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Abstract

Bayesian Forecasting of Stock Returns using Simultaneous Graphical
Dynamic Linear Models

Nelson Kyakutwika

Department of Mathematical Sciences,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc

December 2022

Cross-series dependencies are crucial in obtaining accurate forecasts when forecast-
ing a multivariate time series. Simultaneous Graphical Dynamic Linear Models
(SGDLMs) are Bayesian models that elegantly capture cross-series dependencies.
This study aims to forecast returns of a 40-dimensional time series of stock data
using SGDLMs. The SGDLM approach involves constructing a customised dy-
namic linear model (DLM) for each univariate time series. Every day, the DLMs
are recoupled using importance sampling and decoupled using mean-field varia-
tional Bayes. We summarise the standard theory on DLMs to set the foundation
for studying SGDLMs. We discuss the structure of SGDLMs in detail and give de-
tailed explanations of the proofs of the formulae involved. Our analyses are run on
a CPU-based computer; an illustration of the intensity of the computations is given.
We give an insight into the efficacy of the recoupling/decoupling techniques. Our
results suggest that SGDLMs forecast the stock data accurately and respond to mar-
ket gyrations nicely.
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Uittreksel

Bayesian Voorspelling van Aandeelopbrengste deur gebruik te maak
van Gelyktydige Grafiese Dinamiese Lineêre Modelle

(“Bayesian Forecasting of Stock Returns using Simultaneous Graphical Dynamic Linear Models”)

Nelson Kyakutwika

Departement Wiskuudige Wetenskappe,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc

Desember 2022

Kruisreeksafhanklikhede is van kardinale belang om akkurate voorspellings te ver-
kry wanneer ’n meervariant tydreeks voorspel word. Gelyktydige grafiese dina-
miese lineêre modelle (SGDLMs) is Bayesiaanse modelle wat kruisreeksafhanklik-
hede elegant vaslê. Hierdie studie het ten doel om opbrengste van ’n 40-dimensionele
tydreeks van voorraaddata met behulp van SGDLMs te voorspel. Die SGDLM-
benadering behels die konstruksie van ’n pasgemaakte dinamiese lineêre model
(DLM) vir elke eenvariant tydreeks. Elke dag word die DLM’s herkoppel met be-
hulp van belangrikheidsteekproefneming en ontkoppel met behulp van gemiddelde-
veld variasie Bayes. Ons som die standaardteorie oor DLM’s op om die grondslag
te lê vir die bestudering van SGDLM’e. Ons bespreek die struktuur van SGDLM’e
in detail en gee gedetailleerde verduidelikings van die bewyse van die betrokke
formules. Ons ontledings word op ’n SVE-gebaseerde rekenaar uitgevoer; ’n il-
lustrasie van die intensiteit van die berekeninge word gegee. Ons gee ’n insig in
die doeltreffendheid van die herkoppeling/ontkoppelingstegnieke. Ons resultate
dui daarop dat SGDLM’s die voorraaddata akkuraat voorspel en mooi reageer op
markwisselings.
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Chapter 1

Introduction

This chapter introduces our study by first giving the background, followed by the
problem statement, the aim and the objectives, the significance of the study, the
justification of the study, the methodology overview and, lastly, the thesis outline.

1.1 Background

This section gives a brief history about models used in univariate and multivariate
time series forecasting, daily stock data being the time series of interest.

Forecasting returns on investment in stocks is of paramount importance to stock
market investors. There are many models for forecasting these returns if the fo-
cus is on a single stock. These univariate models are easy to construct and have
been used by [25, 20, 33] to forecast stock prices for individual stocks. These mod-
els focus on a single stock without considering the impact of other stocks in the
market on the stock under study. For example, if interest is in stock A, forecasting
the prices of this stock is done without paying attention to changes in prices of the
other stocks that co-exist with A in the market.

In practice – in the stock market – the price of any stock partly depends on the
changes in the prices of the other stocks. It thus becomes unrealistic to say that,
if interest is in the performance of stock A over time, the prices of stock A should
be forecast in isolation without taking into consideration the changes in prices of
the stocks that co-exist with stock A. A change in the price of stock B can impact
the price of stock A, stock C, or any other stock in the market. So, for an investor
interested in stock A, the construction of a model that predicts the prices of stock
A need not be limited to the prices of this stock alone, but also the prices of all the
other stocks in the market since these prices impact that of stock A. In other words,

1



CHAPTER 1. INTRODUCTION 2

issues that cut across all the stocks should be considered while modelling indi-
vidual stocks. Therefore, modelling should be done at the individual stock level
and across all the stocks concurrently. The current research addresses the need for
capturing the inter-stock dependencies in multivariate forecasting of stock data,
Johannesburg Stock Exchange (JSE) stock returns being the data to which our ap-
proach is applied.

The challenge of including cross-series dependencies in the analysis calls for con-
struction of a multivariate model. Construction of multivariate financial time series
models, Bayesian or non-Bayesian, is not new. Many Bayesian multivariate time se-
ries models have been applied to financial data in the past, for example, Cholesky-
style and factor models (e.g., [2]), dynamic graphical models of precision matri-
ces (e.g., [4]), the standard Wishart dynamic linear model (WDLM) (e.g., [7] and
[33, Section 16.4]), and dynamic dependence network models (DDNMs) (e.g., [36]).
However, these models have shortcomings when applied to high-dimensional time
series, for example,

• DDNMs require that the modeller arranges the time series in a particular or-
der. How do you choose the most suitable ordering with 40 stocks? This
would call for looking at all possible orderings, which are 40!.

• Also, for Cholesky-style and factor models, ordering of the time series mat-
ters.

• The WDLM does not allow for different predictors for each univariate time
series.

In a recent study, [7] introduced more robust models, Simultaneous Graphical Dy-
namic Linear Models, that eradicate the shortcomings of the aforementioned models.
In their study, they used the SGDLM to forecast returns of a multivariate time se-
ries consisting of 400 stocks of the S&P 500 index. The building blocks of SGDLMs
are DLMs. In SGDLMs, the focus is on two things: customising and scaling up of
models. Attention is first put on building a distinct predictive model for each of
the univariate time series that exists in the multivariate system; this is what we call
customising. Then, the analysis is extended to deal with many univariate time se-
ries concurrently; we call this scaling up. At each time, the univariate models are
brought together to capture issues that cut across all series.
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1.2 Problem statement

In a multivariate time series, the focus should not only be on constructing distinct
predictive models for individual univariate time series, but also on the contem-
poraneous cross-series dependencies. Cross-series relationships in a multivariate
time series have a significant impact on the accuracy of predictive values of indi-
vidual series. In the stock market, dependency is when a change in the price of one
stock affects the price of another. These inter-stock dependencies which occur in
the stock market need inclusion in the forecasting model(s) to improve forecast ac-
curacy. SGDLMs are a Bayesian class of models introduced by [7] to, in addition to
predicting future values for individual univariate series, capture the multivariate
dependencies with the aim of improving forecast accuracy.

1.3 Aim and objectives of the study

1.3.1 Aim

The aim of this thesis is to forecast the returns of a multivariate financial time series
made up of 40 stocks, using the SGDLM.

1.3.2 Objectives

The objectives are:

1. To summarise the standard theory of DLMs and link it to SGDLMs.

2. To describe the structure of SGDLMs.

3. To outline the SGDLM algorithm.

4. To implement the SGDLM algorithm in Python, on a CPU-based local ma-
chine.

5. To assess whether the SGDLM forecasts the stock data accurately.

1.4 Justification of the study

Many Bayesian multivariate models, as mentioned in Section 1.1 with the old mod-
els, encounter difficulties when applied to high-dimensional time series. Models
becoming over-parameterised and the inability to scale up computationally, with
increasingly high dimensions, are some of the difficulties. SGDLMs are multivari-
ate time series models that are more parsimonious. However, not many studies
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have been conducted on these recently introduced models. Therefore, more re-
search is needed, especially in elucidating further the structure of SGDLMs and the
SGDLM algorithm. Capturing cross-series dependencies in high-dimensional time
series usually presents challenges in computing the big calculations involved, for
both the old models and the novel SGDLMs; this is the basis upon which [7] used
GPUs while introducing SGDLMs. Using the unconventional GPU-accelerated par-
allelisation greatly speeds up the computations in SGDLMs. Unlike in [7] where the
authors worked with 400 stocks, using the common CPU-based computers should
suffice when one has a relatively smaller number of time series, for example, the 40
stocks of the current study. There is therefore a need to investigate the feasibility of
using CPU-based computers in situations when the dimension of the multivariate
time series is smaller compared to that in [7].

1.5 Significance of the study

The details we have given about the structure of SGDLMs and those given in the
algorithm are additions to the standard theory about SGDLMs for researchers and
academics to follow up. Computing the filtering solution of the DLM analytically
is relevant theory that aids the understanding of DLMs. Our use of CPU-based
computers, though low-level compared to using GPU-based computers, provides
some insight into the complexity of the SGDLM computations.

1.6 Methodology overview

The SGDLM analysis is a canonical Bayesian analysis. The SGDLM strategy starts
with decoupled independent priors, for the state parameters and precisions, for
each of the 40 series on day t. Using these priors, forecasts of the returns of all stocks
on day t are obtained jointly. The independent priors are updated to decoupled
naive posteriors, series by series, and the product of the decoupled naive posteriors
gives the naive joint posterior. Importance sampling is used to obtain the exact
joint posterior from the naive joint posterior in a technique known as recoupling.
Mean-field variational Bayes (MFVB) is applied to the importance sample-based
posterior to give a product of the independent conjugate forms in their posterior
state; this is called decoupling and is done while minimising the Kullback-Leibler
divergence. The variational Bayes posteriors are evolved independently to give
independent priors for day t + 1. The procedure keeps repeating each day for the
entire forecasting period. The forecasting and recoupling steps are computationally
intensive – they both involve forming dozens of m × m matrices, and respectively
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involve computing inverses and determinants of m × m matrices dozens of times
(m is the number of stocks).

1.7 Thesis outline

This thesis consists of six chapters. In Chapter 2, we review the literature on
SGDLMs and identify the gaps upon which we build our research. Chapter 3
summarises the standard theory of dynamic linear models (DLMs) as presented,
mainly, by [33], while tailoring the summary in the direction of SGDLMs. In Chap-
ter 4, building on the work of [7], a detailed explanation of the structure of SGDLMs
is given together with the SGDLM algorithm. Chapter 5 implements the SGDLM
algorithm. In Chapter 5, we give details of how we implement the algorithm to en-
able interested researchers to follow up easily. We give the results of our SGDLM
analysis at the end of the chapter. Chapter 6 concludes the thesis and presents rec-
ommendations for further research. Appendices are given at the end of the thesis
to give extra information that is useful for our study.



Chapter 2

Literature Review

The purpose of this chapter is to give an overview of the research that has been
conducted on SGDLMs. We start with a brief history of DLMs (the progenitors of
SGDLMs) followed by previous research that is specific to SGLDMs. At the end
of the chapter, we wrap up with a summary of the focus of this thesis. At the
end of every subsection in Section 2.2, we mention the gap that the current study
addresses depending on what has been presented in that subsection.

2.1 Dynamic linear models

Dynamic linear models have a long history; pioneer knowledge about them dates
way back to the 1880s [20, Chapter 1]. In the 1960s, dynamic linear models were
used in the engineering field to control and monitor dynamic systems ([20, Chapter
1] and [32]). The use of dynamic linear models in time series modelling came into
the limelight in the 1970s [20, Chapter 1]. Since then, dynamic linear models have
gained traction for application in many areas, for example, finance, economics, en-
gineering, genetics, et cetera [20, Chapter 1]. The prominence of DLMs has been
largely due to their ability to handle computational difficulties associated with time
series by using Monte Carlo methods in a Bayesian approach.

Literature on DLMs has been published profusely over the years. The main refer-
ence for dynamic linear models is [33], but extensive theory and applications exist
in other references like [25, 20, 24, 28]. Computing software for DLMs has also been
widely published (e.g., [20, 22, 23]). Dynamic linear models are used in modelling
financial time series data (e.g., [15, 18, 34, 11] ). Typical financial applications of dy-
namic linear models (and extensions of the models) include forecasting returns on
investment in stocks and foreign currency (e.g., [2, 26, 7, 36]) and portfolio analysis
(e.g., [2, 37, 10]). Time series applications of dynamic linear models in other areas

6
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can be found in [34, 11, 19, 16, 12]. To date, DLMs remain an active area of research,
SGDLMs being one of the recent fascinating advancements.

2.2 Simultaneous graphical dynamic linear models

In this section, we summarise and synthesise some of the studies that have been
done on SGDLMs. In the literature, the top studies on these models have been
conducted by [7, 10, 31, 6, 35]. Therefore, our review will refer mainly to work
done in the aforementioned references. In this section, we review the literature
by reporting how the authors (i) described the structure of SGDLMs, (ii) applied
SGDLMs, and (iii) stated and implemented the SGDLM algorithm.

2.2.1 Structure of SGDLMs

While introducing SGDLMs, [7] gave the notation and the structural forms of SGDLMs,
starting from the definition of the stochastic observational variance DLM. In addi-
tion to this, [7] explained the structure of the SGDLM, and stated formulae for the
joint likelihood and the joint posterior. In another study, [35] derived the equa-
tions for the joint likelihood and the joint posterior. While reviewing the work in
[7] and [10], [31] dug deep into the challenges and opportunities presented by the
structure of SGDLMs. Among other things, [31] discussed dynamic dependence
network models (e.g., [36]), a special case of SGDLMs, where the order in which
you arrange the time series matters. It is difficult to scale up DDNMs to high di-
mensions, because, to work with m time series, one has to choose the most suitable
ordering of the series from the total number of orderings, which is m!. Whereas the
ordering of the series does not matter in SGDLMs, SGDLMs are far more computa-
tionally intensive than DDNMs.

Series-specific contemporaneous predictors (simultaneous parents) constitute part
of the structure of SGDLMs. The approach in which simultaneous parents are cho-
sen is thus critical. In [7], each stock is assigned 10 simultaneous parents which are
selected from the remaining 399 stocks by choosing those with the highest effect
sizes. The method of choosing simultaneous parents in [7] is such that, for a partic-
ular stock, simultaneous parents remain the same for the entire period of analysis.
The issue of using the same simultaneous parents for the entire period of the anal-
ysis is not realistic since the performance of stocks in the market is dynamic. So,
while working with empirical data, it is ideal to keep changing simultaneous par-
ents over time depending on the current data – this is something that needed to be
included in the first version of SGDLMs. In a later study, [10] introduced a more
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practical method of selecting simultaneous parents which was adopted by [31, 6].
In this method, they divided potential predictors of a particular stock, say, stock j,
into three categories: the core set, the up set, and the down set. The core set con-
tains predictors of stock j at time t, the up set contains core set candidates – stocks
that qualify to be promoted to the core set, and the down set contains stocks that
were previously in either the core set or the up set. The size of each of the three sets
is specified by the modeller. Stocks do not stay in these sets permanently, different
stocks keep moving from one set to another. A multivariate Wishart dynamic linear
model, which runs in parallel to SGDLMs, is used to keep refreshing the stocks in
the sets.

Whereas a combination of the studies above elucidates the general structure of
SGDLMs, none of those studies gives a detailed link from DLMs to SGDLMs.
The studies discussed above are largely SGDLMs-focused. Before understanding
SGDLMs, one needs to have a good general understanding of DLMs. Concepts
like model specification, discount factors, and the Kalman filter are central in un-
derstanding DLMs as well as SGDLMs. However, such concepts appear in the
literature on DLMs, which was written before the SGDLMs advancement. This
thesis addresses the need of linking DLMs to SGDLMs, by summarising the stan-
dard theory on DLMs while directing the summary towards SGDLMs.

2.2.2 Application of SGDLMs to data sets

We start with the study of [7] which analysed daily log-returns of 400 stocks of the
S&P 500 index and the index itself, from October 2000 to October 2013. The data
for the first 845 days was used as a training set to choose simultaneous parents for
each stock; the data for the next 522 days was also used as a training set to select
discount factors; and the data for the last 2,044 days was used to test the models
by forecasting returns on a daily basis. In both the training and test data sets, the
authors used 10,000 Monte Carlo samples for forecasting and joint posterior ap-
proximation. Analyses were done using three different methods: the full SGDLM,
the no recouple-decouple SGDLM, and the standard Wishart dynamic linear model. The
authors constructed prediction intervals to evaluate the resultant forecasts across
all the stocks and for a few selected stocks, for all the three methods. The full
SGDLM approach emerged as the most accurate, followed by the no recouple-
decouple SGDLM, and the WDLM came last. They also made plots of 60-day
moving averages of empirical returns for six selected stocks. They compared the
trend of the moving averages with trends obtained under the full SGDLM, the no
recouple-decouple SGDLM, and the WDLM. All the three models performed in a
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similar way and their trends were similar to trends of empirical returns. In another
plot, they plotted 60-day tracking moving averages of volatility (standard devia-
tion) of returns for the same (six) companies and compared them with volatilities
estimated by each of the three models. Volatilities of the full SGDLM tracked well
the empirical volatilities. The volatilities measured by the no recouple-decouple
SGDLM tracked well the empirical volatilities up to the start of the 2008 market
crash; thereafter, the model volatilities moved away from the empirical volatility
trend. The WDLM overestimated the volatilities before and after the market crash,
and it underestimated them during the market crash. In this study, the authors
evaluated the effectiveness of importance sampling using effective sample size and
that of mean-field variational Bayes using the entropy of the importance sample,
an approximation of Kullback-Leibler divergence.

In [10], the authors focused on portfolio investment decisions. This paper advanced
the SGDLM methodology of [7] by (i) implementing the more robust method of se-
lecting simultaneous parents that was mentioned in Section 2.2.1, and (ii) compar-
ing an entropy measure with the St. Louis Federal Reserve Bank Financial Stress
Index in the context of measuring market stress. The study used the same 400
stocks together with the S&P 500 index like [7]. Six investment strategies and two
models (the full SGDLM and the standard WDLM) were used. For each pair of a
model and a strategy, the investment analysis proceeds sequentially as follows: (i)
the observations yt−1 are used to update the model distributions at the market close
of day t − 1; (ii) the one-step ahead forecast distribution for yt is simulated or com-
puted, the appropriate optimisation rule is solved, and the investment weights are
adjusted to the optimised ones; (iii) observations at time t are taken and the realised
returns are calculated, and the analysis proceeds to day t + 1. The best investment
strategy under the SGDLM performed far better than the best investment strategy
under the standard WDLM. For the best investment strategy under the SGDLM, an
investment of $1,000 grew to $3,862 over 11 years, whereas an investment of $1,000
grew to $1,168 over the same period with the best investment strategy under the
standard WDLM – the WDLM is constrained by the high dimensions. A passive
investment in the S&P 500 grew from $1,000 to $1,996 over the same period. Unlike
[7], [10] compared the scaled entropy of the importance sample with the standard
St. Louis Fed and Kansas City Fed Indices. The entropy of an importance sample
is a measure of financial market stress. In comparison with traditional measures
of financial market stress, the scaled entropy led both the standard market stress
index measure (the St. Louis Fed index) and the Kansas City Fed index.

In a later study, [31] overviewed the SGDLM methodology with a focus on the
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recouple-decouple strategy. He elucidated the strategy using diagrammatic illus-
trations. Using the same number of stocks like [7, 10], he measured the effectiveness
of the importance sample – the recoupling technique – using the entropy of the im-
portance sample. Like [10], [31] compared this entropy (in its capacity as a measure
of financial market stress) with the St. Louis Fed Index. Using cumulative density
function plots of the realised one-step ahead forecast errors, he demonstrated the
danger associated with ignoring recoupling – ignoring the determinant term and
you handle SGDLMs as DDNMs where the determinant term is equal to 1.

Lastly, unlike the previous authors, [35] applied SGDLMs to economic time series.
They forecast the United States’ microeconomic time series. However, we will not
detail this application given that the focus of our study is financial time series, stock
data in particular.

From the summaries above, we notice that the authors of [7, 10, 31] applied SGDLMs
to the same data set, the 400 S&P 500 stocks, to draw all the conclusions. Much as
[35] applies the models to a different data set, this is not a financial time series data
set. It is therefore necessary to apply SGDLMs to another stock data set.

