
 
Lie algebras
Lecture 1

We will follow on fromthe
Honours course Liegroupsand Liealgebras

last year

Main reference Hall hie Groups Lie Algebras and Representations An

Elementary
Introduction

1 Basic RepresentationTheory chap 4 in Hall

H Definitionof a representationof a group

Definition A representation of a group G on a vector space V is a

group
homomorphism

IT G s AutV

So each abstract group element yeG is represented as a linearnap

Ilg V s V

ie a matrix satisfying Ice Idu Ilg 11Th ITCgh ugh

We will mostly consider complex representations ie V is a complex vector

space



Definition If VittondHIM are representations of G then a linearmap

T V V
is called an intertwines or an equivariant map if

T Thy Itg u

for all ge G
NEV

That is the following diagram commutes for all geG

T
V sV

Tlgl IT'lg
u n

V sV
T

The representations of G assemble into a category RpG where

an object is a representation V T of G

a morphism is an intertwines

Defn Let IT be a representation of a group G on a rear

space V A subspace W E V is called an invariantsubspace if

ITg w e W

all cG weW



An invariant subspaceW is called nontrivial if y
n v

wt fo and NTV w

G 041
TR W IR

ed A representation ITV of a group is called irreducible

F V has no nontrivial invariant subspaces

de every 7
dim representation of a group is automatically

irreducible

Defn A representationTof a group G on a foempate inner product space

is unitary if each ITly is a unitary
linear map ie

orthogonal

Tcg v Mgm v w

for all geG v w cV

Example For any groupG have trivial representation

on defined by thy id E E for all G

All the matrix Liegroupshae
canonical representations

on spaces of column vector's.gg O 3 has IR as an

orthogonal representation



hee t e IR be any geometric figure eg triangle polyhedron

Let
G ge Oln suchthat got X E 061

Thes IR is an orthogonal representation of G

eg G symmetries of equilateral triangle
centred at origin

2 32 I 2422 acts on IR

G symmetries of tetrahedron

54 acts on IR



Canonically
constructed vector subspaces will ingeneral be invariant

subspaces For instance

henna If V andV are representations of G then so are

Ker A c V where A V SV is any
intertwine

In CA EV where A V V is any intertwine

Any eigenspace E EV of any intertwine AV N

Proof het A V V bear intertwine and let veKHAITher

A FTCg v IT g Av

IT'lg o
4 0

0

i Ily v E KHAI

Let V e IMCA ie V Av fr sore VellThen

IT g v IT'tg Av A V V
Atty v

so I'tg v e In A

Ei Ker A did so this is a special caseof
o

an intertwines



finitedim Lie finitedim

n n
Definition A representation of a group G on a vectorspaceV is

a Lie group homomomorphism ie a continuousgroup
homomomorphism

1T G s AutWI

I
also called GL V general linear group of V

invertible linear maps V V

Choosing a basis for V gives identification

Guv EGLARY Matan IR
which definesthetopology on GLU



12Basic examples and nonexamplesof repsof Liegroups
12 iThe trivial representation For any Lie group G themap

1T G s Gue Et

g 1 Fy EG

is a representation of G continuous group homomomorphism

12.2 Representations of Ucl For any KEZ the map Fourier
analysis

geabelim IT yay s GUE
n veV n ei0 eis invariant z 1 2K

T
irrees

is a 1dim representation of NCI ZEE 121 1 of
UH

12.3 Representations of IR for any ke
themap

1T IR t s E't
k ka

x l e Tuf e e

is a 1dim rep of CR t as d eh

T xyy eklatyly
groupoperation ekkeley
inCRM

Ibc Ily
multiplication is the groupoperation
in GLEE



12.4 Discontinuous representationof R

hee N E R be a Hamel basis for IR as a

vector space over always exists by axiomof choice
That is every

real number x EIR can be uniquely written as a finite sum

x xqdit e tX.nl o

where

I in E N
x Xin E Q

f I i

isChoose some fixed do c A Then the map
IT IR t Et

XioX l e

is a group
homomorphism but is not continuous hence not a

representation

Exercise 1 Check this



12.5 Standard representation of a linear lie group tf G eGLV

is a linear lie group then it carries the
standard representation on V

id G S Guv

g I i g

Exercise 2 Determine whether the standard ndimensional representation of
Sdn on IR is irreducible

