes the proof of associativity. ✷

Since we showed in remark 8.8 that the addition is well-defined, commutative
and that we have an identity element as well as additive inverses, our completion
of the proof of associativity gives us the following theorem.

Theorem 8.11 The group law from definition 8.7 defines a commutative group
on an elliptic curve.

8.3 Torsion

In this section we will study a special part of the group on the elliptic curve,
namely the part consisting of elements of finite order.

Definition 8.12 Torsion points are points of finite order on an elliptic curve.
We say that a point has order m if

mP = P + P + . . . + P
︸ ︷︷ ︸

= O.

m times

Let E be an elliptic curve over a field of characteristic 0 of the form

E : y2 = f(x) = x3 + ax + b, (57)

together with a point O at infinity.

2-Torsion: The points of order two are easily found, because if P + P = O,
then P = −P , so because −(x, y) = (x,−y), these are the points with y = 0
and x-coordinate a root of f . Geometrically this means that the tangent line to
points on the x-axis intersect E at O.
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Fig. 8.8

If we allow complex coordinates, f has exactly three roots, since E is by def-
inition non-singular. These three points of order two, together with O form a
group of four elements. Since there exists only one non-cyclic group of order
four, it must be isomorphic to 2 × 2. We call this group the 2-torsion and
denote it by E[2].

3-Torsion: Next we try to find the points P = (x, y) of order three, which
satisfy 3P = O or equivalently 2P = −P . If we write x(P ) for the x-coordinate
of P , we see that we have to solve x(2P ) = x(−P ) = x(P ) = x. We can
express x(2P ) in terms of x by using the duplication formula from the previous
paragraph:

x(2P ) =
x4 − 2ax2 − 8bx + a2

4x3 + 4ax + 4b
=

x4 − 2ax2 − 8bx + a2

4y2
. (58)

If we set this equal to x and cross multiply (this is allowed since y ̸= 0 for
3-torsion points), we get a polynomial ψ3(x) of which the roots correspond to
the x-coordinates of the 3-torsion points:

ψ3(x) = 3x4 + 6ax2 + 12bx − a2.

We want to prove that all roots of ψ3 are different. For that reason, we will now
deduce an alternative expression for ψ3. It follows directly from formula (56)
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that

x(2P ) =
f ′(x)2

4y2
− 2x

By setting this equal to x, multiplying by −4y2 = −4f(x) (which is allowed
since y ̸= 0) and substituting 6x = f ′′(x), we see that

ψ3(x) = 2f(x)f ′′(x) − f ′(x)2.

It now follows that a common root to ψ3(x) and ψ′
3(x) = 12f(x) would be a

common root to f and f ′, which is impossible, because E is non-singular.

We saw that ψ3 has four different roots. Because none of these lie on the x-axis,
every solution for x gives two points on E, namely P = (x, y) and −P = (x,−y).
Together with O, we see that the 3-torsion contains 9 points. Since there is only
one (abelian) group with 9 elements such that every element has order dividing
three, it must be 3 × 3.

There is also a nice geometric way to describe the points of order three: they are
inflection points, points where the tangent line to the cubic has a triple order
contact. This follows from 2P = −P . Geometrically this means that when we
draw the tangent at point P , then take the third intersection and connect it
with O, we get −P . This is only the case if the third intersection point is the
same point P .

Fig. 8.9
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4-Torsion: Before we start doing the algebra of 4-torsion points, we will look
at their geometry. If P is a 4-torsion point, then 2P must be a 2-torsion point.
This means that the tangent line to P must intersect E at a point on the x-axis.

Fig. 8.10

Now lets look at the algebra. The x-coordinate of 2P is given by the dupli-
cation formula, so if we plug this formula into f(x), it must equal zero. After
multiplication by (4y2)3, we find that the x-coordinates of 4-torsion points, that
are no 2-torsion points and neither the point at infinity, satisfy a 12-th degree
polynomial in x. Using a symbolic calculator, we find that it is the square of
the 6-th degree polynomial

ψ4(x) = x6 + 5ax4 + 20bx3 − 5ax2 − 4abx − 8b2 − a3 = 0.