2.2.3 Algorithm and its implementation

Algorithm

In the introductory study to SGDLMs, [7] gave a quite detailed (SGDLM) algorithm
in six steps, together with a summary of the six steps. In later studies, [10, 31, 6] just
summarise the algorithm. However, none of these authors derived the formulae on
which the algorithm is premised. In [8, Appendix 5.B], the thesis where [7] was ex-
tracted, the formulae for the mean-field variational approximation were derived.
In [35], an alternative derivation of the mean-field variational approximation for-
mulae is given as well as the derivation of the joint posterior formula. A proof of
the positive definiteness of the covariance matrix of the joint predictive distribution
is also given in [35, Appendix A].

Whereas the algorithm is outlined by some authors as mentioned above, none of
those authors gives sufficient detail for someone (especially a new person in the
field) to understand the algorithm easily. In this study, following [7], we give a
more detailed algorithm to make it suitable for almost direct implementation. Ad-
ditionally, we give more detailed explanations of the derivation of the joint poste-
rior formula and that of the mean-field variational Bayes formulae.
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Implementation

SGDLMs, like any other multivariate models, are computationally intensive. But,
for SGDLMs, the sequential forecasting, filtering, and evolution are parallelisable.
Since the computation of the predictive distributions, updating to the naive pos-
teriors, and simulation of the naive posteriors are done at the level of the decou-
pled univariate series, the entire computation strategy can exploit GPU computing
where there is access to several cores. For this reason, [7, 10, 31, 35, 6] use the GPU-
accelerated approach to do computations.

In [7], C++/CUDA programming (on a local machine) was used to speed up com-
putations via GPU parallelisation. In a later study, [6] used the TensorFlow library
in combination with Google GPUs to do the GPU-accelerated computations. The
authors of [7] developed the R package “rSGDLM: An R Package for Simultane-
ous Graphical DLMs [9]” that works in conjunction with GPUs. The use of GPUs
by these authors is realistic given that [7, 10, 31] worked with 400 stocks and [6]
worked with 487 stocks.

Much as GPUs significantly speed up computations, none of the authors above
used a standard laptop or desktop computer that uses CPU hardware. In the cur-
rent study, we use a standard desktop computer to explore the relative slowness
that one might encounter. This approach to computation is useful for two reasons:
(i) GPU-based computers are not as common as CUP-based ones (so, not all re-
searchers can be in position to use GPU computing), and (ii) in situations where
one has to apply SGDLMs to a relatively lower number of time series, CPU-based
computers should suffice. Instead of using the R package or the TensorFlow library
(e.g., [6]), in this study, we implement the algorithm from scratch in Python. We
highly optimise the code to ensure that the runtime is reduced significantly.

2.3 Our research

To wrap up this chapter, we restate, in short form, the gaps that our research ad-
dresses, as highlighted in the previous sections of this chapter. In the current study,
we summarise DLMs while directing the summary in the direction of SGDLMs. We
present the algorithm of the first version of the SGDLM in detail and explain fur-
ther the derivations of the formula for the joint posterior and the formulae used in
the mean-field variational approximation. We apply the SGDLM to forecast daily
log-returns of a multivariate financial time series consisting of 40 JSE stocks and
assess the truth associated with the forecasts. We do extra analyses, for example, a
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comparison between the forecasts of the DLM and those of the SGDLM for a par-
ticular stock, and the effect of the number of simultaneous on forecast accuracy. We
implement the code in Python and run it on a local machine with CPU hardware.



Chapter 3

Dynamic Linear Models

This chapter starts with an overview of Bayesian analysis and the Bayes’ rule. Uni-
variate Gaussian state space models are then presented, followed by dynamic lin-
ear models – a special case of the former. Some ideas on model specification are
discussed. An analytic solution to the filtering/updating problem in dynamic lin-
ear models is given and related to the Kalman filter. The Kalman filter is given in
three different scenarios. Standard notation from [33] dominates throughout the
chapter.

3.1 A primer on Bayesian analysis

A Bayesian analysis is a statistical analysis that combines prior information about a
population parameter with evidence from the observed data to guide the statistical
inference process. In Bayesian analysis, the parameters, constant or stochastic, are
treated as random variables, and full probability distributions are postulated for
them. Using probability distributions, summaries of means, variances, and con-
fidence intervals can be given. Bayesian analysis follows the Bayes’ rule, the rule
combines prior information with the observed data to get posterior information in
the form of a distribution called the posterior distribution.

The Bayesian approach is different from the more conventional frequentist ap-
proach. In the latter, population parameters are considered unknown but fixed
and estimated from samples. Frequentist statistics provides point estimates of the
population parameters together with their standard errors and confidence inter-
vals based on sampling but the sample probability distributions are rarely known,
although, in most cases, they are assumed to be normal.

13
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3.1.1 Bayes’ rule/theorem

Bayes’ rule forms the foundation of Bayesian analysis. The rule has four parts as
given below1.

• Posterior density function. This is the density of the parameter(s) after ob-
serving the data. It is simply referred to as the posterior2.

• Prior density function. This is the density of the parameter(s) before observ-
ing the data, simply called the prior.

• Likelihood function. This is the conditional (conditioned on the parameter(s))
density of the observed data. It is simply called the likelihood.

• Predictive density function of the observed data under any circumstances.
This is also referred to as the evidence.

The four are related by

Posterior =
Likelihood × Prior

Evidence
, (3.1.1)

which is usually written as

Posterior ∝ Likelihood × Prior.

The predictive density is a normalising constant; it normalises the numerator of
Equation (3.1.1) to make the posterior a true density function. Unfortunately, with
most models, the explicit formulae for these densities are difficult to deal with an-
alytically. So, Monte Carlo methods have to be used to approximate the densities
through simulation.

Let yt be the scalar value of a time series at time t and θt be the vector of parameters
at that time. The joint density of yt and θt, p(yt,θt), can be expressed in two ways:

p(yt,θt) = p(yt|θt)p(θt) (3.1.2)

and

p(yt,θt) = p(θt|yt)p(yt) (3.1.3)

1In the Bayesian approach, the rule is expressed in terms of density functions; in the frequentist
approach, the rule is expressed in terms of probabilities.

2In the literature, the word posterior may be used to mean posterior density or posterior distribu-
tion. So, the reader needs to figure out whether by writing posterior, the writer is referring to density
or distribution. A similar usage applies to prior. We also follow this convention.
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From Equations (3.1.2) and (3.1.3), p(yt|θt)p(θt) = p(θt|yt)p(yt). Then

p(θt|yt) =
p(yt|θt)p(θt)

p(yt)
, (3.1.4)

where p(yt) =
∫

p(yt|θt)p(θt)dθ, is the Bayes’ rule.

3.1.2 Steps of a Bayesian analysis

Typically, a Bayesian analysis goes through the following steps.

1. Today’s prior is obtained from yesterday’s posterior.

2. A prediction of the value of the time series is made based on today’s prior.

3. Today’s data is observed.

4. Today’s prior is combined with today’s data to update the prior into the pos-
terior.

5. Loop into step 1 (i.e. obtain tomorrow’s prior) by evolving the posterior one
day forward.

3.2 State space models

State space models are dynamic models that deal with dynamic time series prob-
lems which involve unobservable parameters that describe the evolution of the
state of the underlying time series. State space models allow time-varying param-
eters and hence account for temporal nature of data. State space models use the
Bayesian approach.

Definition 3.2.1. For time t = 1, 2, . . . T, the Gaussian state space model for a univariate
time series yt is defined by two equations,

Observation equation: yt = h(θt) + νt, νt ∼ N[0, vt], (3.2.1)

State equation: θt = g(θt−1) +ωt, ωt ∼ N[0,Wt], (3.2.2)

Initial information: (θ0|D0) ∼ N[m0,C0],

where

• yt is a scalar value called the observation of the time series at time t and is a
Gaussian process;

• θt = (θ1t, . . . , θpt)T is a p × 1 Gaussian vector of parameters at time t, known
as the state vector;
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• νt, a zero mean scalar with variance vt, is called the observational error; and

• ωt, a p× 1 zero mean vector with covariance matrix Wt, is called the evolution
error.

Equations (3.2.1) and (3.2.2) are respectively referred to as the observation equation
and the state equation/evolution equation/system equation. In the most general uni-
variate state space model, the distributions involved do not necessarily have to be
Gaussian, but Definition 3.2.1 has been tailored with the condition of Gaussianity
to suit the models being studied in this thesis. The state vector θt is an unobserv-
able variable which represents the inherent properties of the time series. The state
is a representation of quantitative information that summarises the history of yt

and is enough to predict the future of yt. At time t, the information set available,
Dt, is defined by

Dt = {yt,Dt−1}.

In other words, Dt is the set containing all past values of the time series up to and
including yt.

For t = 1, 2, . . ., a state space model satisfies the following assumptions [20, Section
2.3].

1. θt is a first-order Markov chain, that is, θt depends on θt−1 only but indepen-
dent of all state vectors before time t − 1.

2. Given θt, yt depends on θt only, and all the yt terms are independent.

Given the two assumptions above, a state space model is completely specified if we
have the distribution of θ0 and the densities p(yt|θt) and p(θt|θt−1) for t = 1, 2, . . ..

3.2.1 Bayesian analysis scheme in state space models

p(yt|Dt−1)
Predictive densityxPrediction

p(θt−1|Dt−1)
Evolution−−−−−→ p(θt|Dt−1)

Updating−−−−−→ p(θt|Dt)
Yesterday’s posterior Today’s prior Today’s posterior

Figure 3.1: Schematic diagram showing Bayesian analysis steps in state space models.
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Bayesian inference in state space models proceeds via three main steps: evolution,
prediction, and updating. A typical Bayesian inference starts with the posterior
distribution at time t − 1. Using Equation (3.2.2), the posterior at time t − 1 is
evolved into the prior for the next day. The prior is then used to make the prediction
of the time series at time t. Finally, the prior p(θt|Dt−1), the predictive density
p(yt|Dt−1), and the likelihood p(yt|θt) are substituted in Bayes’ theorem to update
to the posterior p(θt|Dt). Explicit equations that move through the three steps exist
and are given in Proposition 3.2.2.

State updating/filtering

State vector updating, also referred to as filtering, is the computing of the posterior
density p(θt|Dt). This density helps in obtaining the value of the state vector at
time t based on observations up to time t. The posterior at time t is used to evolve
to time t + 1 before a forecast of the time series at time t + 1, yt+1, is obtained.

As stated by [20, Section 2.7.1], given p(θ0|D0), we can recursively compute, for
t = 1, 2, . . .

1. The prior density p(θt|Dt−1) using the posterior density p(θt−1|Dt−1) and
the conditional density p(θt|θt−1) as given by the evolution equation of the
model.

2. The one-step ahead predictive density for the value of the time series at time
t. This is the density p(yt|Dt−1).

3. The posterior density p(θt|Dt) using Bayes’ rule.

These recursions are stated more formally in the following proposition.

Proposition 3.2.2 (Filtering/updating recursions). For the state space model defined
in Definition 3.2.1, the following statements hold.

(i) The prior is computed from the posterior p(θt−1|Dt−1) according to

p(θt|Dt−1) =
∫

p(θt|θt−1)p(θt−1|Dt−1)dθt−1. (3.2.3)

(ii) The one-step ahead predictive density for the observation is computed from the prior
as

p(yt|Dt−1) =
∫

p(yt|θt)p(θt|Dt−1)dθt. (3.2.4)
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(iii) The posterior (filtered density) is computed using

p(θt|Dt) =
p(θt|Dt−1)p(yt|θt)

p(yt|Dt−1)
. (3.2.5)

Proof. First notice that, for any two random variables X and Y with joint density
p(x, y),

(a) the marginal densities of X and Y are respectively given by

p(x) =
∫

p(x, y)dy and p(y) =
∫

p(x, y)dx,

(b) the conditional densities p(x|y) and p(y|x) are given by

p(x|y) = p(x, y)
p(y)

and p(y|x) = p(x, y)
p(x)

.

Therefore, (i) is proved by writing

p(θt|Dt−1) =
∫

p(θt,θt−1|Dt−1)dθt−1

=
∫

p(θt|θt−1,Dt−1)p(θt−1|Dt−1)dθt−1

Due to the Markovian nature of θt, given θt−1, θt is independent of Dt−1. Conse-
quently,

p(θt|Dt−1) =
∫

p(θt|θt−1)p(θt−1|Dt−1)dθt−1.

To prove (ii), notice that

p(yt|Dt−1) =
∫

p(yt,θt|Dt−1)dθt

=
∫

p(yt|θt,Dt−1)p(θt|Dt−1)dθt

As part of the definition of a state space model, given θt, yt is independent of Dt−1.
Therefore,

p(yt|Dt−1) =
∫

p(yt|θt)p(θt|Dt−1)dθt.

Part (iii) follows trivially from Bayes’ rule, that is, from

posterior =
prior × likelihood

evidence
,

p(θt|Dt) =
p(θt|Dt−1)p(yt|θt)

p(yt|Dt−1)
.

In the next section, a special case – and the most important form – of state space
models called dynamic linear models is introduced.
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3.3 Dynamic linear models

3.3.1 Introduction

Dynamic linear models, also called Gaussian linear state space models, are state space
models that are conditionally linear and conditionally Gaussian – they are a special
form of state space models, being special in the sense of linearity and Gaussianity.
For DLMs, the functions h(θt) and g(θt−1) in Definition 3.2.1 are linear in θt and
θt−1 respectively, and all distributions involved are Gaussian. They are mainly for
short-term forecasting, monitoring, and intervention analysis.

Definition 3.3.1. The general DLM for a univariate time series yt is defined by

Observation equation: yt = FT
t θt + νt, νt ∼ N[0, vt] (3.3.1)

State equation: θt = Gtθt−1 +ωt, ωt ∼ N[0, Wt], (3.3.2)

Initial information: (θ0|D0) ∼ N[m0,C0],

where t = 1, 2, . . . , T.

• yt is the observation at time t;

• θt = (θ1t, . . . , θpt)T is the state vector at time t;

• FT
t (transpose of Ft) is a 1 × p vector of known constants at time t;

• Gt is a p × p matrix of known coefficients, known as the evolution matrix, or
the state matrix, or the system matrix, or the transition matrix;

• vt, the variance of observation error νt, is known as the observational variance;
and

• Wt, the p × p covariance matrix of evolution error ωt, is called the evolution
variance.

In the simplest case, the moments m0 and C0 as well as the sequences of the mo-
ments vt and Wt, for all t, are known. However, as discussed in Sections 3.3.4, 3.3.5,
and 3.3.6, vt and Wt may be unknown.

The DLM above is also occasionally represented as

(yt|θt) ∼ N[FT
t θt, vt],

(θt|θt−1) ∼ N[Gtθt−1, Wt],

(θ0|D0) ∼ N[m0,C0].
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The sequences {νt} and {ωt} are assumed to be independent internally and mutu-
ally. That is Cov[νt, νs] = Cov[ωt,ωs] = 0 ∀ t ̸= s and Cov[νt,ωs] = 0 ∀ t and s.
They are also independent of the initial information (θ0|D0). In most cases, Ft

and Gt are time-invariant, that is Ft = F and Gt = G; this is the case in the cur-
rent study. Specification of Ft and Gt in dynamic linear models depends on the
type of the DLM being constructed. Details of their choice, together with those for
the choice of vt and Wt, will be discussed later in this chapter. The state vector
θt evolves via a linear, Gaussian, first-order Markov evolution equation. Defini-
tion 3.3.1 follows directly from Definition 3.2.1 by writing the functions h(θt) and
g(θt−1) explicitly.

3.3.2 Local-level DLM

In this section, we give the mathematical structure of the simplest and most impor-
tant DLM. This is the most widely used dynamic linear model in financial studies.
Other examples of dynamic linear models are discussed in [24, Section 3.5].

Definition 3.3.2. The local-level model or the random walk plus noise model is a univari-
ate, uniparametric DLM defined, for each time t ≥ 1, by

Observation equation: yt = θt + νt, νt ∼ N[0, vt],

State equation: θt = θt−1 + ωt, ωt ∼ N[0, Wt],

Initial information: (θ0|D0) ∼ N[m0, C0],

where: yt is the observation at time t; θt is the only model parameter, referred to as,
level of the series at time t; νt is the observational error; ωt is the evolution error; vt is
the observational variance; and Wt is the evolution variance. The values of m0, C0, vt,
and Wt are known.

The terms yt, θt, νt, ωt, vt, and Wt are all scalars. Again, the sequences {νt} and
{ωt} are mutually and internally independent normal random variables, and are
independent of the initial information (θ0|D0). The regression vector Ft and the
system matrix Gt are given by

Ft = 1 and Gt = 1.

In other words, in this model, Ft and Gt are also scalars and both equal to unit.
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3.3.3 Kalman filter for known vt and Wt

We start this section by evaluating the integrals in Proposition 3.2.2 for the local-
level DLM – this solves the filtering problem for the local-level DLM. This evalua-
tion is an insight unique to this thesis; it is not found in the literature the way we
have presented it. Afterwards, we state the Kalman filter – an equivalent way of
solving the filtering problem for DLMs. Throughout this section, the observational
variance vt and the evolution variance Wt are assumed to be known.

Analytic solution to the filtering problem for the local-level model

We evaluate the integrates in Equations (3.2.3), (3.2.4), and (3.2.5), for the local-
level model. The limits move from −∞ to +∞ for all integrals since R is the sup-
port for the normal distribution. All quantities involved are scalars.

The integral for the prior. We have the distribution (θt|θt−1) ∼ N[θt−1, Wt] from
the state equation and the distribution (θt−1|Dt−1) ∼ N[mt−1, Ct−1] from the time
t − 1 posterior. The moments Wt, mt−1, and Ct−1, as well as the observational vari-
ance vt, are assumed to be known. For the local-level model, Equation (3.2.3) is
written as

p(θt|Dt−1) =
∫

R
p(θt|θt−1)p(θt−1|Dt−1)dθt−1

=
∫ 1√

2πWt
exp

{
− 1

2

(
θt − θt−1

)2

Wt

}
1√

2πCt−1
exp

{
− 1

2

(
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)2

Ct−1

}
dθt−1

=
1√

(2π)2WtCt−1

∫
exp

{
− 1

2

(
θ2

t − 2θtθt−1 + θ2
t−1

)
Wt

}
×

exp

{
− 1

2

(
θ2

t−1 − 2θt−1mt−1 + m2
t−1

)
Ct−1

}
dθt−1

p(θt|Dt−1) =
1√

(2π)2WtCt−1

∫
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(( 1
Wt

+
1
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)
θ2

t−1 − 2
( θt

Wt
+
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)
θt−1+

θ2
t

Wt
+

m2
t−1
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)}
dθt−1 (3.3.3)

Equation (3.3.3) simplifies to (see Appendix B for details)

p(θt|Dt−1) =
1√

2πRt
exp

{
− 1

2 (θt − mt−1)
2

Rt

}
, (3.3.4)



CHAPTER 3. DYNAMIC LINEAR MODELS 22

where Rt = Ct−1 + Wt. Equation (3.3.4) is the density of the normal distribution
with mean mt−1 and variance Rt. Therefore, we can write

(θt|Dt−1) ∼ N[at, Rt],

where at = mt−1 and Rt = Ct−1 + Wt. Therefore, the prior distribution is Gaussian
with at = mt−1 as the first moment and Rt = Ct−1 + Wt as the second moment.

The integral for the predictive density. The observation equation gives the distri-
bution (yt|θt) ∼ N[θt, vt]. We have just proved that (θt|Dt−1) ∼ N[at, Rt]. So, for
the local-level model, we can write Equation (3.2.4) as

p(yt|Dt−1) =
∫

R
p(yt|θt)p(θt|Dt−1)dθt

=
∫ 1√

2πvt
exp

{
− 1

2

(
yt − θt

)2

vt

}
1√

2πRt
exp

{
− 1

2

(
θt − mt−1

)2

Rt

}
dθt

=
1√

(2π)2vtRt

∫
exp

{
− 1

2

(
y2

t − 2ytθt + θ2
t
)

vt

}
×

exp

{
− 1

2

(
θ2

t − 2θtmt−1 + m2
t−1

)
Rt−1

}
dθt

=
1√

(2π)2vtRt

∫
exp

{
− 1

2

(( 1
vt

+
1
Rt

)
θ2

t − 2
(yt

vt
+

mt−1

Rt

)
θt+

y2
t

vt
+

m2
t−1

Rt

)}
dθt (3.3.5)

In a way similar to that of the integral of the prior (see Appendix B for details),
Equation (3.3.5) simplifies to

p(yt|Dt−1) =
1√
2πqt

exp

{
− 1

2 (yt − mt−1)
2

qt

}
,

where qt = Rt + vt. Thus, we get the density of the normal distribution with mean
mt−1 and variance qt. This means that the one-step ahead predictive distribution is
a normal distribution with mean mt−1 and variance qt = Rt + vt. So, we can write

(yt|Dt−1) ∼ N[ ft, qt],

where ft = mt−1 = at and qt = Rt + vt.
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The posterior via Bayes’ rule. Equation (3.2.5) is the Bayes’ rule. For the local-level
model, it is written as

p(θt|Dt) =
p(yt|θt)p(θt|Dt−1)

p(yt|Dt−1)
.