12.6 Representations onfunctions If G is any group notnecessarilyLie

and X is anyleftG set then we get a representationIToff on

the vector space Fun X E by

TlgHH x f g
i
x

w w

Exercise a Check this is a group representation

b Why is the inverse on the
RHS necessary

c Is this a finite dim representation Explain

Exercise het G be a finite group and X a finite left Gset

a What are the irreducible subrepresentations of Ect

b Let G Sz and X 53 with left action of G by multiplication

What are the irreducible subrepresentations of Efx



12.6 Irreducible representations of SUCH Let

th
adengpekeen

homogenous polynomials in 2 W
off

For example the function

f z w 222W 3W

is in K Indeed
3x4y2

I Ew W

Vn spare po p pn pu 2 w

so DimUn htt Note that we can consider

Un E Fun 02 E

By identifying Q2 with
the space of 2dim column vectors wesee

that GIG E acts from the left on 82 via

9 9 Y ut 9 V

ga gu gaU 922V

JEG 8

and hence Example 1.2.61 for each n we get a representation of

GIG G on Vn



Exercise There is something to checkhere I'm not talking about

continuity Explain what it is
and check it

Exercise Using the basis for Vn determine explicitly the resulting

matrix representation for n 2 ie

ITA Colla e s GL 3 E

Since SUCH C GU2 E the Vn are also representations of
SVG by restriction In fact the Vn are a complete listofthe

irreducible representations of SUGI up to isomorphism as we will see

henna Vn is an irreducible representation of SUCH

Proof Since SUCH is compact Vn is unitarizable So by Schur's

henna we just need to
show that any intertwine

A Vn Vn

is a scalar multiple of the identity For te IR consider

t.ie o rot L

in SUCH Observe

Lutto puffy Putti H



puff i
w

p I
e
i f G h th O zahWh
e
12hNO

puff

i e Mto pa e
GhNO

p

So every pie is an eigenvector ofAdhd We can
choose Ost

all these eigenvalues are different So the eigerspaces ofTlfto
are

also eight Op Epn
A

Since A commutes with Tko it leaves all these eigenspaces

invariant Hence

Apu duPu Oe k en

for some do in e We will show all these eigenvalues

di mustbeequal so that A is a scalar multipleof the identity

Firstly we calculate

Hrd polit poll I



p
cos02 sindw

sink cost

40502 sin.Ow

Iof cosmosinhoz w

o Ilro p Iof d Pn
nonzero

Now A is an intertwine so we must have

A ro p thoApowµ top

ooo
cos'Osinho lupu 1 cos'Osinho dope
n Let

ooo in do for all k o n
D



Schur'shenna het ITV be a finite dimensionalcomplex representation of
a group G Ther