The 6 different roots of this polynomial yield 12 points on E, so together with
the three 2 torsion points and O, this gives an abelian group with 16 elements
(12 of order 4, 3 of order 2 and the identity) so it follows that the 4-torsion is
isomorphic to 4 × 4.

5-Torsion: Now we come to our final goal: understanding the 5-torsion points
on elliptic curves. Again we start with the geometry. The 5-torsion points must
be points for which 3P = −2P and 4P = −P so x(3P ) = x(2P ) and x(4P ) =
x(P ). Furthermore the tangent line to P must hit the curve at −2P = 3P and
the tangent line to 3P must hit the curve at −6P = 4P = −P .
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Fig. 8.11

The duplication formula gives the x-coordinate of 2P and 3P , and if we duplicate
these points again, the x-coordinate has to be equal to the x-coordinate of P and
−P , which is x. So we have to solve x(2(2P )) = x. So to find the x-coordinates
of the 5-torsion points, we can plug the duplication formula into the duplication
formula and set it equal to x. This leads to a 16-th degree polynomial. Later
in this paragraph, we will prove it has 12 distinct roots which satisfy

ψ5(x) = 32(x3 + ax + b)2(x6 + 5ax4 + 20bx3 − 5ax2 − 4abx − 8b2a3)
−(3x4 + 6ax2 + 12bx − a2)3 = 0.

(59)

Because we have 12 distinct x-coordinates for 5-torsion points, the 5-torsion
contains 24 points of order 5 plus the point O at infinity, so it is an abelian
group of order 25 with 24 points of order 5. From the classification of finite
groups it follows that it must be isomorphic to 5 × 5.

Remark 8.13 This result could also be obtained by using the fact that E( ) ∼=
/Λ, where Λ = ω1 + ω2 is a certain lattice. It turns out that the addition

on the elliptic curve corresponds to ordinary addition in the complex plane
modulo this lattice. This way it is easy to see that the n-torsion forms a group
isomorphic to n × n (see figure 8.12). For more information see Silverman
[1].
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Fig. 8.12

n-Torsion: The process above can be continued and it is possible to derive
formulas for the x-coordinates of n-torsion points from the duplication formula
by induction. However there is a method that leads to a much faster algorithm
and easier formulas. Moreover this method has the great advantage that the
polynomials it generates have no multiple roots. The proof involves some more
advanced methods from algebraic geometry and complex function theory, but
it is understandable without to much extra theory.

Theorem 8.14 Let mP = m(x, y) = (xm, ym), then

xm =
xψ2

m − ψm+1ψm−1

ψ2
m

, ym =
ψ2m

2ψ4
m

,

where
ψ0 = 0, ψ1 = 1, ψ2 = 2y

ψ3 = 3x4 + 6ax2 + 12bx − a2

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5ax2 − 4abx − 8b2 − a3)

ψ2n+1 = ψ3
nψn+2 − ψ3

n+1ψn−1

yψ2n = ψn(ψ2
n−1ψn+2 − ψ2

n+1ψn−2)

Proof: We use the fact that a function is defined, up to a constant factor, by
its zeros and poles. We determine the constant by looking at the behavior at
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x = O using the local uniformiser

t = x/y.

The function ψm is defined by

• it has a simple zero at all m-torsion points P ̸= O

• it behaves like mt−m2+1 at O.

More precisely

• if m is odd, there are 1/2(m2 − 1) pairs (aj ,±bj) of m-division pairs and

ψm = m
∏

(x − aj)

• if m is even, the three 2-torsion points are m-torsion points and there are
1/2(m2 − 4) pairs (aj ,±bj), bj ̸= 0. Then

ψm = my
∏

(x − aj).

Now for all m, even or odd, we have

xm ∼ m−2t−2, ym ∼ m−3t−3

at O, and
ψ2

mxm

has no poles except at O.