Note that, en route to the answer we make use of qt = Rt + vt, which implies that
1 − Rtq−1

t = vtq−1
t and 1 − vtq−1

t = Rtq−1
t , and et = yt − ft = yt − mt−1. The scalar

et is called the forecast error, the difference between the observation and the forecast
made. Using the results from the two integrals above, we write

p(θt|Dt) =

1√
2πvt

exp

{
− 1

2

(
yt−θt

)2

vt

}
1√

2πRt
exp

{
− 1

2

(
θt−mt−1

)2

Rt

}

1√
2πqt

exp

{
− 1

2

(
yt−mt−1

)2

qt

}

=
1√

2πRtvtq−1
t

exp

{
− 1

2

(y2
t − 2θtyt + θ2

t
vt

+
θ2

t − 2θtmt−1 + m2
t−1

Rt
−

(y2
t − 2ytmt−1 + m2

t−1)

qt

)}
(3.3.6)

Equation (3.3.6) can be simplified to give (Appendix B gives details)

p(θt|Dt) =
1√

2πCt
exp

{
− 1

2

(
θt − mt

)2

Ct

}
,

where mt = mt−1 + Rtq−1
t et and Ct = Rtvtq−1

t . Thus, the posterior is a normal
distribution with mean mt and variance Ct. We can therefore write

(θt|Dt) ∼ N[mt, Ct],

with
mt = mt−1 + Atet and Ct = Atvt = Rt − A2

t qt,

where
et = yt − ft and At = Rtq−1

t .

In DLMs, the filtering problem is solved using the Kalman filter. The Kalman filter
is the algorithm used to evolve, forecast, and update while using dynamic linear
models. It gives a summary of all the distributions encountered in the integrals
above. It also gives formulae for moving from the posterior p(θt−1|Dt−1) to the
posterior p(θt|Dt) just the way we have done by integration. In DLMs, computing
the integrals above explicitly is equivalent to simply applying the Kalman filter.
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Theorem 3.3.3 (Kalman filter for the local-level model). In the local-level DLM of
Definition 3.3.2, the initial information, the prior distribution, the one-step ahead predictive
distribution, and the posterior distribution are, for each t ≥ 1, given by

(a) Initial information (at time t − 1):

(θ0|D0) ∼ N[m0, C0],

for known m0 and C0.

(b) Prior distribution at time t:

(θt|Dt−1) ∼ N[at, Rt],

where at = mt−1 and Rt = Ct−1 + Wt.

(c) One-step ahead predictive distribution at time t:

(yt|Dt−1) ∼ N[ ft, qt],

where ft = at and qt = Rt + vt.

(d) Posterior distribution at time t:

(θt|Dt) ∼ N[mt, Ct],

where
mt = mt−1 + Atet, Ct = Rt − A2

t qt

and

At =
Rt

qt
, et = yt − ft.

In the next section, we give the statement of the Kalman filter for the general uni-
variate dynamic linear model for known vt and Wt and give its proof.

Theorem 3.3.4 (Kalman filter for the general univariate DLM). In the univariate
dynamic linear model of Definition 3.3.1, the initial information, the prior distribution, the
one-step ahead predictive distribution, and the posterior distribution are, for each t ≥ 1,
given by

(a) Initial information (at time t − 1):

(θ0|D0) ∼ N[m0,C0],

for known mean m0 and covariance matrix C0.
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(b) Prior distribution at time t:

(θt|Dt−1) ∼ N[at,Rt],

where
at = Gtmt−1 and Rt = GtCt−1G

T
t +Wt.

(c) One-step ahead predictive distribution at time t:

(yt|Dt−1) ∼ N[ ft, qt],

where
ft = F T

t at and qt = F T
t RtFt + vt.

(d) Posterior distribution at time t:

(θt|Dt) ∼ N[mt,Ct],

where
mt = at +Atet and Ct = Rt −AtqtA

T
t ,

with
At =

RtFt

qt
and et = yt − ft.

Proof. The proofs of (b) and (c) proceed by induction, whereas that of (d) is obtained
from Bayes’ rule. To prove (b), start by assuming the validity of the distribution of
(a), that is,

(θ0|D0) ∼ N[m0,C0]. (3.3.7)

We initialise time at t − 1 and write Equation (3.3.7) as

(θt−1|Dt−1) ∼ N[mt−1,Ct−1].

Note that, θt is the sum of Gtθt−1 and ωt. By the first property of the multivariate
normal distribution in Appendix A, Gtθt−1 follows the normal distribution. Thus,
θt, being a sum of two independent normal quantities Gtθt−1 and ωt, is itself nor-
mal. It thus suffices to compute the mean and the variance of (θt|Dt−1).
The mean at is given by

at = E[θt|Dt−1]

= E[(Gtθt−1 +ωt)|Dt−1]

= E[Gtθt−1|Dt−1] + E[ωt] (ωt does not depend on Dt−1)

= GtE[θt−1|Dt−1]

= Gtmt−1



CHAPTER 3. DYNAMIC LINEAR MODELS 26

and the variance Rt by

Rt = V[θt|Dt−1]

= V[(Gtθt−1 +ωt)|Dt−1]

= V[Gtθt−1|Dt−1] + V[ωt] ( since θt−1 and ωt are independent)

= GtV[θt−1|Dt−1]G
T
t +Wt

= GtCt−1G
T
t +Wt.

To prove (c), notice that, yt is a sum of two independent normal quantities F T
t θt

and νt, so is itself normal. It then suffices to compute the moments.
The mean ft is given by

ft = E[yt|Dt−1]

= E[(F T
t θt + νt)|Dt−1]

= E[F T
t θt|Dt−1] + E[νt] (νt does not depent on Dt−1)

= F T
t E[θt|Dt−1]

= F T
t at

and the variance qt by

qt = V[yt|Dt−1]

= V[(F T
t θt + νt)|Dt−1]

= V[F T
t θt|Dt−1] + V[νt] (since θt and νt are independent)

= F T
t V[θt|Dt−1]Ft + vt

= F T
t RtFt + vt.

To prove (d), first notice that, the observation equation provides the probability
density function

p(yt|θt) ∝ exp
{
− (yt −F T

t θt)
Tv−1

t (yt −F T
t θt)/2

}
.

Also, the conditional distribution (θt|Dt−1) has density

p(θt|Dt−1) ∝ exp
{
− (θt − at)

TR−1
t (θt − at)/2

}
.

From Bayes’ rule, the posterior is then given by

p(θt|Dt) ∝ p(θt|Dt−1)p(yt|θt)

∝ exp
{
− (θt − at)

TR−1
t (θt − at)/2 − (yt −F T

t θt)
Tv−1

t (yt −F T
t θt)/2

}
.
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We concentrate on p(θt|Dt) as a function of θt only and take all multiplicative fac-
tors as constants. We take natural logarithm on both sides and multiply by −2. For
constants K1 and K2, we get

−2 ln p(θt|Dt) = (θt − at)
TR−1

t (θt − at) + (yt −F T
t θt)

Tv−1
t (yt −F T

t θt) + K1

= (θT
t R

−1
t − aT

t R
−1
t )(θt − at) + (y2

t − ytF
T
t θt − ytθ

T
t Ft + θT

t FtF
T
t θt)v−1

t + K1

= θT
t R

−1
t θt − θT

t R
−1
t at − aT

t R
−1
t θt + aT

t R
−1
t at + y2

t v−1
t − ytF

T
t θtv−1

t −
ytθ

T
t Ftv−1

t + θT
t FtF

T
t θtv−1

t + K1

= θT
t (R

−1
t +FtF

T
t v−1

t )θt − θT
t R

−1
t at − aT

t R
−1
t θt − ytF

T
t θtv−1

t −
ytθ

T
t Ftv−1

t + K2.

Notice that, because the products aT
t R

−1
t θt and F T

t θt yield scalars,

(i) F T
t θt = (F T

t θt)T = θTFt,

(ii) aT
t R

−1
t θt = (aT

t R
−1
t θt)T =

(
(aT

t R
−1
t )θt

)T
= θT

t (a
T
t R

−1
t )T = θT

t (R
−1
t )Tat =

θT
t (R

T
t )

−1at = θT
t R

−1
t at.

RT
t = Rt because Rt is a covariance matrix so it is symmetric.

Therefore,

−2 ln p(θt|Dt) = θT
t (R

−1
t +FtF

T
t v−1

t )θt − 2θT
t R

−1
t at − 2θT

t Ftytv−1
t + K2

= θT
t (R

−1
t +FtF

T
t v−1

t )θt − 2θT
t (R

−1
t at +Ftytv−1

t ) + K2. (3.3.8)

Let us relate the expressions R−1
t +FtF

T
t v−1

t and R−1
t at +Ftytv−1

t to the statement
of the theorem. Let us first show that, given (θt|Dt) ∼ N[mt,Ct] (as in the theorem
statement), C−1

t = R−1
t + FtF

T
t v−1

t and C−1
t mt = R−1

t at + Ftytv−1
t . To show the

former, we do the following. From At = RtFtq−1
t and Ct = Rt −AtqtA

T
t (which

implies that Rt = Ct +AtqtA
T
t ), we get

At = (Ct +AtqtA
T
t )F

T
t q−1

t

= CtFtq−1
t +AtA

T
t Ft.

This leads to

At(1 −AT
t Ft) = CtFtq−1

t ,

which implies

At = (1 −AT
t Ft)

−1CtFtq−1
t . (3.3.9)
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From At = RtFtq−1
t , we have RtFt = Atqt. Using this result, qt = F T

t RtFt + vt

gives qt = F T
t Atqt + vt, which implies qt(1 −F T

t At) = vt, which implies

qtv−1
t = (I −F T

t At)
−1. (3.3.10)

Substitute Equation (3.3.10) in Equation (3.3.9) to get

At = qtv−1
t CtFtq−1

t

= CtFtv−1
t . (3.3.11)

From Ct = Rt −AtqtA
T
t and Atqt = RtFt, we get

Ct = Rt −RtFtA
T
t

= Rt(I −FtA
T
t ). (3.3.12)

From Equation (3.3.11),

AT
t = (CtFtv−1

t )T

= F T
t CT

t v−1
t . (3.3.13)

Substituting Equation (3.3.13) in Equation (3.3.12) followed by subsequent manip-
ulation gives

Ct = Rt(I −FtF
T
t CT

t v−1
t )

Ct = Rt − v−1
t RtFtF

T
t Ct (Ct is symmetric)

I = RtC
−1
t −RtFtF

T
t v−1

t

I = Rt(C
T
t −FtF

T
t v−1

t )

C−1
t = R−1

t +FtF
T
t v−1

t .

To show that C−1
t mt = R−1

t at + Ftytv−1
t , first notice that from mt = at +Atet,

et = yt − ft, and At = CtFtv−1
t . We then obtain

mt = at +CtFtv−1
t (yt − ft),

which implies

C−1
t mt = C−1

t at +Ftytv−1
t −Ftv−1

t ft

= C−1
t at −FtF

T
t atv−1

t +Ftytv−1
t

= (C−1
t −FtF

T
t v−1

t )at +Ftytv−1
t

= R−1
t at +Ftytv−1

t .



CHAPTER 3. DYNAMIC LINEAR MODELS 29

Thus, Equation (3.3.8) can be written as

−2 ln p(θt|Dt) = θT
t C

−1
t θt − 2θT

t C
−1
t mt + K2

= θT
t C

−1
t θt − θT

t C
−1
t mt − θT

t C
−1
t mt + K2

= θT
t C

−1
t θt − θT

t C
−1
t mt −mT

t C
−1
t θt + K2

= θT
t C

−1
t θt − θT

t C
−1
t mt −mT

t C
−1
t θt +mT

t C
−1
t mt −mT

t C
−1
t mt + K2

= (θT
t −mT

t )C
−1
t (θt −mt) + K3

= (θt −mt)
TC−1

t (θt −mt) + K3 (3.3.14)

Exponentiation of Equation (3.3.14) gives

p(θt|Dt) ∝ exp
{
− (θt −mt)

TC−1
t (θt −mt)/2

}
,

such that
(θt|Dt) ∼ N[mt,Ct],

where mt and Ct are as defined in the theorem statement.

3.3.4 Specification of the evolution variance Wt using discount factors

Unlike Section 3.3.3 where Wt has been assumed known, in a situation where Wt is
not known – which is the case with most practical applications – Wt is specified by
the modeller using discount factors. Evolution variance Wt is a measure of infor-
mation lost about the state vector in moving from t − 1 to t due to the presence of
the stochastic error term ωt. The information lost depends on the magnitude of Wt.
If Wt = 0, then we have got a static model where there is no loss of information
about the state in moving from t − 1 to t. In such a model, θt = Gtθt−1. If Wt is
large, then there is high uncertainty in the state evolution and a lot of information
is lost in moving from t − 1 to t.

At time t − 1, we have the posterior distribution (θt−1|Dt−1) ∼ N[mt−1,Ct−1].
Evolution variance Wt is used in obtaining

Rt = V[θt|Dt−1] = GtCt−1G
T
t +Wt.

Let Pt = GtCt−1G
T
t so that

Rt = Pt +Wt. (3.3.15)

The term Pt can then be defined as the prior variance of the state, V[θt|Dt−1], in
a static model. Intuitively, the uncertainty reflected in Rt is expected to be bigger
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than or equal to the uncertainty reflected in Pt – they are only equal when Wt = 0.
So, for some 0 < δ ≤ 1, we postulate that

Rt =
1
δ
Pt. (3.3.16)

From Equations (3.3.15) and (3.3.16),

Pt +Wt =
1
δ
Pt,

and hence

Wt =
1 − δ

δ
Pt. (3.3.17)

Equation (3.3.17) gives the entire sequence {Wt} once δ and C0 have been given.

The scalar δ ∈ (0,1] is called a discount factor. It is a correction factor which inflates
Pt to make it equal to Rt. The case for which δ = 1 means that all information about
the state is retained during the evolution for t − 1 to t. This is the situation when
Wt = 0. The term 1 − δ is the information lost, for example, if the information lost
from t − 1 to t is 5%, then δ = 0.95. Low values of δ imply high volatility in the
trajectory of the time series, and the model will be sensitive to outliers. However,
high discount factors lead to stable trajectories of the time series but the model
will not be sensitive to outliers; such a model may not adjust to actual changes.
The optimal value of a discount factor involves a balance between flexibility and
stability. Typically, practical discount factors are in the range [0.9, 0.99][33, Section
6.3].

3.3.5 Kalman filter when observational variance is unknown and
constant

This section gives a learning mechanism for a constant unknown variance vt and
the corresponding Kalman filter formulation. The evolution variance Wt is speci-
fied via discount factors, although it can be assumed to be known.

Focus is restricted on the special case when vt = v for all t, where v is unknown.
Other formulations for a constant unknown variance exist (e.g., [33, Section 10.7]).
Working with the precision λ := v−1 simplifies the proceedings – we work inter-
changeably between v and λ. A full conjugate Bayesian analysis for learning v is
developed here under certain conditions. The idea is that: v is unknown and con-
stant, but we can design a mechanism that leads to its value. The approach involves
starting with an initial estimate of the value of v, s0. As time elapses, the value of
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st converges to the unknown value v. A conjugate analysis is when the prior and
the posterior belong to the same family of distributions so that the analysis remains
tractable throughout time.

To achieve conjugacy, two conditions are imposed [33, Section 4.5].

1. All variances and covariances of the DLM are scaled by v = λ−1, that is,
instead of working with Ct, Rt, Wt, and qt, we respectively work with λ−1C∗

t ,
λ−1R∗

t , λ−1W ∗
t , and λ−1q∗t . Generality of the DLM is not lost in doing this

because we can set Ct = λ−1C∗
t , Rt = λ−1R∗

t , Wt = λ−1W ∗
t , and qt = λ−1q∗t

to retain the general DLM structure given in Definition 3.3.1.

2. A gamma distribution for λ, or equivalently, an inverse gamma distribution
for v, for all t.

Definition 3.3.5. For each t ≥ 1, the constant unknown variance DLM is defined by

Observation equation: yt = FT
t θt + νt, νt ∼ N[0, λ−1],

State equation: θt = Gtθt−1 +ωt, ωt ∼ N[0, λ−1W∗
t ],

Initial information: (θ0|D0, v) ∼ N[m0, λ−1C∗
0 ], (λ|D0) ∼ Ga

[
n0/2, d0/2

]
,

where

• n0 stands for the degrees of freedom of the initial information;

• m0, C∗
0 , n0, and d0 are initial quantities; and

• E[λ|D0] =
n0
2 / d0

2 = n0/d0 = 1/s0, where s0 is obtained by computing the
harmonic mean3 of v.

Kalman filter

All equations involved are analogous to those given in Theorem 3.3.4. A complete
proof of the results is shown in [33, Section 4.5].

Initial information. This is information given at time t − 1 for t ≥ 1. It is what we
feed into the model in order to work with equations at time t.

3Harmonic mean refers to the reciprocal of the mean of reciprocal(s). Let harmonic mean of v at
time t be st. Then, st = 1/E[1/v] = 1/E[λ] = dt/nt, which implies nt/dt = 1/st. For a single scalar
like v, arithmetic mean is equal to harmonic mean.
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Initial information for both the state vector θt and the scale parameter λ should
be provided. For the former, there are two situations: conditional on v and un-
conditional on v. Conditional on v, as introduced in Definition 3.3.5, the initial
distribution of θt is of the form

(θ0|D0, v) ∼ N[m0, λ−1C∗
0 ]. (3.3.18)

Unconditional on v, initial information for the state is the multivariate Student’s t
distribution on n0 degrees of freedom, with mode m0 and scale matrix C0, that is,

(θ0|D0) ∼ Tn0 [m0,C0]. (3.3.19)

The Student’s t distribution in Equation (3.3.19) is an outcome of standard normal-
gamma theory, given the distribution in Equation (3.3.18) and the distribution (λ|D0) ∼
Ga
[
n0/2, d0/2

]
. A brief discussion of this theory is given in Appendix A. Details

can be found in [33, Section 17.3] and [20, Appendix A].

Initial information for the scale parameter is given by

(λ|D0) ∼ Ga
[
n0/2, d0/2

]
.

Prior information at time t. This is also discussed for both the state θt and the scale
parameter λ. Conditional on v, the state’s prior is given by

(θt|Dt−1, v) ∼ N[at, λ−1R∗
t ]

and unconditional on v, by

(θt|Dt−1) ∼ Tnt−1 [at,Rt],

where at = Gtmt−1 and R∗
t = GtC

∗
t−1G

T
t +W ∗

t . The precision λ = v−1 takes on
the usual gamma form, that is,

(λ|Dt−1) ∼ Ga
[
nt−1/2, dt−1/2

]
.

Note that the posterior at time t − 1 is the same as prior at time t, for λ.

Forecasts at time t. Forecasts are of two catogories: one conditional on v and the
other unconditional on v. Analogous to (θt|Dt−1, v) ∼ N[at, λ−1R∗

t ], the condi-
tional forecast distribution is of the form

(yt|Dt−1, v) ∼ N[ ft, λ−1q∗t ],

where ft = F T
t at and q∗t = 1 +F T

t R∗
t Ft.



CHAPTER 3. DYNAMIC LINEAR MODELS 33

By the standard theory of the normal-gamma distribution and linear regression
models (see Appendix A), the unconditional forecast has a univariate Student’s t
distribution on nt−1 degrees of freedom. That is,

(yt|Dt−1) ∼ Tnt−1 [ ft, qt],

where qt = st−1 + F T
t R∗

t st−1Ft. The equation qt = st−1 + F T
t R∗

t st−1Ft is de-
rived from qt = F T

t RtFt + vt where the unknown vt = v is at this stage equal
to its prior expected value st−1 and Rt = vR∗

t = st−1R
∗
t by definition. Note that

E(yt|Dt−1) = E(yt|Dt−1, v) but the variances differ.