a If IT is irreducible then EndoV Eidu

b Conversely if Endo Eridu and V is unitorizable ie admits

an innerproduct sit IT is a unitary representation ther V is
irreducible

Proof a Suppose IT is irreducible Let A V V be an intertwines

I want to show that A did

A has an eigenvalue d

But ther E E V is an invariant subspace

Since V is irreducible Ei Go or E V
not possible i A lid

b Suppose a nontrivialG invariant subspace W EV exists

Ther Wt is also G invariant

Let VeW and weW Ther

w Hgtv Nyt w v o

Fw T.ws

So as representations DG AG
V W Wt



So the map
A i V sV
win 1 1 W 2W

is Gequivariant But A scalar multiple of identity sothis

is a contradiction So our initial assumption is false ie Wdoes

not exist ie V is irreducible
O














































































































Lie Algebras2020
Lecture2

Recall A finitedimensional real or complex Lie algebra is

dimensional vector space 9
equipped with a bilinear map

9 9 9
a finite

satisfying

IX y ly x t titty

It 14,23 t 14 kid It 12,41 0
Jacobi identity XpeTpm

Exames EI lxgHM M

algebra A la b ab ba














































































































For any matrix lie group G e GLG.IR its Lie

algebra is

g Xe MathIR ett e G ferallteh

o o where o kit G is a
Lie group homomorphism

e g
TeG 8401 where 8 this G is

x y XY TX cEndurn any
smooth path with glo I

Lie GUNN all real nen matrices
eg

glln.IR Alt1 IttX fun
th

Lie Sdm antisymmetric real nm matrices

Lie Um antihermitin nm matrices

gI gg
Suh














































































































Is wit a 0

i I t t Atta t Oley I

T
i A A o

1.3 Lie algebra representations

All of the above definitions can be easily modified to speak

representations of lie algebras instead of Lie groups So

Definition A representation of a hie algebra L on a vector spac

is a Lie algebra homomorphism

it h E s EndV commutator

ie HHMI ITCHHYDEdas
TWITCH a 4 a t














































































































A subspace WEV is invariant if

it w e W for all KEL weW

A representationof a lie algebra is irreducible if it contains no

nontrivial invariant subspaces

I3.1 Complexifications of real hie algebras

Complex linear algebra is easier than real
linear algebra leg eigenvalue

always exist so we will mostly want our lie algebra representations

to be complex vector spaces
mostly

But our Lie algebras in the previous course were
real hiealgebras

because we were working with real hiegroups eg Sub
X KIX

We can turn any real vector space
V into a complex one by

song
with

µ e II
By formally writing v hov and Iv i V we canthinkofVo

T

Vc formal expressions Vtha VV2EV














































































































where the complex scalar i acts via

i V tha Va Iv

Exercise Prove this formally

In this way we can turn any real
Lie algebra into a

complex Lie algebra corplexification by complexlinearly extendingthe

bracket

v tha Wittwa y
luiwi Va.wsutI 4w1vtlva.w

Proposition If L is a real lie subalgebra of a complex Liealgebra

eg su2 E getter
and if suble

it to
u

for all nonzero X E L ther f
Le X t i ta XHae L

actual
coffee multiplication in L ie not

formal

Proof We have a surjective homomorphism

f ha i X t i ta XHae L ELK

HIM 1 s X tiY














































































































whose kernel is

Koff ttIY c Le XtiY o in L

If Y e L i iY o in L

o

So f is injective and hence an isomorphism
0

Corollary glfn.IRe glln.E f Math El

ulnte glln.ci
I seC

slln.IRI slC ttiy

sdnto sdn.ci
Imagawa'neisen

spfn.IR e spGiE sun 0
giraffe

Exercise Use the proposition to chede that
movies

a glcn.IR tglG.E
b such e E SAN E






































Exercise Show
thutguczy fslls.IR

even though

sul2la sll2IR e



I3.2 Examples of hie algebra representations

a For
every lie algebra g

have trivial representation on 0

defined by
ITCH o tf te g

This representation is irreducible

b Recall the adjoint representation of a matrix Liegroup

Ad G GlenRl LgRg G G
G s Autfteb cGun.ir

g DICg 9 g g I i gC g LogoRg Cg G

Question what is the adjoint rep for an abstract Lie group

Similarly the adjoint representation of a Lie algebra is

ad g s End g just vectorspace
endomomorphisms

X l s X notLiealgebra
homomorphisms

check adan adam I ad tie



Proposition Let
IT G Auth

be a finite dim rep of a tie group on a vector space VThen

it DfT g Enda

t off the
I

is a finite dim rep of g on V

Last year for any Lie group homomorphism
Recall a repof
a Lie algebra 9

g G H on a vectorspacer

is a map

it holds that pig Enda

DII g h se

1 Flett
orexin
pullout

located

satisfies

LOCHolaf ohhhh Caxton

LET
Eno



Proposition a Vitt is irreducible V t is irreducible

repof G repofy

b VHewitt Hit via
reps of G reps of g

Proof a We will prove

W invariant subspace W invariant subspace

for VIT fer V r

repof G repof y

Let W be invariant subspace of V

Let X e g
and wew

of G

it w Eet.tt ww
CG
CW

x CWO

Let W be an invariant subspace of the representation

of og on V



Must show W is also an invariant subspace of repof

G on V

Let WEW and 9 E G
why See endoflecture

Can write

g et eh X XnEg

i i i i
ITG w Tle eXn w

Met't IT

q
IttKnltitf.xI

e't ethn w
t

w

b

RepG Repg

Questiwi.IsexpwdldefinedherIT seeerdof.IE



Proposition het g be a real Lie algebra and go its

complexification Then every f dim complex rep Ver of g

has a unique extension to a complexlinear rep of age also

denoted IT

Exercise Provethis

Dario why do we always insist
on f dim reps

Bruce One reason we only
knowhow to takethe derivative

of f dim Lie group representations

Also our definition of a Lie group rep required fdim

vector spaces

continuous

1T G Aut V
group homomorphism

Last time irreps of SUCH

2 wVn
homogenous polynomialsof degree in space

in complex variables

5012 acts on Vn by

g f f f g El



What is the corresponding rep of the Lie algebra sold

X E su 2 ie X is traceless antiHermitic 2 2
matrix

e I t't hole t
t

few ie Htt offe l t.lt
2

Write

f I e lift t

i AHH Faith
If

sina.at t.tw

1 m x full

z tX XaRtX

i e if we think of 2 and W as linear operators on functions on Ed
multiplyby 2 and multiplyby w then