Further, xm − x vanishes at P only if (m + 1)P = O or if (m − 1)P = O.
Therefore

xm − x =
ψm+1ψm−1

ψ2
m

, (60)

where the constant is right, since both sides behave like (m2 − 1)/m2t2 at
O. This gives the formula for xm. That for ym follows immediately from the
specification of the poles and zeros.

It remains to give the recurrence relation. For integers l,m we have xl = xm

precisely when either (l + m)P = O or (l − m)P = O. Therefore

xl − xm =
ψm+1ψm−1

ψ2
l ψ2

m

,

in which we determined the constant by the behavior at O. Furthermore we
have

xl − xm = (x − xm) − (x − xl).
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Therefore, by (60), we have

ψ2
l ψm+1ψm−1 − ψ2

mψl+1ψl−1 = ψm+lψm−l.

If we put l = n, m = n + 1, we get ψm−l = 1 and

ψ2n+1 = ψ3
nψn+2 − ψ3

n+1ψn−1.

And if we put l = n − 1, m = n + 1, we get ψm−l = ψ2 = y and

yψ2n = ψn(ψ2
n−1ψn+2 − ψ2

n+1ψn−2)

✷

Remark 8.15 It is now an easy task to derive ψ5 and prove (59).

8.4 Isomorphism and the j-invariant

To what extent is an elliptic curve unique? To answer this question, we have to
look at isomorphisms between elliptic curves.

Definition 8.16 Two elliptic curves E and E′ in Weierstrass form are said to
be isomorphic over K, if there exists a change of variables

x = f(x′), y = g(y′)

with f, g rational functions, that transforms E into E′.

Theorem 8.17 The change of variables in the definition above can be written
as

x = u2x′, y = u3y′ for some u ∈ K − 0 (61)

Proof: The proof can be found in [13] p. 49-50.

We will see in this paragraph that, up to isomorphism, elliptic curves can be
characterized by a single parameter called the j-invariant, which is a function
of the coefficients of the curve and is invariant under the change of variables
(61). More precisely, we will prove that isomorphic elliptic curves have the same
j-invariant and that elliptic curves with the same j-invariant are isomorphic9.
Furthermore, we will prove there that for every j0 ∈ K, there exists an elliptic
curve with j-invariant j0.

We again consider an elliptic curve E over K (char(K) = 0) of the form

E : y2 = x3 + ax + b (62)

9the isomorphism involves taking fourth and sixth roots of the coefficients, so in fact they
are isomorphic over K̄, the algebraic closure of K.
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together with a point O at infinity.

We associate to this curve the quantities

∆ =
a3

27
+

b2

4
, j =

(4a)3

∆

and prove the following theorems.

Theorem 8.18 Two elliptic curves are isomorphic over K̄ if and only if they
have the same j-invariant.

Proof: Suppose we have two isomorphic elliptic curves E and E′ of the form
(62), then by definition there exists a change of variables

x = u2x′, y = u3y′ for some u ̸= 0

and then
u4a′ = a, u6b′ = b, u12∆ = ∆′.

So we have

j =
(4a)3

∆
=

(4u4a′)3

u12∆′ =
(4a′)3

∆′ = j′.

On the other hand suppose we have two elliptic curves E and E′ with the same
j-invariant, say with equations

E : y2 = x3 + ax + b, E′ : y′2 = x′3 + a′x′ + b′.

Then
(4a)3

a3/27 + b2/4
=

(4a′)3

a′3/27 + b′2/4
,

which yields
a3b′2 = a′3b2.

We look for an isomorphism of the form (x, y) = (u2x′, u3y′), and consider three
cases.

Case 1. a = 0 (j = 0). Then b ̸= 0 (since ∆ ̸= 0), so a′ = 0, and we obtain an
isomorphism using u = (b/b′)1/6.

Case 2. b = 0 (j = 1728). Then a ̸= 0, so b′ = 0, and we take u = (a/a′)1/4.