Posterior information at time t. The posterior, just like the prior, is summarised for
both the state parameter θt and the scale parameter λ. The distributions are given
by

(θt|Dt, v) ∼ N[mt, λ−1C∗
t ]

and
(θt|Dt) ∼ Tnt [mt,Ct],

with
et = yt − ft, At = R∗

t Ft/q∗t ,

mt = at +Atet, C∗
t = R∗

t −AtA
T
t q∗t .

For the precision λ,
(λ|Dt) ∼ Ga

[
nt/2, dt/2

]
,

where nt = nt−1 + 1 and dt = dt−1 + e2
t /q∗t . Notice that dt = ntst turns dt =

dt−1 + e2
t /q∗t into the common form for calculations, st = st−1 +

st−1
nt

( e2
t

qt
− 1
)
.

To get the Kalman filter operational equations, we make the substitutions R∗
t =

Rt/st−1, q∗t = qt/st−1, and C∗
t = Ct/st in the equations above to get the equations

below. We use the unconditional distributions for the state and forecast (e.g., [33]).

Initial information
This is made up of the known values of m0,C0, n0, and s0.

Then, for t ≥ 1, the following are computed
Evolution equations
Prior mean vector: at = Gtmt−1

Evolution covariance matrix: Wt =
1−δ

δ GtCt−1G
T
t

Prior covariance matrix factor: Rt = GtCt−1G
T
t +Wt
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Forecasting equations
One-step ahead forecast: ft = F T

t at

One-step ahead forecast variance factor: qt = F T
t RtFt + st−1

Updating/filtering equations
One-step ahead forecast error: et = yt − ft

Adaptive coefficient vector: At = RtFt/qt

Posterior degrees of freedom: nt = nt−1 + 1

Posterior observational variance estimate: st = st−1 +
st−1
nt

( e2
t

qt
− 1
)

Posterior mean vector: mt = at +Atet

Posterior covariance matrix factor: Ct =
st

st−1
(Rt −AtA

T
t qt)

3.3.6 Kalman filter when observational variance is stochastic

The model described in Section 3.3.5 assumes that the unknown variance vt is con-
stant throughout time – this is not always true. In many practical applications, vt

changes stochastically and unpredictably over time. A discounted variance learn-
ing model for time-changing vt is described here. The description follows the ap-
proach of [25, Section 4.3.7] and [33, Section 10.8].

We start by adjusting Definition 3.3.5 to accommodate the fact that observational
variance is now time-variant. We therefore use λt instead of λ. Also, to simplify
the notation, we get rid of all starred variances since we have seen that they are not
used in the Kalman filter equations, but are only relevant in defining the structure
that was imposed on the DLM of Definition 3.3.5. Specifically, we make the sub-
stitutions W ∗

t = WtE[λt] and C∗
0 = C0E[λ0] in the definition. We then define the

resultant DLM as follows.

Definition 3.3.6. For each t ≥ 1, the stochastic observational variance DLM is defined by

Observation equation: yt = FT
t θt + νt, νt ∼ N[0, λ−1

t ],

State equation: θt = Gtθt−1 +ωt, ωt ∼ N
[
0,

Wt

λt/E[λt]

]
,

Precision equation: λt =
λt−1ηt

β
, ηt ∼ Be

[βnt−1

2
,
(1 − β)nt−1

2

]
,

Initial information: (θ0|D0, v0) ∼ N
[
m0,

C0

λ0/E[λ0]

]
, (λ0|D0) ∼ Ga

[
n0/2, d0/2

]
,

where

• β ∈ (0, 1] is a discount factor;
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• ηt ∈ (0, 1] is a random variable named random shock with the beta distribution
and is independent of λt−1; and

• m0, C0, n0, and d0 are initial quantities.

The posterior for the scale parameter/precision at time t − 1 is the gamma distri-
bution

(λt−1|Dt−1) ∼ Ga
[
nt−1/2, dt−1/2

]
.

For the variance analysis to remain tractable, the prior distribution for the scale
must also be gamma. Starting with the precision’s posterior above, the resulting
prior distribution of λt, following the precision equation, is the gamma distribution

(λt|Dt−1) ∼ Ga
[βnt−1

2
,

βdt−1

2

]
[25, Section 4.3.7].

The mean estimate of the precision remains unchanged, that is,

E[λt−1|Dt−1] = E[λt|Dt−1] = 1/st−1,

but the prior has a bigger variance since

V[λt|Dt−1] =
1
β

V[λt−1|Dt−1].

When β = 1, the constant variance model where vt = v is obtained.

After observing yt, the precision’s posterior is still a gamma distribution, (λt|Dt) ∼
Ga
[
nt/2, dt/2

]
, but now the scale updating equations have discount factors, that is,

nt = βnt−1 + 1 and dt = βdt−1 + st−1
e2

t
qt

.

Kalman filter

We now give the equations for evolution, prediction, and updating for a DLM with
a stochastic observational variance. Note that these equations are the same as those
of the unknown constant variance model; the only change appears in the equations
of the scale parameter.

Before giving the Kalman filter equations, let us make a few modifications in

dt = βdt−1 + st−1
e2

t
qt

(3.3.20)

and

Ct =
st

st−1
(Rt −AtA

T
t qt)
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to create a quantity called volatility update factor, like in [7]. We just make these
two equations become three but we do not remove or add anything else to the
equations. Notice that, by using nt = βnt−1 + 1 and defining

rt = βnt−1 and ct = st−1,

Equation (3.3.20) can be modified as follows.

dt = βdt−1 + st−1e2
t /qt

ntst = βnt−1st−1 + st−1e2
t /qt

ntst = rtst−1 + st−1e2
t /qt

st =
( rt

nt
+

e2
t

ntqt

)
st−1

st = ct
(
rt +

e2
t

qt

) 1
rt + 1

st = ctzt,

where zt = (rt + e2
t /qt)/(rt + 1) is called the volatility update factor. Also, observe

that st = ctzt gives zt = st/st−1 such that Ct = (Rt −AtA
T
t qt)zt. The term ct is the

expected value of the of the variance vt at the prior stage.

Also, before giving the analytic equations of the Kalman filter, let us summarise the
distributions involved. With the DLM in Definition 3.3.6, for t ≥ 1, we obtain the
following distributions.

• Conditional on vt,

(θt−1|Dt−1, vt−1) ∼ N
[
mt−1,

Ct−1

λt−1st−1

]
,

(θt|Dt−1, vt) ∼ N
[
at,

Rt

λtct

]
,

(yt|Dt−1, vt) ∼ N
[

ft,
qt

λtct

]
,

(θt|Dt, vt) ∼ N
[
mt,

Ct

λtst

]
,

where
st−1 =

1
E[λt−1|Dt−1]

and ct =
1

E[λt|Dt−1]
= st−1.

• Unconditional on vt,

(θt−1|Dt−1) ∼ Tnt−1 [mt−1,Ct−1],
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(θt|Dt−1) ∼ Trt [at,Rt],

(yt|Dt−1) ∼ Trt [ ft, qt],

(θt|Dt) ∼ Tnt [mt,Ct].

With the background above, it remains to give the analytic equations.

Initial information
Initial mean vector m0, initial covariance matrix factor C0, initial degrees of free-
dom n0, and initial observational variance estimate s0.

Then, for t ≥ 1, we compute the following
Evolution equations
Prior mean vector: at = Gtmt−1

Evolution covariance matrix: Wt =
1−δ

δ GtCt−1G
T
t

Prior covariance matrix factor: Rt = GtCt−1G
T
t +Wt

Prior observational variance estimate: ct = st−1

Prior degrees of freedom: rt = βnt−1

Forecasting equations
One-step ahead forecast: ft = F T

t at

One-step ahead forecast variance factor: qt = F T
t RtFt + ct

Updating/filtering equations
One-step ahead forecast error: et = yt − ft

Adaptive coefficient vector: At = RtFt/qt

Volatility update factor: zt = (rt + e2
t /qt)/(rt + 1)

Posterior mean vector: mt = at +Atet

Posterior covariance matrix factor: Ct = (Rt −AtA
T
t qt)zt

Posterior degrees of freedom: nt = rt + 1
Posterior observational variance estimate: st = ctzt



Chapter 4

Simultaneous Graphical Dynamic
Linear Models

In this chapter, we start by presenting the SGDLM strategy in plain language. We
then introduce SGDLMs from a mathematical point of view and link them to the
DLMs of Chapter 3. We follow this with the joint form of SGDLMs. Unlike [7, 8, 31],
we discuss importance sampling and mean-field variational Bayes, first, in their
generality and then in a way that tailors the two techniques to the current context.
Finally, we present the SGDLM algorithm like in [7] but in a more elaborate form.

4.1 Introduction

In Chapter 3, we discussed models that can forecast a time series in isolation (uni-
variate models). For example, in the stock market, such models can predict returns
on investing in, say, stock A, without considering the effect of the changes in the
prices of the other stocks that co-exist with stock A on the performance of stock
A. In a multivariate system, for example, the stock market, trajectories of variables
are partly directed by changes in the values of some of the other variables. So, to
be realistic enough while modelling a multivariate system, models that capture the
multivariate dependencies should be used. Simultaneous Graphical Dynamic Linear
Models (SGDLMs) were introduced recently by [7] to address the need for capturing
dependencies among time series while maintaining the flexibility of customising
models at the level of individual time series.

In a nutshell, SGDLMs use the following way of thinking. Suppose that there are
five time series: A, B, C, D, and E. Suppose further that these time series co-exist
in a system and that there are inter-series dependencies. In particular, suppose that
there is a causal relationship between A and B. The task is to forecast the value of

38
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series A tomorrow. Now, suppose we knew the value of series B tomorrow, would
not this be useful information in predicting the value of series A tomorrow? Of
course yes, it would be. So, while building a model that will forecast the value
of A tomorrow, tomorrow’s value of B is included in the model for A. We call B
the simultaneous parent (contemporaneous predictor) of A. This kind of thinking
can be applied while predicting tomorrow’s value of any of the other stocks. So,
every time series will have its customised model with customised simultaneous
parent(s). This is one of the ways in which SGDLMs capture dependencies. The
number of simultaneous parents is normally kept low to have parsimonious mod-
els and to avoid overfitting. For instance, we cannot have all the four series: B,
C, D, and E as predictors of A. It is however possible to have A as a simultaneous
predictor of B, and B as a predictor of A. SGDLMs involve constructing a distinct
univariate DLM for each time series, where the series’ predictor(s) is/are included.
In addition to using simultaneous predictors, dependencies are also captured by
bringing together all the DLMs at the posterior stage on a daily basis and through
joint forecasting. Importance sampling is used to bring together all the DLMs –
something that is referred to as recouple, and mean-field variational Bayes is used
to separate the DLMs – to decouple.

4.2 Structure of simultaneous graphical dynamic linear
models

In this section, we define SGDLMs and give the notation that we work with. There-
after, we give the structure of the joint model – the model for the entire multivariate
system.

4.2.1 Definition of SGDLMs and notation

An SGDLM is a joint model that consists of stochastic observational variance DLMs
that were introduced in Definition 3.3.6. The observation equation in Definition 3.3.6
can be written as

yt = FT
t θt + νt = xT

t ϕt + yT
sp,tγt + νt,

where xt,ϕt,ysp,t, and γt are column vectors. This implies that the column vectors
Ft and θt have been catenated as Ft = (xT

t ,yT
sp,t)

T and θt = (ϕT
t ,γT

t )
T. Consider an

m-variate time series represented by the column vector yt = (y1t, . . . ,ymt)T, where
t = 1, 2, . . .. Each univariate time series yjt, j = 1 : m, is represented via a cus-
tomised, stochastic variance DLM. Therefore, the full SGDLM form is defined as
follows.
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Definition 4.2.1. For each t ≥ 1, each univariate time series yjt is defined by:

yjt = xT
jtϕjt + yT

sp(j),tγjt + νjt, νjt ∼ N[0, λ−1
jt ], (4.2.1)

θjt = Gjtθj,t−1 +ωjt, ωjt ∼ N
[
0,

Wjt

λjt/E[λjt]

]
, (4.2.2)

λjt =
λj,t−1ηjt

β j
, ηjt ∼ Be

[β jnj,t−1

2
,
(1 − β j)nj,t−1

2

]
, (4.2.3)

(θj0|λj0,Dj0) ∼ N
[
aj0,

Rj0

λj0cj0

]
, (λj0|Dj0) ∼ Ga

[
rj0/2, rj0cj0/2

]
, (4.2.4)

where

• yjt is the scalar value of the jth time series at time t;

• xjt is a vector of dimensions pjϕ × 1 consisting of the lag predictor values for
series yjt;

• ϕjt is a vector of dimensions pjϕ × 1 consisting of the regression coefficients for
the lag predictors;

• ysp(j),t is a pjγ × 1 vector consisting of the time t contemporaneous values of
some of the other time series, called the simultaneous parents (SP);

• γjt is a pjγ × 1 vector of regression coefficients for the simultaneous parents;

• λ−1
jt is the stochastic variance of the observational error νjt, λjt is therefore the

time-varying precision;

• Wjt is the covariance matrix of the evolution error ωjt;

• Gjt is the evolution matrix of the jth time series at time t;

• β j ∈ (0, 1] is a discount factor for stock j and ηj is a random shock; and

• Equation (4.2.4) gives the initial prior information.

In the current study, we work with the local-level model, which is very common
in financial studies (e.g., [7, 36, 6]). Therefore, the lag predictors vector xjt = 1
such that Fjt = (1,yT

sp(j),t)
T; xjt = 1 implies that pjϕ = 1, which makes ϕjt a scalar.

The state vector θjt now has dimensions pj = 1 + pjγ, where pjγ is the number of
simultaneous parents for series yjt. And lastly, Gjt = Ipj×pj . Thus, Equations (4.2.1)
and (4.2.2) can be written as

yjt = ϕjt + yT
sp(j),tγjt + νjt,

θjt = θj,t−1 +ωjt.
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The simultaneous parental set for time series yjt, sp(j), is given by sp(j) ⊆ {1, . . . ,m} \
{j}. In other words, the jth time series has all the remaining m− 1 time series as po-
tential simultaneous parents. A time series is a simultaneous parent of time series
yjt only if it affects the behaviour of yjt. As part of the model specification under
the current study, simultaneous parents for a particular series remain the same for
the entire period of analysis.

4.2.2 Structure of the joint model

In this section, we describe the joint model for the entire multivariate system.
We start by writing the observation equation of each of the m univariate series
y1t, y2t, . . . , ymt. That is,

y1t = ϕ1t + yT
sp(1),tγ1t + ν1t

y2t = ϕ2t + yT
sp(2),tγ2t + ν2t

...
...

ymt = ϕmt + yT
sp(m),tγmt + νmt


(4.2.5)

Let µt = (ϕ1t, . . . , ϕmt)T, νt = (ν1t, . . . , νmt)T and

Γt =



0 γ1,2,t γ1,3,t . . . γ1,m,t

γ2,1,t 0 γ2,3,t . . . γ2,m,t

γ3,1,t γ3,2,t 0 . . . γ3,m,t
...

...
...

. . .
...

γm,1,t γm,2,t γm,3,t . . . 0


,

where the matrix Γt has zeros on its diagonal and γj,k,t = 0 if k is not in the simul-
taneous parental set sp(j), for j = 1 : m. Typically, parsimonious models require
|sp(j)| << m; this makes the matrix Γt to be sparse.

Then, Equations (4.2.5) can be represented using one equation as

yt = µt + Γtyt + νt, (4.2.6)

where νt ∼ N(0, Λ−1
t ) with Λt = diag(λ1t, . . . , λmt) since the idiosyncratic terms

ν1t, . . . , νmt are mutually independent and each νjt ∼ N[0, λ−1
jt ] for j = 1, . . . , m.

Equation (4.2.6) is called the structural form [31] of the model and can be modified
to give the reduced form [31] (Equation (4.2.7)) as follows

yt − Γtyt = µt + νt

(I − Γt)yt = µt + νt

yt = (I − Γt)
−1(µt + νt) (4.2.7)
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Note that
(µt + νt) ∼ N[µt, Λ−1

t ]

and

(I − Γt)
−1(µt + νt) ∼ N

[
(I − Γt)

−1µt, (I − Γt)
−1Λ−1

t
(
(I − Γt)

−1)T
]

(by the first property of the multivariate normal distribution in Appendix A).

Therefore, conditional on Θt = {θ1t, . . . ,θmt} and Λt = {λ1t, . . . , λmt}, where Θt

is the set of all the state vectors and Λt is in this situation defined as the set of all
precisions, we say that yt is conditionally distributed as follows

yt|Θt, Λt ∼ N[Atµt, Σt], (4.2.8)

where

At = (I−Γt)
−1 and Σt = (I−Γt)

−1Λ−1
t
(
(I−Γt)

−1)T
=
(
(I−Γt)

TΛt(I−Γt)
)−1

.

4.3 Techniques used in the recouple/decouple strategy

In this section, short notes on importance sampling (the recoupling technique) and
mean-field variational Bayes (the decoupling technique) are given. We introduce
each of the two techniques in a general sense and then apply them to the context of
SGDLMs.

4.3.1 Importance sampling

Importance sampling is a Monte Carlo method where the expectation of a function
with respect to a particular distribution (target distribution) is approximated by
using weighted random samples from another distribution (proposed distribution)
[29]. Importance sampling is used when: (i) it is difficult or not possible to sample
from the target distribution directly, and (ii) the Monte Carlo estimate is required
with a smaller variance relative to a value obtained through naive/direct Monte
Carlo estimation – importance sampling is, therefore, a variance reduction tech-
nique.

Consider a situation where we wish to find the expectation of a function of a ran-
dom variable θ (θ may be a vector or scalar), with respect to a target distribution
whose probability density function is p(θ). We denote this expectation as Ep[h(θ)].
Naive Monte Carlo approximates this expectation using the formula

Ep[h(θ)] ≈
1
N

N

∑
i=1

h(θi), (4.3.1)
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where θi, i = 1 : N, is sampled from p(θ).

In importance sampling, another distribution from which θi is sampled is pro-
posed. Let g(θ), hereafter referred to as the importance density, be the density of
this distribution. The importance density g(θ) should be easy to sample from and
have the same support with the target density p(θ). By definition,

Ep[h(θ)] =
∫

h(θ)p(θ)dθ. (4.3.2)

Equation (4.3.2) can be written as

Ep[h(θ)] =
∫

h(θ)p(θ)dθ =
∫

h(θ) · p(θ)
g(θ)

· g(θ)dθ = Eg

[
h(θ)

p(θ)
g(θ)

]
= Eg[w∗(θ)h(θ)],

where w∗(θ) = p(θ)/g(θ) is called the importance sampling weight. By Equation (4.3.1),

Ep[h(θ)] = Eg[w∗(θ)h(θ)] ≈ 1
N

N

∑
i=1

w∗(θi)h(θi), (4.3.3)

where the random sample θ1, . . . ,θN is drawn from g(θ).

In many Bayesian applications, the target density can be obtained only up to a cer-
tain constant, that is, p(θ) = Cπ(θ), where π(θ) can be evaluated but the constant
C is unknown. In this situation, the self-normalising form of Equation (4.3.3) is
used, like in [20, Section 5.1]. This is given by

Ep[h(θ)] ≈
1

∑N
i=1 w∗(θi)

N

∑
i=1

w∗(θi)h(θi)

=
N

∑
i=1

w(θi)h(θi),

where w(θi) =
w∗(θi)

∑N
i=1 w∗(θi)

. The weights w(θi), i = 1 : N, sum to 1, and can be looked
at as probabilities corresponding to the samples θ1, . . . ,θN . Therefore, the weights
w(θ1), . . . , w(θN) and the random sample θ1, . . . ,θN represent a discrete distribution
that approximates the target distribution.

In Bayesian applications, importance sampling can be used to approximate ana-
lytically intractable posterior distributions, as well as moments like posterior ex-
pectation with respect to such distributions. We now demonstrate how posterior
expectation can be obtained with respect to the posterior distribution by impor-
tance sampling without simulating the posterior distribution. We use the approach
of [3, Section 13.4]. The task is to evaluate the expectation of a function of a param-
eter, say, θ, or any other parameter associated with the distribution, with respect to
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the posterior density p(θ|y). By definition,

Ep[h(θ)] =
∫

h(θ)p(θ|y)dθ.

Let the proposed distribution have density g(θ). Then,

Ep[h(θ)] =
∫

h(θ) · p(θ|y)
g(θ)

· g(θ)dθ. (4.3.4)

By Bayes’ theorem, the posterior p(θ|y) is given by

p(θ|y) = p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

.

Therefore, Equation (4.3.4) can be written as

Ep[h(θ)] =
∫

h(θ) · p(y|θ)p(θ)
g(θ)

∫
p(y|θ)p(θ)dθ

· g(θ)dθ

=
1∫

p(y|θ)p(θ)dθ

∫
h(θ) · p(y|θ)p(θ)

g(θ)
· g(θ)dθ

=

∫
h(θ) · p(y|θ)p(θ)

g(θ) · g(θ)dθ∫ p(y|θ)p(θ)
g(θ) · g(θ)dθ

Then, by the definition of direct Monte Carlo sampling,

Ep[h(θ)] ≈
1
N ∑N

i=1

(
h(θi) · p(y|θi)p(θi)

g(θi)

)
1
N ∑N

i=1
p(y|θi)p(θi)

g(θi)

=
∑N

i=1

(
h(θi) · p(y|θi)p(θi)

g(θi)

)
∑N

i=1
p(y|θi)p(θi)

g(θi)

, (4.3.5)

where θi, i = 1 : N, is drawn from g(θ). Thus, given the likelihood p(y|θ), the
prior p(θ), and the importance density g(θ), the value of Ep[h(θ)] can be approxi-
mated using Equation (4.3.5) without simulating the posterior p(θ|y). Note that the
product of the likelihood and the prior divided by the importance density gives the
weights, that is, p(y|θi)p(θi)

g(θi)
= w∗(θi).

Effective sample size

Effective sample size (ESS) is one measure of the effectiveness of importance sam-
pling [17]. It refers to the corresponding number of independent samples that must
be drawn from the exact distribution to produce the same level of efficiency like in
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the estimation obtained when a Monte Carlo approximation like importance sam-
pling is used [17]. The most common formula for calculating ESS in importance
sampling is

ESS =
1

∑N
i=1 w2

i

,

where wi are the normalised importance weights (e.g., [17, 31]). If 1000 samples
are used in the importance sample approximation, and ESS is computed to be 900,
then the approximation is 90% effective.

4.3.2 Mean-field variational Bayes

Variational Bayes methods turn the analytic approximation of an intractable prob-
lem into an optimisation problem [8, Section 4.6]. A typical problem is the analytic
approximation of an intractable posterior distribution by a more tractable distribu-
tion. The idea is to posit a family of distributions, then select a distribution from
the family whose parameters minimise the difference between the exact distribu-
tion and the approximating distribution [8, Section 4.6]. The difference between
the exact distribution and the approximating distribution is measured by a loss
function, Kullback-Leibler (KL) divergence (e.g., [33, Section 12.3.4]) being the most
common such measure.

Mean-field variational Bayes, also called mean-field variational inference or mean-field
approximation, is a variational Bayes method which assumes that the variational
family approximating the intractable problem factorises into a product of indepen-
dent forms [30]. For example, the mean-field approximation of a joint posterior is
the product of the marginal forms which are assumed to be independent. Let p be
the target distribution and q be the approximating distribution, with p(·) and q(·)
as the respective probability density functions. Let Θ = {θ1, . . . ,θm} be a collection
of random vectors. Then, the mean-field approximation of the joint density p(Θ)

is given by

p(Θ) ≈ q(Θ) =
m

∏
j=1

q(θj),

where the vectors θj, j = 1 : m, are independent random variables.

Kullback-Leibler divergence

This is a standard measure of the efficacy of mean-field approximation. It is a
non-symmetric measure that quantifies numerically the difference between the two
probability distributions p and q. It can be interpreted as a measure of information
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lost when we approximate p with q. It is valid for both discrete and continuous
distributions. We denote Kullback-Leibler divergence of q from p as KL(p||q) and
give its definition like in [30] as

KL(p||q) = Ep

[
log
( p(Θ)

q(Θ)

)]
, (4.3.6)

where Ep[·] stands for expectation with respect to distribution p and Θ is a random
variable. An assumption on the densities p and q is that they should have the same
support. KL(p||q) ≥ 0, and KL(p||q) = 0 iff p = q. It should be noted that the term
divergence is a misnomer; in the context of MFVB, it does not take on its meaning in
vector calculus. KL is also not a distance measure, therefore KL(p||q) ̸= KL(q||p).
The strategy for mapping p to q is to find parameters of q that minimise KL(p||q)
or KL(q||p).

When the distribution being approximated is a posterior, minimising KL diver-
gence using Equation (4.3.6) becomes difficult because the expansion of the right-
hand side of the equation gives rise to evidence, which is, in most situations, in-
tractable due to high-dimensional integration. Instead, a term referred to as evi-
dence lower bound is maximised (e.g., [30] ). Maximising evidence lower bound is
the same as minimising KL divergence [30]. Fortunately, if the distribution that is
being approximated is represented in form of a Monte Carlo sample, like an im-
portance sample, minimisation of KL divergence can be done trivially using an
entropy measure (e.g., [7]), where entropy in this situation means uncertainty asso-
ciated with a random variable. Entropy is another measure of the efficacy of impor-
tance sampling; in other words, it is a measure of the uncertainty associated with
the importance sample. When the distribution being approximated is represented
in form of an importance sample, KL minimisation can be done using entropy of
the importance sample. A good importance sample should have a low value of
entropy. In [7], the entropy HN of importance sampling weights relative to unifor-
mity is defined as HN = ∑N

i=1 wi loge(Nwi), where N is the size of the importance
sample. As N → ∞, HN → KL(p||q) [7]. It can be proved that HN ≤ N/ESS − 1
[7].

4.4 The SGDLM algorithm: sequential forecasting,
filtering, and evolution

In this section, following [7], we give the equations for forecasting, filtering, and
evolution in SGDLMs. Unlike [7, 10, 31, 6], we present the algorithm with suffi-
cient detail to make it easier for the reader to understand it and implement if it
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deems necessary. This is the algorithm we implement in Chapter 5 to do the stock
data analysis. Unless otherwise stated, parameters like at,Rt, rt, et cetera, and sim-
ilar terms remain as defined in Chapter 3, with the only extension that they are now
considered for each series separately.

The SGDLM algorithm can be given in six coherent steps.

1. Initial prior at time t. Start with decoupled, conjugate, normal-gamma priors
p(θjt, λjt|Dj,t−1), for each j = 1 : m, at time t. A modelling assumption is
that these priors are independent. Each of these independent normal-gamma
forms is jointly represented as

(θjt, λjt|Dj,t−1) ∼ NG[ajt,Rjt, rjt, cjt].

The precision λjt follows the gamma distribution with the representation

(λjt|Dj,t−1) ∼ Ga[rjt/2, rjtcjt/2]. (4.4.1)

Conditional on the precision λjt, the state vector θjt follows the multivariate
normal distribution, that is,

(θjt|λjt,Dj,t−1) ∼ N[ajt,Rjt/(λjtcjt)]. (4.4.2)

Unconditional on λjt, the state θjt follows the multivariate Student’s t distri-
bution, represented as

(θjt|Dj,t−1) ∼ Trjt [ajt, Rjt]. (4.4.3)

Therefore, to start the analysis at time t, values of the parameters ajt,Rjt, rjt,
and cjt must be known. Typically, the analysis starts by setting t = 0, so
aj0,Rj0, rj0, and cj0, referred to as initial values, must be known. Since the
individual priors are independent, the implied joint prior is a product of the
independent forms. The joint prior is therefore given by

p(Θt, Λt|Dt−1) =
m

∏
j=1

p(θjt, λjt|Dj,t−1), (4.4.4)

where Θt = {θ1t, . . . ,θmt}, Λt = {λ1t, . . . , λmt}, and Dt−1 = {D1,t−1, . . . ,Dm,t−1}.

Please note that the theory discussed in Chapter 3 starts analyses at the pos-
terior stage. However, for the current algorithm, the analysis is started at the
prior stage. This difference does not matter. What matters is using the evo-
lution and updating equations at the right place. Standard theory on DLMs
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like in [33, 24, 25, 20] starts analyses at the posterior stage. However, SGDLMs
were introduced by [7] with analysis starting at the prior stage. In the current
study, we adopt the conventional approach of starting at the posterior stage
in Chapter 3 (for DLMs) but switch to the approach of starting at the prior
stage in Chapters 4 and 5 for SGDLMs (like [7, 10, 6, 31]). One could as well
maintain the conventional DLMs approach under SGDLMs (e.g., [35]).

2. Time t joint forecasting. At this step, time t forecasts for all the time series are
obtained in a recoupling approach that exploits Equation (4.2.8). The preci-
sions and states are simulated independently across j = 1 : m using the distri-
butions in (4.4.1) and (4.4.2) respectively. That is, for some large K, K values of
λjt are sampled from its distribution in Equation (4.4.1). Then, each sampled
value of λjt is plugged in Equation (4.4.2) to sample one value of θjt. In the
process, K samples of λjt and K samples of θjt are generated. Samples for all
the time series are combined to form the multivariate Monte Carlo samples
{Θk

t , Λk
t}, k = 1 : K. The samples {Θk

t , Λk
t} are transformed to form K first

moments and K second moments for the reduced form of Equation (4.2.8),
that is, the moments (Atµt)k and Σk

t . The moments (Atµt)k are averaged to
obtain the mean Atµt of the vector yt and a similar thing is done to Σk

t to ob-
tain the corresponding covariance matrix Σt. Using this mean and covariance
matrix, K values of the multivariate normal distribution yt ∼ N[Atµt, Σt] are
drawn and averaged to obtain the forecasts for all time series at time t.

The following should be noted:

(i) Simulation of the states, precisions, and forecasts is necessary to ensure
that uncertainties associated with expected values are captured in the
analysis. Obtaining the moments Atµt and Σt directly from the prior of
step 1 without simulation would give the coherent forecasts and the co-
variance matrix, but this does not suffice as it ignores the uncertainties.

(ii) Instead of simulating the states from the normal form of Equation (4.4.2)
using values of λjt obtained from Equation (4.4.1), one could just sample
these states from the multivariate Student’s t form of Equation (4.4.3) –
this does not require knowing λjt values.

(iii) Recoupling is necessary in step 2 to enable capturing of relationships
among time series for forecasting.

(iv) The conditioning in yt|Θt, Λt ∼ N[Atµt, Σt] is dropped for notational
purposes. In the current study, like in [33], known quantities are made
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implicit in conditioning distributions. Values of (Θt, Λt)|Dt−1 are ob-
tained in step 1, so step 2 is done when they are already known, this
leads to writing yt ∼ N[Atµt, Σt] instead of yt|Θt, Λt ∼ N[Atµt, Σt].
Otherwise one could still carry on with making the conditioning ex-
plicit. This kind of notation is mentioned in [33, Section 4.2].

3. Updating to time t naive posterior. The priors p(θjt, λjt|Dj,t−1) of step 1 are up-
dated to the naive posteriors p̃(θjt, λjt|Djt) using the updating equations given
in Section 3.3.6; the tilde notation stands for naive. At this stage, these pos-
teriors are naive because they do not account for cross-series dependencies.
Exact posteriors will be discussed in steps 4 and 5. Note that, jointly

(θjt, λjt|Djt) ∼ NG[m̃jt, C̃jt, ñjt, s̃jt],

where m̃jt, C̃jt, ñjt, and s̃jt are the parameters of the naive normal-gamma
posteriors. These parameters are analogous to the prior parameters: ajt,Rjt, rjt,
and cjt. The normal-gamma form of the naive posteriors is a consequence of

(λjt|Djt) ∼ Ga[ñjt/2, ñjt s̃jt/2] (4.4.5)

and

(θjt|λjt,Djt) ∼ N[m̃jt, C̃jt/(λjt s̃jt)]. (4.4.6)

Equations for doing this update are the same like those in Section 3.3.6, but
they should now have the index j to emphasise that they are applied series
by series. They are given by:

First compute the quantities: f jt = F T
jt ajt, qjt = F T

jt RjtFjt + cjt, ejt = yjt − f jt,
Ajt = RjtFjt/qjt, and zjt = (rjt + e2

jt/qjt)/(rjt + 1).

Then compute the naive posterior parameters: m̃jt = ajt +Ajtejt,
C̃jt = (Rjt −AjtA

T
jtqjt)zjt, ñjt = rjt + 1, and s̃jt = cjtzjt.

The product of the independent naive posteriors p̃(θjt, λjt|Djt) gives the naive
joint posterior p̃(Θt, Λt|Dt) which is, as we demonstrate in step 4, very close
to the exact joint posterior p(Θt, Λt|Dt).

p̃(Θt, Λt|Dt) =
m

∏
j=1

p̃(θjt, λjt|Djt) (4.4.7)

4. Recouple by importance sampling to obtain the time t exact joint posterior. The exact
joint posterior is given by the formula

p(Θt, Λt|Dt) ∝ |I − Γt|
m

∏
j=1

p̃(θjt, λjt|Djt) (4.4.8)
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(see Appendix C for the proof). The form of Equation (4.4.8) presents a chal-
lenge in the analysis; it is not possible to simulate the exact posterior series by
series using this equation. Whereas the product ∏m

j=1 p̃(θjt, λjt|Djt) factorises
compositionally into the independent conjugate normal-gamma forms, the
term |I − Γt| does not – this determinant is coupled across all series. As a
result, the product |I − Γt|∏m

j=1 p̃(θjt, λjt|Djt) makes the independent conju-
gate forms inaccessible for simulation. Recall, SGDLMs leverage simulation
of individual series.

This is therefore a typical situation when importance sampling becomes handy.
An alternative distribution for simulation of the posterior has to be proposed.
As mentioned in Section 4.2.2, practically workable models require that the
matrix Γt is sparse. This make the absolute value of the determinant |I−Γt| to
be close to 1 [31]. This implies that the naive joint posterior in Equation (4.4.7)
is almost the exact posterior, so it can be used as an alternative distribution
from which precisions and states can be sampled for importance sampling
to take effect. The unknown proportionality constant will be taken care of
in the importance sampling strategy as discussed in Section 4.3.1. The prod-
uct form of Equation (4.4.7) is exploited for independent sampling. Using
the naive posteriors, precisions and states are simulated independently for
all series, in away that is similar to the simulation approach used in step 2.
Samples from all the series are combined to form joint Monte Carlo samples
{Θi

t, Λi
t}, i = 1 : N, for some large N.

From posterior ∝ likelihood × prior, we conclude that the term

|I − Γt|
m

∏
j=1

p̃(θjt, λjt|Djt)

is the product of the joint likelihood and the joint prior. Using Equation (4.3.5),
it was concluded that the product of the likelihood and the prior divided by
importance density gives the importance weight. Therefore, using the forms
in Equations (4.4.7) and (4.4.8), we can write

w∗(Θi
t, Λi

t) =
|I − Γi

t|∏m
j=1 p̃(θi

jt, λi
jt|Djt)

∏m
j=1 p̃(θi

jt, λi
jt|Djt)

= |I − Γi
t|.

The normalised weights w(Θi
t, Λi

t) are given by

w(Θi
t, Λi

t) =
1

∑N
i=1 |I − Γi

t|
|I − Γi

t|.
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The exact joint posterior is then approximated by the importance sample

{Θi
t, Λi

t, w(Θi
t, Λi

t), i = 1 : N}. (4.4.9)

Note that w(Θi
t, Λi

t) = w(θi
jt) = w(λi

jt) for all j = 1 : m. For simplicity of
notation, hereafter, we write w(Θi

t, Λi
t) as wit.

Effective sample size is calculated at every value of t using the formula

ESSt =
1

∑N
i=1 w2

it

to monitor the efficiency of the importance sample.

5. Decouple by mean-field variational Bayes to get back the independent, decoupled
normal-gamma posteriors. To achieve conjugacy, the importance sample-based
joint posterior (pMC) is mapped to a product of independent normal-gamma
forms (q). The MFVB-based joint posterior is now written as

q(Θt, Λt|Dt) =
m

∏
j=1

q(θjt, λjt|Djt), (4.4.10)

with each (θjt, λjt|Djt) ∼ NG[mjt,Cjt, njt, sjt], where mjt, Cjt, njt, and sjt are
the parameters of the resultant MFVB-based decoupled posteriors. By denot-
ing EpMC [·] as expectation with respect to the importance sample, the formu-
lae (whose derivations are given in Appendix C) for obtaining the parameters
are:

• Obtain mjt from

mjt = EpMC [λjtθjt]/EpMC [λjt] =
N

∑
i=1

(witλ
i
jtθ

i
jt)
/ N

∑
i=1

(witλ
i
jt).

• Calculation of njt: First obtain the intermediate quantities

Vjt = EpMC [λjt(θjt −mjt)(θjt −mjt)
T] =

N

∑
i=1

(
witλ

i
jt(θ

i
jt −mjt)(θ

i
jt −mjt)

T
)

and

djt = EpMC [λjt(θjt −mjt)
TV −1

jt (θjt −mjt)] =
N

∑
i=1

witλ
i
jt(θ

i
jt −mjt)

TV −1
jt (θi

jt −mjt),

then calculate njt by solving the numerical equation

loge(njt + pj − djt)−ψ(
njt

2
)−

(pj − djt)

njt
− loge(2EpMC [λjt])+EpMC [loge λjt] = 0,
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which implies

loge(njt + pj − djt)−ψ(
njt

2
)−

(pj − djt)

njt
− loge(2

N

∑
i=1

witλ
i
jt)+

N

∑
i=1

wit loge λi
jt = 0,

where ψ(·) is the digamma function.

• Obtain sjt from

sjt = (njt + pj − djt)/njtEpMC [λjt] = (njt + pj − djt)
/

njt

N

∑
i=1

witλ
i
jt.

• Finally, obtain Cjt from Cjt = sjtVjt.

Calculate KL(pMC||q)t from KL(pMC||q)t ≈ ∑N
i=1 wit loge(Nwit) and check

whether KL(pMC||q)t ≤ N/ESSt − 1 to monitor the efficacy of the mean-field
approximation at every value of t.

6. Independent state and precision evolution to time t + 1. The time t MFVB poste-
riors are evolved independently to time t + 1 priors by means of evolution
equations given in Section 3.3.6; this takes us back to the point where we
started. This is the evolution from (θjt, λjt|Djt) to (θj,t+1, λj,t+1|Djt), with

(θj,t+1, λj,t+1|Djt) ∼ NG[aj,t+1,Rj,t+1, rj,t+1, cj,t+1].

Evolution equations are: aj,t+1 = mjt, Rj,t+1 = Cjt +Wj,t+1, cj,t+1 = sjt, and rj,t+1 =

βnjt. Evolution variance Wj,t+1 is specified using two discount factors: δϕ for
the local-level component and δγ for the simultaneous parents component,
following the standard block discounting approach of [33, Sections 6.3.2 and
10.2.2].

4.5 Overview of the analytic solution to the SGDLM
analysis

In this section, we lay out the integrals that, if computed, give the analytic solu-
tion that we approximated using the algorithm in Section 4.4. This is our original
insight into the problem, as we found no study that looks at the problem in this
direction.

We wish to state how the SGDLM analysis can be handled analytically as we did
with the DLM analysis in Section 3.3.3. By Proposition 3.2.2 and assuming inde-
pendence of the time series at the prior, posterior, and evolution stages,
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(a) The prior distribution for all the states and precisions is given by

p(Θt, Λt|Dt−1) =
∫

p(Θt, Λt|Θt−1, Λt−1)p(Θt−1, Λt−1|Dt−1)dΘt−1dΛt−1

=
∫

. . .
∫

︸ ︷︷ ︸
m(pj+1)

(
m

∏
j=1

p(θjt, λjt|θj,t−1, λj,t−1)
m

∏
j=1

p(θj,t−1, λj,t−1|Dj,t−1)

dθ1,t−1 · · · dθm,t−1dλ1,t−1 · · · dλm,t−1

)
,

(b) The one-step ahead predictive distribution is given by

p(yt|Dt−1) =
∫

p(yt|Θt, Λt)p(Θt, Λt|Dt−1)dΘtdΛt

=
∫

· · ·
∫

︸ ︷︷ ︸
m(pj+1)

((
|I − Γt|

m

∏
j=1

p(yjt|θjt, λjt)
)
×

m

∏
j=1

p(θjt, λjt|Dj,t−1)

dθ1,t−1 · · · dθm,t−1dλ1,t−1 · · · dλm,t−1

)
,

(c) The posterior distribution is given by

p(Θt, Λt|Dt) =
p(yt|Θt, Λt)p(Θt, Λt|Dt−1)

p(yt|Dt−1)

=

(
|I − Γt|∏m

j=1 p(yjt|θjt, λjt)
)
× ∏m

j=1 p(θjt, λjt|Dj,t−1)∫
· · ·

∫
︸ ︷︷ ︸
m(pj+1)

((
|I − Γt|∏m

j=1 p(yjt|θjt, λjt)
)
× ∏m

j=1 p(θjt, λjt|Dj,t−1)

dθ1,t−1 · · · dθm,t−1dλ1,t−1 · · · dλm,t−1

)
.