Case 3. ab ̸= 0 (j ̸= 0, 1728). Then a′b′ ̸= 0 (since if one of them is zero, then
they both are, contradicting ∆′ ̸= 0). Hence taking u = (a/a′)1/4 = (b/b′)1/6

gives the desired isomorphism. ✷

Theorem 8.19 If j0 ∈ K̄, then there exists an elliptic curve (defined over
K(j0)) with j-invariant equal to j0.
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Proof: For j0 = 0 we have the curve

E : y2 = x3 + 1, j = 0.

For j0 = 1728 we have the curve

E : y2 = x3 + x, j = 1728.

Now assume that j0 ̸= 0, 1728 and consider the curve

E : y2 = x3 +
3j0

1728 − j0
x +

2j0
1728 − j0

. (63)

An easy computation yields that j = j0. ✷

8.5 Solution of the unsolvable quintic

There exists a nice analogy between the methods for solving the equations of
degree up to four and the method for solving the quintic.

The use of 5-torsion points on an elliptic curve to solve the quintic has a nice
analogy with the use radicals of to solve equations of degree lower than 5. Using
radicals means that we allow a solution to xn = a to appear in our solution.
By using the roots of unity, or in other words, the solutions to xn = 1, we then
find all solutions to the equation. The analogy with solving the quintic is that
instead of the ”torsion equation” xn = a on ∗ for n < 5, we need the torsion
equation nP = Q for n = 5 on an elliptic curve E. The parameter Q can be set
to zero, but the parameters a, b for E depend on the equation.

In this paragraph, we will see that the splitting field of the general quintic
equation, defined over a field F ⊆ is contained in a field that can be obtained
by adjoining to F some radicals and the x-coordinates of the 5-torsion of some
appropriate elliptic curve. First of all, we will explain how the icosahedral
equation (47) can be linked to a certain elliptic curve.

Remember from the previous chapter that, up to a square root, solving the
Brioschi quintic with parameter B is equivalent to solving the icosahedral equa-
tion

I(Z) = f5 + BT 2 = 0.

Now if we define the invariant j = H3/f5, we get a similar equation, also of
degree 60 and with the same roots

J (Z) = −H3 + jf5 = 0, (64)

with j as only parameter. The relation between B and j can be deduced from
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the relation between the invariants of the icosahedron.

1728f5 = H3 + T 2

1728f5 = jf5 − f5/B

1728 = j − 1/B (if f ̸= 0)

j = 1728 + 1/B (65)

Now we let j be the j-invariant of an elliptic curve Ej . We know from theorem
8.18 that (62) is such a curve. Note that if j = 0 we have H = 0, if j = 1728,
we have T = 0 and if j = ∞, we have f = 0. So in each case, we find that a
special point of the icosahedron yields a solution to the form problem and thus
the quintic is solvable by radicals. Suppose this is not the case. We can then
write this curve as

Ej : y2 = x3 + ax + b, a =
3j

1728 − j
, b =

2j

1728 − j
. (66)

We want to prove that finding the 5-torsion of this curve is equivalent to solving
the general quintic (up to some harmless radicals). We first look at the geometry
of the 5-torsion to obtain polynomial ψ∗

5 of degree six.

Theorem 8.20 Let Ej be the elliptic curve (66) mentioned above and let P be
a 5-torsion point on this curve. The element y := x(P ) + x(2P ) is a root of the
6-th degree polynomial

ψ∗
5(x) = x6 + 20ax4 + 160bx3 − 80a2x2 − 128abx − 80b2. (67)

Proof: If we write out y = x(P ) + x(2P ) with the duplication formula, we get

y = x +
x4 − 2ax2 − 8bx + a2

4x3 + 4ax + 4b

Furthermore we have

ψ5(x) = 32(x3 + ax + b)2(x6 + 5ax4 + 20bx3 − 5ax2 − 4abx − 8b2a3)
−(3x4 + 6ax2 + 12bx − a2)3 = 0.

Now if we eliminate x from these equations with Mathematica, and factorize
the result we get

83886080(4a3 + 27b2)6(80b2 + 128aby + 80a2y2 − 160by3 − 20ay4 − y6)2.