Chapter 5

Data Analysis and Results

In this chapter, we apply the SGDLM to stock data. We start by describing the data
set. We follow this by stating how we implement the SGDLM algorithm, clearly
stating how we divide the implementation into three phases. We then give the
results of the test data analysis. The results include: the coverage of prediction
intervals by the SGDLM; a comparison between the performances of the SGDLM
and the DLM; a comparison between the observed trend of returns and the SGDLM
trend; an assessment of the success of the recouple/decouple strategy; a look into
the effect of the number of simultaneous parents on model accuracy; and finally, a
look into the computation time.

5.1 Data set

Our data set is the daily log-returns of 40 JSE stocks that were selected from the Top
100 JSE index. Using the Industry Classification Benchmark method of categorising
companies, each stock can be categorised into one of the sectors of financials, basic
materials, consumer goods, consumer services, technology, telecommunications,
industrials, and health care. The stocks, and their sector categorisations, are given
in Table 5.1. We download the daily closing prices of all the stocks from Yahoo!
Finance [1] for the period 01/01/2014 to 30/06/2022. Apart from Anglo Ameri-
can Platinum Limited, which has a missing closing price for 28/02/2020, and Sasol
Limited, which has a missing closing price for 30/12/2020, all the other companies
have all the closing prices for the entire period. All closing prices are in units of
South African Rand (ZAR). The missing closing prices for the two companies are
in each case filled by taking the mean of the two closing prices flanking the missing
value. We replace the closing prices of all the stocks on 14/06/2022 by the respec-
tive averages of 13/06/2022 and 15/06/2022 after identifying that nine companies
have closing prices that are much smaller on 14/06/2022, for example, Shoprite

54
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Holdings Limited has ZAR 20998 on 13/06/2022, ZAR 209 on 14/06/2022, and
ZAR 21744 on 15/06/2022. By using the formula

Log-return of stock j on day t, yjt = loge

( Pjt

Pj,t−1

)
,

where Pjt and Pj,t−1 are the respective closing prices for stock j on day t and day
t − 1, we calculate the log-returns for all stocks for the entire period. For the entire
period, the total number of observations (the daily-log returns) is 2161 for each
stock.

Table 5.1: The selected 40 JSE companies and their sector categorisations.

Financials Basic materials
FirstRand Limited Glencore plc
Standard Bank Group Anglo American plc
Capitec Bank Holdings Anglo American Platinum Limited
ABSA Group Limited Sasol Limited
Nedbank Group Limited Kumba Iron Ore
Discovery Limited Impala Platinum Holdings Limited
Remgro Limited AngloGold Ashanti
PSG Group Limited Exxaro Resources Limited
Nepi Rockcastle plc African Rainbow Minerals
Santam Limited Sappi Limited
Transaction Capital Limited
Investec Limited

Consumer services Consumer goods
Shoprite Holdings Limited British American Tobacco
Clicks Group Limited Compagnie Fin Richemont
Woolworths Holdings Limited Tiger Brands Limited
Mr Price Group AVI Limited
Pick n Pay Stores Limited
Spar Group Limited
Truworths International Limited

Telecommunications Industrials
MTN Group Limited Bidvest Group
Vodacom Group Limited Barloworld Limited
Telkom SA Limited

Technology Health care
Naspers Aspen Pharmacare Holdings Limited
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5.2 Implementation of the SGDLM

We implement the SGLDM algorithm which we outlined in Section 4.4 by writing
down the code in Python from scratch. The data set is divided into the training
set and the test set. The training set is further divided into two subsets, one for se-
lecting simultaneous parents and the other for selecting discount factors. The data
from 01/01/2014 to 31/12/2016 (782 observations) is used to select simultaneous
parents; the data from 01/01/2017 to 31/12/2018 (506 observations) is used to se-
lect discount factors and obtain starting values for the test data analysis; and the
data from 01/01/2019 to 30/06/2022 (873 observations) is the test set. Therefore,
we divided the implementation into three phases:

• Phase 1: Selection of simultaneous parents.

• Phase 2: Selection of discount factors and initial priors for phase 3.

• Phase 3: Stock return forecasting.

5.2.1 Selection of simultaneous parents

Here, we ran the Kalman filter equations for each of the 40 stocks using the equa-
tions given in Section 4.4. This phase entails implementing the steps 1, 3, and 6
of the algorithm. Note that the recouple/decouple steps are not included in this
phase, rather the analysis involves simply running the Kalman filter for each of
the decoupled series. We adopt the initial priors of [7] for this phase; these are
aj0 = (0, . . . , 0)T, Rj0 = diag(0.0001, 0.01, . . . , 0.01), rj0 = 5, and cj0 = 0.001, where
aj0 is a 40× 1 vector and Rj0 is a 40× 40 diagonal matrix whose first diagonal entry
is 0.0001 but the rest are 0.01. All the stocks use the same initial prior. Evolution to
the next day (step 6) uses the naive posteriors of step 3. In this phase, every stock
has all the remaining 39 stocks as simultaneous parents.

We specify the evolution variance Wjt using two discount factors via block dis-
counting. First notice that the matrix C̃jt is of the form

C̃jt =


c̃1,1,j,t c̃1,2,j,t · · · c̃1,40,j,t

c̃2,1,j,t
...

c̃40,1,j,t

c̃2,2,j,t · · · c̃2,40,j,t
...

. . .
...

c̃40,2,j,t · · · c̃40,40,j,t


Let us denote the upper-left block of C̃jt by C̃jt[1, 1] and the lower-right block by
C̃jt[2 :, 2 :]. The upper-left block C̃jt[1, 1] is the local-level component whereas the
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lower-right block C̃jt[2 :, 2 :] is the simultaneous parents component. Then, by
block discounting, we define Wjt as

Wjt =

 1−δϕ

δϕ
C̃jt[1, 1] 0

0
1−δγ

δγ
C̃jt[2 :, 2 :]

 .

With the current dimension of 40 stocks, we found out that the SGDLM anal-
ysis is most accurate if every stock has just one simultaneous parent (see Sec-
tion 5.3.5). However, for studies that involve higher dimensions, e.g., [7, 10], sev-
eral simultaneous parents are required to achieve the highest level of accuracy. On
the last day of the period 01/01/2014 to 31/12/2016, for each stock j, we chose
the stock’s simultaneous parent from the other 39 stocks, depending on the ab-
solute values of the posterior means of the vector γjt. As it can be seen from
yjt = ϕjt + yT

sp(j),tγjt + νjt, the entries of the vector γjt are a measure of the effect
of each of the other 39 stocks on stock j (effect size). The simultaneous parent to
stock j is the stock that corresponds to the biggest effect size.

In Table 5.2, we give some selected stocks together with their simultaneous parents
as generated by our analysis. We have underlined the simultaneous parent if it falls
in the same sector with the stock it predicts.

Table 5.2: Simultaneous parents for some selected stocks.

Stock Simultaneous parent
FirstRand Limited Standard Bank Group
Standard Bank Group Nedbank Group Limited
MTN Group Limited ABSA Group Limited
British American Tobacco Investec Limited
Compagnie Fin Richemont Mr Price Group
Naspers Aspen Pharmacare Holdings Limited
Truworths International Limited Mr Price Group
Shoprite Holdings Limited Nedbank Group Limited
Glencore plc Anglo American plc
Anglo American plc Clicks Group Limited

We notice that some of the simultaneous parents fall in the same category with
the stock being predicted – this causal relationship is expected. However, in some
situations, the predictor and the stock being predicted fall in different sectors. This
is still fine because dependencies in an economy can cut across sectors.
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5.2.2 Selection of discount factors and obtaining initial priors for phase
3

In this section, we outline how we selected the discount factors and obtained initial
priors for the test phase. The discount factors to be selected are (i) β (for learning the
stochastic variance) (Section 3.3.6), and (ii) δϕ and δγ (for specifying the evolution
variance). Phase 2 involves running all the steps of the SGDLM algorithm save for
step 2. The discount factors are selected using the decoupled DLMs by maximising
the log-likelihood function series by series (e.g., [25, Section 4.3.6]). The intial priors
are similar to those in phase 1, but since the analysis of the current phase uses only
one simultaneous parent, aj0 = (0, 0)T, Rj0 = diag(0.0001, 0.01), rj0 = 5, and
cj0 = 0.001. The evolution variance is now of the form

Wjt =

 1−δϕ

δϕ
c1,1,j,t 0

0 1−δγ

δγ
c2,2,j,t

 ,

where the scalars c1,1,j,t and c2,2,j,t are the diagonal entries of the covariance matrix
Cjt of the exact posterior obtained in step 5 of the algorithm.

Let us explain how we determined δγ. The other two discount factors were deter-
mined in a similar way. Using the standard theory of Section 3.3.6, we can write
the predictive distribution of each of the decoupled time series as (yjt|Dj,t−1) ∼
Trjt [ f jt, qjt]. The log-likelihood for stock j is then defined as

loge p(yj,783:1288|Dj,782, δγj) = loge

1288

∏
t=783

p(yjt|Dj,t−1, δγj)

=
1288

∑
t=783

loge p(yjt|Dj,t−1, δγj)

=
1288

∑
t=783

loge

{
Γ( rjt+1

2 )

Γ( rjt
2 )

√
πrjtqjt

(
1 +

(yjt − f jt)
2

rjtqjt

)−(
rjt+1

2 )}
(5.2.1)

We keep β j and δϕj constant and vary δγj. (The values of β j and δϕj are uniform
across all stocks.) For different values of δγj, we obtain the sum in Equation (5.2.1)
at the level of individual stocks. For the running example, after inspection, we
observed that most of the values of δγj were on the interval [0.859, 0.999]. So, we
varied δγj on this interval for each stock. In Table 5.3, we show the log-likelihood
values that correspond to the different values of δγj for two companies, Standard
Bank and MTN Group.



CHAPTER 5. DATA ANALYSIS AND RESULTS 59

Table 5.3: Log-likelihood values at different values of δγj.

δγj
Log-likelihood

Standard Bank MTN Group
0.859 1480 1280
0.894 1495 1285
0.929 1480 1288
0.964 1471 1292
0.999 1404 1287

The optimal value of the discount factor is the one that corresponds to the maxi-
mum log-likelihood. Therefore, for Standard Bank, δγ = 0.894 and for MTN Group,
δγ = 0.964. We obtained the value of δγ for the remaining stocks in a similar way
and computed the average across all stocks. This average now serves as the dis-
count factor for each stock. With the current example, this average is 0.953. Thus,
δγ = 0.953, which is taken uniform across all stocks.

In a similar way, by keeping δγ and β constant, we obtained δϕ as 0.993. And by
keeping δγ and δϕ constant, we obtained β as 0.922. Then, using these optimal
values of the discount factors and the same initial priors, steps 1, 3, 4, 5, and 6 were
re-run to obtain starting values for phase 3. The size of the importance sample in
this phase was kept at N = 2,000.

5.2.3 Stock return forecasting

In the test phase, we ran the all the six steps of the SGDLM algorithm for the last
three and half years of our study. This phase used the discount factors and initial
priors obtained in phase 2. The analysis used K = N = 2,000.

5.3 Results from the test data analysis

5.3.1 Coverage of prediction intervals

In the context of time series forecasting, a prediction interval, aka forecast interval, is
the interval which is constructed around the forecast, within which the observa-
tion is expected to lie with a specified probability [13, Section 3.5]. For example,
the 95% prediction interval [a, b] (constructed around the forecast ŷjt) means that,
according to the predicting model, there is a 95% probability that the observation
yjt will lie within the interval [a, b]. We calculated prediction intervals at the level
of individual stocks using the large sample formula (e.g., [27, Section 14.5])

ŷjt ± zα/2

√
Σj,j,t

√
1 +

1
K

, (5.3.1)
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where

• ŷjt is the forecast that corresponds to the observation yjt;

• zα/2 is the critical value of the standard normal distribution and 1 − α is the
degree of confidence;

• Σj,j,t is the jth diagonal element of the covariance matrix Σt, which is the vari-
ance of ŷjt; and

• K is the forecasting simulation sample size.

For example, using the formula in Equation (5.3.1), we constructed ten 50% predic-
tion intervals for Standard Bank over the period indicated in Figure 5.1. Theoret-
ically, the 50% prediction intervals imply that we expect 5 of the 10 observations
to fall within the prediction intervals and the other five to fall outside the predic-
tion intervals. For the chosen period, the resultant coverage of prediction intervals
agrees with what the theory says.

2020-09-21 2020-09-23 2020-09-25 2020-09-27 2020-09-29 2020-10-01 2020-10-03 2020-10-05
Year/Month/Day

0.04

0.02

0.00

0.02

0.04

0.06 Observed value
SGDLM output
Prediction interval

Figure 5.1: Coverage of the 50% prediction intervals for Standard Bank over a section of
the test period.

For a perfect model, empirical coverage is equal to theoretical coverage. Because of
the noise in the data and sometimes errors in the model, empirical coverage is not
always equal to theoretical coverage. In practice, outputs of models portray under-
coverage or over-coverage of intervals. The closer the output of the model to the
theoretical coverage, the more accurate is the model. Over-coverage is preferred to
under-coverage of the same magnitude because the former is coverage that is more
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than what is enough.

We calculated the interval coverages at different levels of confidence for all the
stocks throughout the entire test period. From yt ∼ N[Atµt, Σt], each yjt ∼ N[ŷjt, Σj,j,t].
Using this result, we calculated the prediction intervals for all the stocks at the fol-
lowing levels of confidence: 99% (zα/2 = 2.58), 95% (zα/2 = 1.96), 90% (zα/2 =

1.64), 80% (zα/2 = 1.28), 50% (zα/2 = 0.67), 20% (zα/2 = 0.25), and 10% (zα/2 =

0.13). In Table 5.4, we give the average interval coverages across all stocks and the
interval coverages for eight of the forty stocks, for the entire test period. We also
include the aggregate interval coverages of [7] as benchmark values.

Table 5.4: Average interval coverage across all stocks/aggregate interval coverage and
interval coverage for some selected stocks, for the entire test period.

Prediction interval (%%%) 99 95 90 80 50 20 10

Aggregate interval coverage
Coverage (%) 98.4 95.7 92.6 86.0 60.4 26.5 14.4

Benchmark aggregate interval coverage
Coverage (%) 98.4 95.6 92.4 85.5 59.7 27.2 14.4

Standard Bank Group
Coverage (%) 98.9 95.5 92.3 85.9 60.5 27.1 14.2

FirstRand Limited
Coverage (%) 99.2 96.3 93.4 86.3 59.8 25.0 14.0

Glencore plc
Coverage (%) 99.2 96.0 92.1 84.4 58.2 22.6 11.5

Anglo American plc
Coverage (%) 98.7 95.0 92.6 85.8 58.8 24.5 12.5

British American Tobacco
Coverage (%) 98.5 95.0 92.1 84.3 59.6 27.6 14.1

MTN Group Limited
Coverage (%) 97.7 96.0 94.3 86.8 63.0 28.3 16.0

Naspers
Coverage (%) 97.9 95.0 90.8 84.8 61.1 26.6 14.5

Shoprite Holdings Limited
Coverage (%) 97.7 95.5 93.1 87.5 62.0 27.8 15.9



CHAPTER 5. DATA ANALYSIS AND RESULTS 62

According to Table 5.4, the aggregate interval coverages from 10% to 95% are big-
ger than the theoretical values. Nevertheless, these interval coverages are more
precise compared to outputs of other multivariate models (e.g., see [7]). The 99%
prediction interval is under-estimated in both the aggregate analysis and for most
of the individual stocks, but empirical coverage remains close to the nominal one.
We also observe that the interval coverages for each of the eight stocks are simi-
lar to those of the aggregate analysis. These realised SGDLM interval coverages
are therefore literally tolerable. Finally, our aggregate interval coverage estimates
compare nicely with those of the benchmark study.

5.3.2 Comparison between the SGDLM and the DLM

In addition to predicting the daily log-returns using the SGDLM, we independently
predicted the returns of each of the eight stocks in Table 5.4 using the stochastic
volatility local-level DLM (Section 3.3.6). In the DLM analysis, we partitioned the
data in a way that is similar to that of the SGDLM analysis. We used the data from
01/01/2017 to 31/12/2018 (506 observations) to select the discount factors β j and
δj, and to get the initial values for the testing phase. The initial values of this train-
ing period were taken as a = 0, R = 0.0001, c = 0.001, and r = 5. The test data is
from 01/01/2019 to 30/06/2022 (873 observations). We never used the data from
01/01/2014 to 31/12/2016 (782 observations) as this was purposely for selecting
simultaneous parents in the SGDLM case.

If, for example, we are interested in forecasting the price of Standard Bank on a
daily basis, we can use either the SGDLM where Standard Bank will be modelled
together with other stocks or the DLM that will focus on Standard Bank alone. So,
in the SGDLM we track Standard Bank only and then compare results with those
from the DLM of Standard Bank. We computed two measures of forecast accuracy,
root mean square error (RMSE) and mean absolute deviation (MAD), for each of
the stocks, in the SGDLM case and the DLM case, and made comparisons. Notice
that, for each stock,

RMSE =

√√√√ 1
873

2,161

∑
t=1,289

e2
jt and MAD =

1
873

2,161

∑
t=1,289

|ejt|.

Table 5.5 summarises the results. For each stock, we bold the smaller value of the
error to indicate the better model.
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Table 5.5: Comparison of measures of forecast accuracy (RMSE and MAD) between the
SGDLM and the DLM.

Standard Bank Group FirstRand Limited
SGDLM DLM SGDLM DLM

RMSE 0.023407 0.023459 RMSE 0.023118 0.023208
MAD 0.016465 0.016469 MAD 0.016520 0.016510

Glencore plc Anglo American plc
SGDLM DLM SGDLM DLM

RMSE 0.024470 0.024337 RMSE 0.025138 0.024968

MAD 0.018218 0.018092 MAD 0.017994 0.017911

British American Tobacco MTN Group Limited
SGDLM DLM SGDLM DLM

RMSE 0.017620 0.017646 RMSE 0.031298 0.031244
MAD 0.012833 0.012860 MAD 0.020034 0.019962

Naspers Shoprite Holdings Limited
SGDLM DLM SGDLM DLM

RMSE 0.222441 0.223146 RMSE 0.222292 0.222671
MAD 0.028722 0.028694 MAD 0.026352 0.026126

According to the results in Table 5.5, none of the two models outperforms the other
in all cases. The SGDLM performs better than the DLM in the case of Standard Bank
and British American Tobacco given that it gives smaller values of both the RMSE
and the MAD, but the exact opposite occurs for Glencore plc and Anglo Ameri-
can plc. For the remaining stocks, the SGDLM produces smaller values of RMSE
whereas the DLM produces smaller values of MAD. For these selected stocks, we
observe a tie between the two models. It should be seen that the differences be-
tween the errors of the SGDLM and the DLM are very small. The figures in Table 5.5
are run-dependent; they keep changing slightly each time you run the analysis, but
the comparison between the two models generally remains as in the table.

In principle, we expect the SGDLM to outperform the DLM because it is a model
framework that captures dependencies among stocks. So, for all the stocks, we ex-
pect the SGDLM to give more accurate forecasts. This is not the case in the current
example. We propose that to make the SGDLM perform better universally than the
DLM, there is a need to improve the formulation of the SGDLM. One aspect here
is the selection of simultaneous parents. In the current study, we picked the simul-
taneous parent of each of the stocks at t = 782 and maintained it to the end of the
analysis. This is unrealistic because the market is dynamic; a good simultaneous
parent to Standard Bank today may not remain good to Standard Bank after, say,
one year. So, there is a need to use a more robust method of selecting simultaneous
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parents which involves refreshing the parents as the analysis proceeds (e.g., [10]).

5.3.3 Comparison of the empirical returns trend with the SGDLM trend

We calculated the empirical/observed 100-day simple moving averages for the
observed returns and compared the resultant trend with that of the SGDLM, for
each of the eight stocks. For each stock, we calculated the first moving average
using the formula (yj1 + yj2 + · · · + yj100)/100 (positioned at t = 100), the sec-
ond using (yj2 + yj3 + · · · + yj101)/100 (positioned at t = 101), the third using
(yj3 + yj4 + · · · + yj102)/100 (positioned at t = 102), and so on. Figure 5.2 sum-
marises the outcomes.

For any model that fits data well, the observed trend of the data and the trend of
the model forecasts should follow each other closely, if there is no stock market
stress. Up to around March 2020 the observed trend and the SGDLM trend follow
each other closely for almost all the eight stocks; only British American Tobacco has
a clear discrepancy between the two trends during this period. This discrepancy
is a reflection of the up and down movements of the price of British American
Tobacco in 2019 (see Figure 5.3e). The SGDLM overestimates the returns during
the market crash that started in March 2020 for all the stocks that were hit hard
by the crash. This overestimation is literally visible in the case of Standard Bank,
FirstRand, Glencore plc, Anglo American plc and MTN Group Limited, and is a
reflection of the profuse drop in the prices in March 2020 (see Figure 5.3). The
SGDLM trend generally trails below the observed trend just after the period of the
intense market stress – this is expected because the formula for calculating the 100-
moving averages carries along the radically below zero values of the returns for a
couple of months after the market crash. Generally, the two trends track each other
closely after the impact of the intense market crash.
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Figure 5.2: Comparison of the observed trend of the returns with the SGDLM trend.
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Figure 5.3: Closing prices of some stocks over the test data period.
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5.3.4 Efficiency of importance sampling and MFVB

In Figure 5.4 below, we illustrate the evaluation of the efficiency of the importance
sample-based approximation of the exact posterior. The efficiency of the MFVB ap-
proach to obtaining the decoupled conjugate forms from the approximated poste-
rior is also evaluated. It can be seen in Figure 5.4a that for the bigger part of the test
period, the effective sample size is above 1,900, which means that the importance
sample-based approximation of the posterior is more than 95% effective. The most
worrying period starts towards the end of February 2020 up to around mid-April
2020, during which the effective sample size nosedives to 1325 or so (about 66% ef-
fective). It should be noted that the first case of COVID-19 was announced in South
Africa in early March 2020, and as Figure 5.3 shows, the result of this announce-
ment was a plunge in the prices of most of the stocks, which subsequently caused
a temporary breakdown of the SGDLM and hence the drastic fall in ESS. The other
quite radical unexpected fall of the effective sample size is seen in late November
2021 due to the outbreak of the Omicron variant. The SGDLM however recov-
ers from both short-term breakdowns and the importance sample-based posterior
approximation is generally good throughout the test period. Correspondingly, Fig-
ure 5.4b shows the KL divergence as a measure of the effectiveness of MFVB. Since
the KL divergence is approximated by the entropy of the importance sample, it
is expected that whenever ESS is high, KL divergence is low and vice versa. So,
the periods when the ESS drops are the very periods when KL divergence goes up.
Generally, KL divergence remains small throughout the test period. It is interesting
to see that the realised KL divergence does not exceed its theoretical upper bound
at any point of the test period.
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Figure 5.4: (a) Measurement of the efficacy of the importance sample (IS) and (b) measure-
ment of the efficacy of the MFVB approximation.
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5.3.5 Effect of the number of simultaneous parents on forecast accuracy

We re-ran the full SGDLM analysis for a bigger number of simultaneous parents.
We ran the analysis with two and five simultaneous parents. With two simultane-
ous parents, we found out that the optimal values of discount factors are β = 0.919,
δϕ = 0.990, and δγ = 0.970. With five simultaneous parents, we obtained β = 0.909,
δϕ = 0.983, and δγ = 0.984. In both situations, K = N = 2,000. In Table 5.6, we
present the aggregate coverage of prediction intervals for the different numbers of
simultaneous parents. Also, in Table 5.7, we compare the RMSE and MAD values
for three stocks, for the different parental sizes.

Table 5.6: Aggregate interval coverage for different parental sizes.

Prediction interval (%%%) 99 95 90 80 50 20 10

One simultaneous parent
Coverage (%) 98.4 95.7 92.6 86.0 60.4 26.5 14.4

Two simultaneous parents
Coverage (%) 98.5 96.0 93.0 86.5 61.3 27.5 15.1

Five simultaneous parents
Coverage (%) 98.6 96.2 93.3 87.0 62.0 28.1 15.7

Table 5.7: Comparison of RMSE and MAD across different parental sizes for the SGDLM.

Standard Bank Group
1 SP 2 SP 5 SP

RMSE 0.0234 0.0236 0.0308
MAD 0.0165 0.0166 0.0179

British American Tobacco
1 SP 2 SP 5 SP

RMSE 0.0176 0.0192 0.0220
MAD 0.0128 0.0132 0.0139

Naspers
1 SP 2 SP 5 SP

RMSE 0.2224 0.2243 0.3684
MAD 0.0287 0.0290 0.0532

In Table 5.6, we observe that the SGDLM of one simultaneous parent produces the
most concise prediction intervals, followed by the one with two, and the one of
five comes last. The percentages in the table are the averages across all stocks; the
percentages for individual stocks across different parental sizes compare similarly.
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Also, in Table 5.7, the SGDLM of one simultaneous parent gives the smallest er-
rors. The errors produced by the SGDLM of two simultaneous parents are bigger
than those of the SGDLM of one simultaneous parent but smaller than those of
the SGDLM of five simultaneous parents. Results from both tables suggest that
the SGDLM with one simultaneous parent is the most accurate, followed by the
one with two, and the one of five comes last. This supports our use of one simul-
taneous parent in the analyses of the preceding sections. Thus, with the current
dimension of 40 stocks, using one simultaneous parent produces the most accurate
results. The results of the table also suggest that accuracy reduces as the number
of simultaneous parents increases. However, it should be noted that, in higher di-
mensions, the most accurate results may be obtained when using more than one
simultaneous parent (e.g., [7]).

5.3.6 Computation time

In this section, we present the runtimes for the SGDLM analysis, for the different
parental sizes. We did all analyses on a 2017 desktop computer with a CPU of
3.20 GHz, four cores, and 8GB RAM. In all analyses, K = N = 2,000. Phase 1 of
the SGDLM implementation took about 9 seconds. However, phases 2 and 3 had
much longer runtimes. Table 5.8 shows the approximate number of hours taken
for the analysis to execute. It should be noted that we took less time than what
is shown in the table because we could run three Jupyter Notebooks at once to
select the discount factors; for example, for the analysis that involves using one
simultaneous parent, the total runtime for phases 2 and 3 was 19 + 4 + 14 = 37
hours. This computation time is much higher than that realised when using GPU-
accelerated computing, e.g., [7].

Table 5.8: Runtime (in hours) of the SGDLM implementation for the different parental
sizes.

1 SP 2 SP 5 SP

Phase 2
Selection of discount factors 19 × 3 23 × 3 29 × 3
Obtaining initial priors 4 5 6

Phase 3 14 15 19
Total 75 89 112



Chapter 6

Conclusion and Future Work

This chapter concludes the thesis by first giving the main takeaway points from our
study. The chapter then lists the areas that are original to our study and proposes
directions for further research.

6.1 Conclusion

The aim of this study was to forecast the returns of 40 stocks using the SGDLM.
We found out that the SGDLM forecasts the returns accurately. In addition, with a
dimension of 40 stocks or less, our results suggest that the most accurate forecasts
are obtained with one simultaneous parent. Furthermore, our insights into the ef-
ficiency of the recoupling/decoupling techniques indicate that the techniques per-
form well generally and that SGDLMs respond well to the changes in the market.
Lastly, we found out that, the use of a computer with CPU hardware for computa-
tions is however much more time-consuming compared to the use of GPU-based
computers.

6.2 Contribution

Our major contributions are:

1. Firstly, we obtained the analytic solution to the filtering problem of the local-
level DLM by integration. Although standard theory on DLMs is well-documented
by many authors, we never found any author(s) that present the analytic so-
lution the way we did.

2. Secondly, we presented the integrals which, when evaluated, give the analytic
solution to the SGDLM analysis. The attempt to obtain this analytic solution
is something that was introduced in this thesis.

70
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3. Besides the above, we used a CPU desktop computer for computations, which
none of the references noted herein did.

4. Furthermore, we did extra analyses, most importantly, the analysis that makes
a comparison between the forecasts obtained from the DLM with those ob-
tained from the SGDLM, for a particular stock.

5. Lastly, but ultimately, we are drafting a paper that we wish to submit to a
journal for publication.

6.3 Future work

Firstly, by adopting the approach of refreshing simultaneous parents depending on
the prevailing market conditions (e.g., [10]), we recommend re-doing the compari-
son of RMSE and MAD between the DLM and the SGDLM. This will perhaps make
the SGDLM to outperform the DLM universally.

The current study and the references herein apply the SGDLM to stock data. We
recommend applying the SGDLM to a presumably more challenging financial time
series, cryptocurrencies. Cryptocurrencies are much more volatile and deviate
from the normal distribution than stock data. An exploration of how the SGDLM
will forecast cryptocurrencies looks to be a fascinating direction.

Lastly, further research needs to be done on evaluating the integrals that lead to the
exact solution of the SGDLM, as we did with the DLM. This involves evaluating the
integrals that we stated in Section 4.5. This analytic evaluation however appears to
be difficult because the dimension of the integrals to be evaluated grows very fast
as the number of stocks increases. A case involving 2 stocks and 1 simultaneous
parent should be a good starting point as this gives rise to a 6-dimensional integral.
The current example of 40 stocks and one simultaneous parent gives rise to an
integral in 120 dimensions!



Appendix A

Distributions

In this appendix, standard theory about some distributions is presented.

A.1 Normal distribution

Univariate normal distribution

A random variable θ has a normal/Gausssian distribution with mean µ and vari-
ance σ2 if it has probability density function

p(θ) =
1√

2πσ2
exp

{
− 1

2

( θ − µ

σ

)2
}

, −∞ < θ < ∞.

Multivariate normal distribution

A random p-vector θ follows the multivariate normal distribution with mean µ ∈
Rp and covariance matrix Σ ∈ Rp×p if its density function is given by

p(θ) =
1

(2π)p/2|Σ|p/2 exp
{
− 1

2
(θ−µ)TΣ−1(θ−µ)

}
.

Properties of the multivariate normal distribution

1. Suppose that a random column p-vector θ ∼ N[µ, Σ]. If A is a matrix of con-
stants with many columns as the components of θ, then Aθ ∼ N[Aµ,AΣAT].
If c is a p × 1 vector of constants, then c+ θ ∼ N[c+µ, Σ].

2. If the univariate random variables θ1, . . . , θp are jointly normal, then each θi

is normally distributed but not conversely. The converse is only true if the
random variables θ1, . . . , θp are independent (see property 3 below).

72



APPENDIX A. DISTRIBUTIONS 73

3. If θ1, . . . , θp are independent random variables with each θi ∼ N[µi, σ2
i ], then

θ = (θ1, . . . , θp)T follows the distribution N[µ, Σ], where µ = (µ1, . . . , µp)T

and Σ = diag(σ2
1 , . . . , σ2

p).

A.2 Gamma distribution

A random variable λ has a gamma distribution with parameters n > 0 and d > 0,
denoted by λ ∼ Ga[n, d], if and only if it has probability density function

p(λ) =
dn

Γ(n)
λn−1exp{−dλ}, λ > 0.

Note that E[λ] = n
d and V[λ] = n

d2 .

A.3 Student’s t distribution

Univariate Student’s t distribution

A random variable y follows a (generalised) univariate Student’s t distribution with
degrees of freedom ν, mode µ, and scale σ2, written as

y ∼ Tν(µ, σ2),

if its probability density function is

p(y) =
Γ( ν+1

2 )

Γ( ν
2 )
√

πνσ2

(
1 +

1
ν

(y − µ

σ

)2
)−( ν+1

2 )

.

Note that E[y] = µ for ν > 1 and V[y] = ν
ν−2 σ2 for ν > 2.

Multivariate Student’s t distribution

A random p-vector θ is said to have a multivariate Student’s t distribution with
degrees of freedom ν, mode µ ∈ Rp, and scale matrix Σ ∈ Rp×p, denoted by

Tν(µ, Σ, p),

if it has density

p(x) =
Γ( ν+p

2 )

Γ( ν
2 )(πν)p/2|Σ|1/2

(
1 +

(θ−µ)TΣ−1(θ−µ)

ν

)−( ν+p
2 )

.

The mean is given by E[θ] = µ, ν > 1 and the covariance by V[θ] = ν
ν−2 Σ, ν > 2.

Tν(0, 1, 1) = tν is the standard Student’s t distribution with ν degrees of freedom.
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A.4 Normal-gamma distribution

Univariate normal-gamma distribution

For the random variables λ and θ, let λ ∼ Ga[n/2, d/2] and (θ|λ) ∼ N[m, Cλ−1] for
some m ∈ R and n, d, C ∈ R+. The joint distribution of θ and λ is called univariate
normal-gamma and is denoted by

(θ, λ) ∼ NG[m, C, n, d],

with density given by
p(θ, λ) = p(θ|λ)p(λ).

The marginal density of θ is Student’s t with n degrees of freedom, mode m, and
scale R = C( d

n ) = C/E(λ). The marginal is denoted by

θ ∼ Tn[m, R].

Multivariate normal-gamma distribution

Let λ ∼ Ga[n/2, d/2] and suppose that, for a random p-vector θ, (θ|λ) ∼ N[m,Cλ−1],
for some n, d ∈ R+,m ∈ Rp, and the p × p symmetric positive definite matrix C.
The joint distribution of θ and λ is the multivariate normal-gamma

(θ, λ) ∼ NG[m,C, n, d].

The random vector θ has a marginal multivariate Student’s t distribution in p di-
mensions with degrees of freedom n, mode m, and scale matrix R = C(d/n) =

C/E[λ], denoted by
θ ∼ Tn[m,R].

If θj is the jth element of θ with mean mj and Cjj the corresponding diagonal element
of C, then

θj ∼ Tn[mj, Rjj],

where Rjj = Cjj(
d
n ).

By using C = RE[λ] and letting d = ns (s > 0), which implies that s = 1/E[λ],
we give an equivalent definition of the multivariate normal-gamma distribution.
Let λ ∼ Ga[ n

2 , ns
2 ] and suppose that the conditional distribution of a random p-

vector θ is given by (θ|λ) ∼ N[m, R/(sλ)], for some n, s > 0, m ∈ Rp and the
p × p symmetric positive definite matrix R. The joint distribution of θ and λ is the
multivariate normal-gamma denoted by

(θ, λ) ∼ NG[m,R, n, s].
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Again, the marginal distribution of θ is multivariate Student’s t with mode m, scale
matrix R, and degrees of freedom n, denoted by θ ∼ Tn[m,R].

Normal-gamma distribution and linear regression models

The normal-gamma distribution is vital in ensuring a conjugate Bayesian analysis
for linear regression models with unknown scale parameters. With λ defined as a
scale parameter, suppose that the dependent variable y is related to the indepen-
dent variable θ (a p-vector) by

(y|θ, λ) ∼ N[F Tθ, λ−1],

where F is a p-vector. Suppose further the existence of the distributions (θ|λ) ∼
N[a,Rλ−1] and λ ∼ Ga[n/2, d/2], for scalars n, d ∈ R+, a ∈ Rp, and a covariance
matrix R. Let s = d/n = 1/E[λ]. Then,

• conditional on λ, (y|λ) ∼ N[ f , qλ−1], where f = F Ta and q = F TRF + 1,
and

• unconditional on θ or λ, y ∼ Tn[ f , qs].

A.5 Beta distribution

A random variable η follows a beta distribution with shape parameters α > 0 and
β > 0, denoted by η ∼ Be[α, β], if its density function is given by

p(η) =
1

B(α, β)
ηα−1(1 − η)β−1,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β)

. Note that E[η] = α
α+β and V[η] = αβ

(α+β)2(α+β+1) .



Appendix B

Analytic solution to the
filtering/updating problem

We give a step-by-step simplification of the integrals in Section 3.3.3.

The integral for the prior

Let us start from

p(θt|Dt−1) =
1√

(2π)2WtCt−1

∫
exp

{
− 1

2

(( 1
Wt

+
1

Ct−1

)
θ2

t−1 − 2
( θt

Wt
+

mt−1

Ct−1

)
θt−1+

θ2
t

Wt
+

m2
t−1

Ct−1

)}
dθt−1. (B.0.1)

We first simplify the integrand. Let

M =
(( 1

Wt
+

1
Ct−1

)
θ2

t−1 − 2
( θt

Wt
+

mt−1

Ct−1

)
θt−1 +

θ2
t

Wt
+

m2
t−1

Ct−1

)
.

Then,

M =
1

Ct−1Wt

{
(Ct−1 + Wt)

(
θ2

t−1 −
2(θtCt−1 + mt−1Wt)

Ct−1 + Wt
θt−1

)
+ θ2

t Ct−1 + m2
t−1Wt

}

We complete squares and factorise to get

M =
Ct−1 + Wt

Ct−1Wt

{(
θt−1 −

(θtCt−1 + mt−1Wt)

Ct−1 + Wt

)2
− (θtCt−1 + mt−1Wt)2

(Ct−1 + Wt)2 +
θ2

t Ct−1 + m2
t−1Wt

Ct−1 + Wt

}

=
Ct−1 + Wt

Ct−1Wt

(
θt−1 −

(θtCt−1 + mt−1Wt)

Ct−1 + Wt

)2
+

θ2
t Ct−1 + m2

t−1Wt

Ct−1Wt
− (θtCt−1 + mt−1Wt)2

Ct−1Wt(Ct−1 + Wt)

Let N =
θ2

t Ct−1 + m2
t−1Wt

Ct−1Wt
− (θtCt−1 + mt−1Wt)2

Ct−1Wt(Ct−1 + Wt)
. Then,
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N =
θ2

t C2
t−1 + m2

t−1WtCt−1 + θ2
t Ct−1Wt + m2

t−1W2
t − θ2

t C2
t−1 − 2θtCt−1mt−1Wt − m2

t−1W2
t

Ct−1Wt(Ct−1 + Wt)

=
θ2

t − 2θtmt−1 + m2
t−1

Ct−1 + Wt

=
(θt − mt−1)

2

Ct−1 + Wt

Therefore, M =
Ct−1 + Wt

Ct−1Wt

(
θt−1 −

(θtCt−1 + mt−1Wt)

Ct−1 + Wt

)2
+

(θt − mt−1)
2

Ct−1 + Wt
. Equa-

tion (B.0.1) can then be written as

p(θt|Dt−1) =
1√

(2π)2WtCt−1

∫
exp

{
− 1

2

[Ct−1 + Wt

Ct−1Wt

(
θt−1 −

(θtCt−1 + mt−1Wt)

Ct−1 + Wt

)2
+

(θt − mt−1)
2

Ct−1 + Wt

]}
dθt−1

=
1√

(2π)2WtCt−1
exp

{
− 1

2 (θt − mt−1)
2

Ct−1 + Wt

}
×

∫ +∞

−∞
exp

{
− 1

2

[Ct−1 + Wt

Ct−1Wt

(
θt−1 −

(θtCt−1 + mt−1Wt)

Ct−1 + Wt

)2]}
dθt−1

(B.0.2)

The standard integral∫ +∞

−∞
exp

{
− 1

2
a(x − K)2}dx =

√
2π

a
, a > 0, (B.0.3)

for some constant K, enables us to write Equation (B.0.2) as

p(θt|Dt−1) =
1√

(2π)2WtCt−1
exp

{
− 1

2 (θt − mt−1)
2

Ct−1 + Wt

}√
2π(Ct−1Wt)

Ct−1 + Wt

=
1√

2πRt
exp

{
− 1

2 (θt − mt−1)
2

Rt

}
, (B.0.4)

where Rt = Ct−1 + Wt.