✷

Now let
q = x5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

be a general quintic over F with algebraically independent coefficients, so that
Gal(q/F ) ∼= S5. If we replace F by F ′ = F (

√

disc(q)), then Gal(q/F ′) ∼= A5,
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which is a simple group, hence not solvable. This is depicted in the following
diagram:

F (q)
A5 |

F ′ = F (
√

disc(q))

2 |
F

Let qp, qB and J be resp. the principal quintic, Brioschi quintic and icosahedral
equation corresponding to q.

In previous paragraphs we proved the following things:

• After adjoining a square root
√

k, solving q = 0 is equivalent to solving
qp = 0.

• After adjoining another square root
√

l, solving qp = 0 is equivalent to
solving qB = 0.

• Splitting qB is equivalent to the form problem.

• After adjoining another square root
√

m, the form problem is equivalent
to solving J = 0.

So lets work over the field N := F (
√

disc(q),
√

k,
√

l,
√

m). We will clarify this
with the following diagram:

N(q) A5

/ | \
F ′(q)− L −N

\ | /
A5 F ′

We see that N(q) = N(J ) = N(qB) all have Galois group A5 over N be-
cause F ′(q) ∩ N = F ′. This follows from the fact that if F ′(q) ∩ N = L for
some intermediate field L, then L/F ′ would be Galois (multi-quadratic) and
Gal(F ′(q)/L) ✁ A5, but since A5 is simple it has no normal subgroups other
than {e} and A5, so L must be equal to F ′.

Now for a given B, we look at Ej (with j = 1728 + 1/B) and ψ∗
5 for this Ej .

Let
α = x(P ) + x(2P )

for a certain P ∈ Ej [5] be a root of ψ∗
5 . If we can prove that α ∈ N(J ) and

α /∈ N , we will have proved that N(q) = N(ψ∗
5) and thereby that solving the

5-torsion equation is equivalent to solving the quintic (up to radicals).
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Lemma 8.21 We have an explicit expression of α in terms of Z, so

α ∈ N(J )

Proof: We define the function

r(Z) =
−125Z6

f
=

−125Z5

Z10 + 11Z5 − 1
(68)

where the variable Z, as usual, is a solution to the icosahedral equation. It is
constructed in such a way that it is invariant under the icosahedral rotations
R(Z) = ζ5Z and F (Z) = −1/Z, so it is invariant under the group D5, which
is generated by R and F . Therefore, it satisfies a polynomial of degree 6. In
fact, by calculating its coefficients with the same method we used for ψ∗

5 , we
find that

(r2 + 10r + 5)3 = jr. (69)

Furthermore, we can verify computationally that

α = −2
r2 + 10r + 5

r2 + 4r − 1

by checking that it is indeed a root of ψ∗
5 . This gives the desired expression of

α in terms of Z. ✷

Lemma 8.22
α /∈ N

Proof: Gal(N(q)/N) = A5, but the action of this Galois group on α is non-
trivial, since S(α) ̸= α. Therefore α /∈ N . ✷

Theorem 8.23 Suppose q is a general quintic over F and suppose we have as-
sociated an elliptic curve to it by calculating the j-invariant from the coefficients
of q. There exists a radical extension N of F such that N(q) = N(ψ∗

5).

Proof: Set N = F (
√

disc(q),
√

k,
√

l,
√

m) as before. Since the Galois group of
N(q) over N is A5 and thus a simple group, we know that the normal closure of
N(α) cannot lie properly between N and N(q) (see the diagram above). Now
since the two lemmas imply N ̸= N(α) ⊂ N(q), we must have N(q) = N(ψ∗

5).
✷

We have now proved our final goal, namely that solving the general quintic is
equivalent (up to some harmless radicals) to finding the 5-torsion of an elliptic
curve.

After this final result, I feel compelled to make some remarks about the beauty
of this theory as a whole. The various forms of the quintic, the icosahedron and
the 5-torsion on an elliptic curve, are mathematical objects that seem unrelated
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at first sight, but on closer inspection can be seen to have very deep and beautiful
connections. It is almost like a symphony in which all the instruments play a
complex melody of their own and simultaneously interact with all of the other
instruments in perfect harmony.
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