The integral for the predictive density

Starting with

p(yt|Dt−1) =
1√

(2π)2vtRt

∫
exp

{
− 1

2

(( 1
vt

+
1
Rt

)
θ2

t − 2
(yt

vt
+

mt−1

Rt

)
θt+

y2
t

vt
+

m2
t−1

Rt

)}
dθt, (B.0.5)
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we let

P =
(( 1

vt
+

1
Rt

)
θ2

t − 2
(yt

vt
+

mt−1

Rt

)
θt +

y2
t

vt
+

m2
t−1

Rt

)
,

which simplifies to

P =
1

Rtvt

{
(Rt + vt)

(
θ2

t −
2(ytRt + mt−1vt)

Rt + vt
θt

)
+ y2

t Rt + m2
t−1vt

}
.

We complete squares, factorise, and rearrange to get

P =
Rt + vt

Rtvt

(
θt −

(ytRt + mt−1vt)

Rt + vt

)2
+

y2
t Rt + m2

t−1vt

Rtvt
− (ytRt + mt−1vt)2

Rtvt(Rt + vt)
.

We let Q =
y2

t Rt + m2
t−1vt

Rtvt
− (ytRt + mt−1vt)2

Rtvt(Rt + vt)
, which simplifies to

Q =
(yt − mt−1)

2

Rt + vt
.

We can then write P as

P =
Rt + vt

Rtvt

(
θt −

(ytRt + mt−1vt)

Rt + vt

)2
+

(yt − mt−1)
2

Rt + vt
,

which enables us to write Equation (B.0.5) as

p(yt|Dt−1) =
1√

(2π)2vtRt

∫
exp

{
− 1

2

[Rt + vt

Rtvt

(
θt −

(ytRt + mt−1vt)

Rt + vt

)2
+

(yt − mt−1)
2

Rt + vt

]}
dθt

=
1√

(2π)2vtRt
exp

{
− 1

2 (yt − mt−1)
2

Rt + vt

}
×

∫ +∞

−∞
exp

{
− 1

2

[Rt + vt

Rtvt

(
θt −

(ytRt + mt−1vt)

Rt + vt

)2]}
dθt

=
1√

(2π)2vtRt
exp

{
− 1

2 (yt − mt−1)
2

Rt + vt

}√
2π(Rtvt)

Rt + vt

=
1√
2πqt

exp

{
− 1

2 (yt − mt−1)
2

qt

}
,

where qt = Rt + vt.
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The posterior via Bayes’ rule

We start with the integral

p(θt|Dt) =
1√

2πRtvtq−1
t

exp

{
− 1

2

(y2
t − 2θtyt + θ2

t
vt

+
θ2

t − 2θtmt−1 + m2
t−1

Rt
−

(y2
t − 2ytmt−1 + m2

t−1)

qt

)}
(B.0.6)

We let L =
(y2

t − 2θtyt + θ2
t

vt
+

θ2
t − 2θtmt−1 + m2

t−1

Rt
−

(y2
t − 2ytmt−1 + m2

t−1)

qt

)
. This

simplifies as follows

L =

Rtqty2
t − 2Rtqtθtyt + Rtqtθ

2
t + vtqtθ

2
t − 2vtqtθtmt−1 + vtqtm2

t−1 − vtRty2
t

+ 2vtRtytmt−1 − vtRtm2
t−1

Rtvtqt

=

(Rtqt + vtqt)θ2
t − 2(Rtqtyt + vtqtmt−1)θt + Rtqty2

t + vtqtm2
t−1 − vtRty2

t
+ 2vtRtytmt−1 − vtRtm2

t−1

Rtvtqt

=

q2
t θ2

t − 2qt(Rtyt + vtmt−1)θt + qt(Rty2
t + vtm2

t−1)− vtRty2
t + 2vtRtytmt−1

− vtRtm2
t−1

Rtvtqt

=
θ2

t − 2q−1
t (Rtyt + vtmt−1)θt + q−1

t (Rty2
t + vtm2

t−1) + q−2
t (2vtRtytmt−1 − vtRty2

t − vtRtm2
t−1)

Rtvtq−1
t

=

θ2
t − 2q−1

t (Rtyt + vtmt−1)θt + q−1
t Rty2

t − q−2
t vtRty2

t + 2vtRtytmt−1q−2
t + vtm2

t−1q−1
t

− q−2
t vtRtm2

t−1

Rtvtq−1
t

=

θ2
t − 2q−1

t (Rtyt + vtmt−1)θt + (1 − q−1
t vt)q−1

t Rty2
t + (1 − Rtq−1

t )vtm2
t−1q−1

t +

2vtRtytmt−1q−2
t

Rtvtq−1
t

=
θ2

t − 2q−1
t (Rtyt + vtmt−1)θt + q−1

t RtRty2
t q−1

t + q−1
t vtvtm2

t−1q−1
t + 2vtRtytmt−1q−2

t

Rtvtq−1
t

=
θ2

t − 2q−1
t (Rtyt + vtmt−1)θt + q−2

t (R2
t y2

t + 2vtRtytmt−1 + v2
t m2

t−1)

Rtvtq−1
t

=
θ2

t − 2q−1
t (Rtyt + vtmt−1)θt + q−2

t (Rtyt + vtmt−1)
2

Rtvtq−1
t

=

(
θ2

t − q−1
t (Rtyt + vtmt−1)

)2

Rtvtq−1
t

=

(
θ2

t −
(

Rtytq−1
t + (1 − Rtq−1

t )mt−1
))2

Rtvtq−1
t
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L =

(
θt − (mt−1 + Rtq−1

t yt − Rtq−1
t mt−1)

)2

Rtvtq−1
t

=

(
θt −

(
mt−1 + Rtq−1

t (yt − mt−1)
))2

Rtvtq−1
t

=

(
θt − (mt−1 + Rtq−1

t et)
)2

Rtvtq−1
t

=
(θt − mt)2

Rtvtq−1
t

,

where mt = mt−1 + Rtq−1
t et. Thus, Equation (B.0.6) can be written as

p(θt|Dt) =
1√

2πRtvtq−1
t

exp

{
− 1

2

(
θt − mt

)2

Rtvtq−1
t

}

=
1√

2πCt
exp

{
− 1

2

(
θt − mt

)2

Ct

}
,

where Ct = Rtvtq−1
t . Thus, the posterior is a normal distribution with mean mt and

variance Ct. We can therefore write

(θt|Dt) ∼ N[mt, Ct],

with
mt = mt−1 + Atet and Ct = Atvt,

where
et = yt − ft and At = Rtq−1

t .



Appendix C

Derivation of formulae used in the
recouple/decouple strategy

C.1 Derivation of the joint posterior density formula

We use the approach of [35, Appendix A], but with more detailed explanations
of the modifications. En route to the answer, we use, among others, the follow-
ing properties of matrices: (i) if A, B, and C are non-singular matrices, then
(ABC)−1 = C−1B−1A−1; (ii) let A be a square matrix, then |Am| = |A|m; (iii)
let A and B be two m×m matrices, then |AB| = |A||B|; (iv) |A| = |AT|, where A

is a square matrix; and (v) the determinant of diag(c1, . . . , cm) is the product ∏m
i=1 ci.

Proof. We obtain the desired formula from

Posterior ∝ Likelihood × Prior. (C.1.1)

The likelihood is obtained from the form

yt|Θt, Λt ∼ N
[
(I − Γt)

−1µt,
(
(I − Γt)

TΛt(I − Γt)
)−1]

, (C.1.2)

which was introduced in Equation (4.2.8). We remove the index t to simplify nota-
tion. By the general formula of the density of the multivariate normal distribution
given in Appendix A,

p(y|Θ, Λ) = (1/2π)m/2
∣∣∣((I − Γ)TΛ(I − Γ)

)−1∣∣∣−1/2
×

exp
{
− 1

2
(
y − (I − Γ)−1µ

)T
(I − Γ)TΛ(I − Γ)

(
y − (I − Γ)−1µ

)}
,

(C.1.3)

where y is an m-vector. We first simplify
∣∣∣((I − Γ)TΛ(I − Γ)

)−1∣∣∣−1/2
. Note that∣∣∣((I − Γ)TΛ(I − Γ)

)−1∣∣∣− 1/2

=
∣∣∣(I − Γ)TΛ(I − Γ)

∣∣∣1/2

=
(
|(I − Γ)T||Λ||I − Γ|

)1/2

=
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|I − Γ||Λ|1/2 = |I − Γ|∏m
j=1 λ

1/2

jt . We now turn to the exponential term. Let Q =(
y − (I − Γ)−1µ

)T
(I − Γ)TΛ(I − Γ)

(
y − (I − Γ)−1µ

)
. Then,

Q =
(
yT(I − Γ)TΛ(I − Γ)−µT(I − Γ)−T(I − Γ)TΛ(I − Γ)

)(
y − (I − Γ)−1µ

)
=
(
yT(I − Γ)TΛ(I − Γ)−µTΛ(I − Γ)

)(
y − (I − Γ)−1µ

)
= yT(I − Γ)TΛ(I − Γ)y − yT(I − Γ)TΛ(I − Γ)(I − Γ)−1µ−µTΛ(I − Γ)y+

µTΛ(I − Γ)(I − Γ)−1µ

= yT(I − Γ)TΛ(I − Γ)y − yT(I − Γ)TΛµ−µTΛ(I − Γ)y +µTΛµ

=
(
yT(I − Γ)T −µT

)(
Λ(I − Γ)y − Λµ

)
=
(
(I − Γ)y −µ

)T
Λ
(
(I − Γ)y −µ

)
Note that

(
(I − Γ)y − µ

)T
is a 1 × m matrix; Λ is an m × m diagonal matrix; and(

(I − Γ)y −µ
)

is an m × 1 matrix. So, the product

(
(I − Γ)y −µ

)T
Λ
(
(I − Γ)y −µ

)
is a scalar. The jth (j = 1 : m) element of

(
(I − Γ)y − µ

)T
is a scalar, which

multiplies the jth diagonal element of Λ to give a 1×m matrix. Then, the jth element

of
(
(I − Γ)y − µ

)T
Λ , which is a scalar, multiplies the jth element of

(
(I − Γ)y −

µ
)

, which is also a scalar, to give a scalar. Notice that the last matrix multiplication

operation involves a sum over j = 1 : m. Notice further that the jth element of µ
is xT

j ϕj; the jth diagonal element of Λ is λj; and from, y − Γy, the jth element of
(I − Γ)y is yj − yT

sp(j)γj. This leads to

Q =
m

∑
j=1

(yj − yT
sp(j)γj − xT

j ϕj)
Tλj(yj − yT

sp(j)γj − xT
j ϕj) =

m

∑
j=1

(yj −F T
j θj)

Tλj(yj −F T
j θj).

Consequently,

p(y|Θ, Λ) = (1/2π)m/2|I − Γ|
( m

∏
j=1

λ
1/2

jt

)
exp

{
− 1

2

m

∑
j=1

(yj −F T
j θj)

Tλj(yj −F T
j θj)

}
= |I − Γ|

m

∏
j=1

(1/2π)1/2λ
1/2

jt exp
{
− 1

2
(yj −F T

j θj)
Tλj(yj −F T

j θj)
}

= |I − Γ|
m

∏
j=1

p(yj|θj, λj)
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Thus, from Equation (C.1.1),

p(Θt, Λt|Dt) ∝
(
|I − Γt|

m

∏
j=1

p(yjt|θjt, λjt)
)
× p(Θt, Λt|Dt−1)

=
(
|I − Γt|

m

∏
j=1

p(yjt|θjt, λjt)
)
×

m

∏
j=1

p(θjt, λjt|Dj,t−1)

= |I − Γt|
m

∏
j=1

p(yjt|θjt, λjt)× p(θjt, λjt|Dj,t−1)

∝ |I − Γt|
m

∏
j=1

p̃(θjt, λjt|Djt)

C.2 Derivation of formulae for obtaining parameters under
mean-field variational Bayes

Here, following the approach of [33, Section 12.3.4] and [35, Appendix A], we de-
rive formulae for obtaining the parameters mjt, Cjt, njt, and sjt as used in mean-
field variational Bayes in Section 4.4. Recall that p denotes the exact joint poste-
rior distribution, pMC the importance sample-based approximation of p, and q the
MFVB-based posterior distribution. We wish to find parameters mjt, Cjt, njt, and
sjt, of q that minimise the Kullback-Leibler divergence between q and pMC. We
work with the divergence of q from pMC, KL(pMC||q). Notice that

KL(pMC||q)t = EpMC

[
loge

( pMC(Θt, Λt|Dt)

q(Θt, Λt|Dt)

)]
= EpMC [loge pMC(Θt, Λt|Dt)]− EpMC [loge q(Θt, Λt|Dt)].

According to [33, Section 12.3.4], minimising KL(pMC||q)t is equivalent to max-
imising EpMC [loge q(Θt, Λt|Dt)]. This is true because, since the distribution pMC is
known, the expectation EpMC [loge pMC(Θt, Λt|Dt)] is known and constant, unlike
EpMC [loge q(Θt, Λt|Dt)] whose value depends on the choice of q. So, it suffices to
maximise EpMC [loge q(Θt, Λt|Dt)]. Since q(Θt, Λt|Dt)] is required as a product of in-
dependent forms, we can minimise KL divergence series by series. Thus, we seek
to find the parameters

mjt,Cjt, njt, sjt = argmax
mjt, Cjt, njt, sjt∈q

EpMC [loge q(θjt, λjt|Djt)].
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The joint density of the normal-gamma form of (θjt, λjt|Djt) is given by

q(θjt, λjt|Djt) = (2π)−
pj/2|(sjtλjt)

−1Cjt|−1/2exp
{
− 1

2
(sjtλjt)(θjt −mjt)

TC−1
jt (θjt −mjt)

}
×

(
njtsjt

2 )njt/2

Γ( njt
2 )

λ
njt/2−1
jt exp

{
− λjt(

njtsjt

2
)
}

= (2π)−
pj/2(sjtλjt)

pj/2|Cjt|−1/2exp
{
− 1

2
(sjtλjt)(θjt −mjt)

TC−1
jt (θjt −mjt)

}
×

(
njtsjt

2 )njt/2

Γ( njt
2 )

λ
njt/2−1
jt exp

{
− λjt(

njtsjt

2
)
}

. (C.2.1)

(We have used the property: |aA|m = am|A|, where a is a scalar and A is an m × m
matrix.) From Equation (C.2.1), for some constant C,

loge q(θjt, λjt|Djt) =
1
2

{
C + pj loge(sjtλjt)− loge |Cjt| − (sjtλjt)(θjt −mjt)

TC−1
jt (θjt −mjt)+

njt loge(
njtsjt

2
) + (njt − 2) loge λjt − λjtnjtsjt − 2 loge Γ(

njt

2
)
}

=
1
2

{
C − loge |Cjt| − (sjtλjt)(θjt −mjt)

TC−1
jt (θjt −mjt) + (pj + njt) loge sjt

+ njt loge njt + (pj + njt − 2) loge λjt − njt loge 2 − 2 log Γ(
njt

2
)− njtsjtλjt

}
(C.2.2)

Derivation of the equation for mjt

We differentiate EpMC [loge q(θjt, λjt|Djt)] with respect to mjt and equate the result
to zero. For simplicity, from Equation (C.2.2), we pick the term

−1
2
(sjtλjt)(θjt −mjt)

TC−1
jt (θjt −mjt)

only, since the other terms become zero when we differentiate with respect to mjt.
We make use of: (i) If C is a symmetric matrix, then C−1 is also symmetric; (ii)
Let m ∈ Rm and C be an m × m matrix. If C is symmetric and not a func-
tion of m, then ∂

∂m (mTCm) = 2Cm [14]; and (iii) ∂
∂mjt

EpMC [loge q(θjt, λjt|Djt)] =

EpMC

[
∂

∂mjt
loge q(θjt, λjt|Djt)

]
(Leibniz rule for differentiation under the integral sign

(see [5] and [35, Appendix A])). Thus,

0 =
∂

∂mjt
EpMC [loge q(θjt, λjt|Djt)]

= EpMC

[ ∂

∂mjt
loge q(θjt, λjt|Djt)

]
= EpMC

[ ∂

∂mjt

(
− 1

2
(sjtλjt)(θjt −mjt)

TC−1
jt (θjt −mjt)

)]
= EpMC [C

−1
jt (θjt −mjt)(sjtλjt)]

= sjtC
−1
jt EpMC [θjtλjt −mjtλjt]
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This implies that 0 = EpMC [θjtλjt]−EpMC [mjtλjt], which leads to mjt = EpMC [θjtλjt]/EpMC [λjt].

Derivation of the equation for Cjt

We use the following properties of matrices.

(i) If C is a symmetric matrix, then ∂
∂C loge |C| = C−1 [14].

(ii) tr(ABC) = tr(BCA) = tr(CAB) [21, Section 1.1].

(iii) For an m × m matrix C and an m × m covariance matrix A, ∂
∂C tr(C−1A) =

−C−2A [35, Appendix A].

In an approach similar to that of deriving the equation for mjt, we differentiate
EpMC [loge q(θjt, λjt|Djt)] with respect to Cjt by picking the term

1
2

(
− loge |Cjt| − (sjtλjt)(θjt −mjt)

TC−1
jt (θjt −mjt)

)
only (from Equation (C.2.2)) and equating the result to 0. First notice that

0 =
∂

∂Cjt
EpMC [loge q(θjt, λjt|Djt)]

= EpMC

[ ∂

∂Cjt

(
− 1

2
loge |Cjt| −

1
2
(sjtλjt)(θjt −mjt)

TC−1
jt (θjt −mjt)

)]
Notice further that, since the result of the product (θjt −mjt)

TC−1
jt (θjt −mjt) is a

scalar, we can write

(θjt −mjt)
TC−1

jt (θjt −mjt) = tr
(
(θjt −mjt)

TC−1
jt (θjt −mjt)

)
= tr

(
C−1

jt (θjt −mjt)(θjt −mjt)
T
)

.

Because (θjt −mjt)(θjt −mjt)
T is a covariance matrix,

∂

∂Cjt
C−1

jt (θjt −mjt)(θjt −mjt)
T = −C−2

jt (θjt −mjt)(θjt −mjt)
T.

Consequently,

0 = EpMC [−C−1
jt + (sjtλjt)C

−2
jt (θjt −mjt)(θjt −mjt)

T]

C−1
jt = sjtC

−2
jt EpMC [λjt(θjt −mjt)(θjt −mjt)

T]

Cjt = sjtEpMC [λjt(θjt −mjt)(θjt −mjt)
T]

We let Vjt = EpMC [λjt(θjt −mjt)(θjt −mjt)
T] to have Cjt = sjtVjt.
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Derivation of the equation for sjt

0 =
∂

∂sjt
EpMC [loge q(θjt, λjt|Djt)]

= EpMC

[ ∂

∂sjt

1
2

(
− (sjtλjt)(θjt −mjt)

TC−1
jt (θjt −mjt) + (pj + njt) loge sjt − njtsjtλjt

)]
= EpMC

[
− 1

2
λjt(θjt −mjt)

TC−1
jt (θjt −mjt) +

pj + njt

2sjt
− 1

2
njtλjt

]
= EpMC

[
− 1

2
λjt(θjt −mjt)

T(sjtVjt)
−1(θjt −mjt) +

pj + njt

2sjt
− 1

2
njtλjt

]
This leads to sjtnjtEpMC [λjt] = pj + njt − EpMC [λjt(θjt −mjt)

TV −1
jt (θjt −mjt)]. We

let djt = EpMC [λjt(θjt −mjt)
TV −1

jt (θjt −mjt)] to obtain

sjt =
njt + pj − djt

njtEpMC [λjt]
.

Derivation of the equation for njt

0 =
∂

∂njt
EpMC [loge q(θjt, λjt|Djt)]

0 = EpMC

[ ∂

∂njt

1
2

(
(pj + njt) loge sjt + njt loge njt − (pj + njt − 2) loge λjt − njt loge 2+

2 loge Γ(
njt

2
)− njtsjtλjt

)]
This leads to

loge sjt + 1 + loge njt + EpMC [loge λjt]− loge 2 − ψ(
njt

2
)− sjtEpMC [λjt] = 0 (C.2.3)

We substitute sjt = (njt + pj − djt)/(njtEpMC [λjt]) in Equation (C.2.3) and simplify to obtain

loge(njt + pj − djt)− ψ(
njt

2
)−

(pj − djt)

njt
− loge(2EpMC [λjt]) + EpMC [loge λjt] = 0.



Appendix D

Our Python code for the SGDLM
implementation

All Python codes for the analyses in this thesis are available on my github page:
github.com/nelsonkyakutwika/SGDLM
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https://github.com/nelsonkyakutwika/SGDLM
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