Xi 2 thaw VaZt X2zW
w



gf2 e traceless 2 2 complex matrices

Get rep of stale

foil t foilnicebasis H

His
F fi

basis f seat If II raising.mn
operates

antiHermitian
traceless matrices

So sub is a real vector space with basis

E Elio L Ea El E Ii
and Lie brackets

EiEa Es LEa.ES E EzE1 5

Following up on
loose ends

henna If G is a connected hie group then every A c f can

be expressed as a product of exponentials

A e et et k Xn E J
Proof This follows from the fact that



exp g
G

is a local diffeomorphism see last year's notes Let AEG
We

know there is a path

gut oD S G y6 I yl G

For any
choice of subdivision of Lo I

to o e t C t C stn 7

we can write

A Height it fHtnHtnsI Height Ht

If the subdivision is fine enough we can ensure eachof these factors

is close enough to I cG so we can write

jttilgfti.it e i l n
0

a corrected tie group

claim tf VI and VT't are repsof G and Hitt Vit

the corresponding reps of g ther

tutte wit't V.it fVHI
as repsof G as repsof g

Proof functuriality of D RPG Rpg

Let f V V be the isomorphismof Lie algebra



rps That is the following diagram commutes

t w
ICH ITCH for all k e g

v N

V s vf

Ther if AEG we can write

A et ex ti e g

so

f o ITA foTfetto ok

foe't o oetTCK

www

ETCH o oet of
ITCHof

0

If g is the Lie algebra of G I don't think there is

generally a functor

Rpg RepG

Rather there is a functor

exp Reeg s RepGo



where Go is the unique simply connected Lie group whose

Lie algebra is g

think eg
SVG and 50131 have the sane lie

algebra but the everdimensional irrps of 5062 spinor

do not have analogues for SOG
reps

all irrps are odddimensional



 
Lie Algebras
Lecture 3

Last time From 1
IT G s Audu rep of G orV

get
it g s EndV f rep of g onV

i i
We applied this to the irreps Vn of

SVG

d d b
Un span jw Ew 20W

et et Tn
to get rep IT ofsold Tnole not the norbmeastization

I
it t.ir thaw fz HaftEffy

sameformula

By complex linear extension then gives us a repof sub e sll2ci

Ht L x f L y

HX 2X lay H my ay

X h zn
4Wh it k z 4Wh



1We compute

ice c µ i t
n ki1 2 Wh kn z w

n 5 4 5

f ht2h en so Eu is an eigenvector
5 of H with eigenvale ni2k

Hed f w Ehud
5 5
n h even

Met fzfw z wY

hey I Y V
t

Eg V5
µ g µ H I µ H3 H 5

fx.be I.Res.R ho.xNeo II e I e Eyes't e r ay
y Y f Y

s

Check commutation relations eg
XM H c

xy yx H on ea 1 7
w

ut th 2x on ee 1 4 2



Lemma this rep Vn of sll2ci is
irreducible

Proof 1st proof This follows from the fact that Vn is an

irreducible rep of SVG let go sold g
SLGEl

s ES so g go E EX till til cgo v
su E

T A rep of g
restricts to a rep of ego ew

We've alreadyseenthat a go invariant subspace W
EVn is also

a SUCH invariant
subspace hence trivial by earlier prooffrom

Lecture2
nonzero

2nd proof Let WEVn be a invariant subspace for slk.ci

and w a nonzero vector in W o enEW

Ther for suitable k X w is a nonzero multiple of en

And Once we've established enEW
then all ei are inW

by applying powers of Y ooo W Vn
o

W woe t w e Wzez t Wz l t Wyly t W Eg

X w De t Dez toe
Dey toes

I 10
5 w Oes

i es EW



Theorem Every
irreducible representation of IG E is isomorphic

to Vn for some n

We'll prove this in stages in a way which will ultimately
generalize to find the irreps of any semisimple Lie algebra

See

Fulton and Harris Chapter H Representations ofSBE

Firstly let's recall our basis HX t of ska E

ix Hi
HX 2X 4,43 24 CXY H

Let V be a finitedim irreducible representation of IG wey

Fact The action of H or V is diagonalizable Pfaff

So we hone a decomposition

Va
NEI

where the run over a finiteset I of complex numbers suchthat



for any Vella we have ve V
HH xv UHH

How do Y and Y behave with respect to this decomposition

AB BAL t AB a at
Fundamental calculation 1st time say

H Xen XH HD v nahar
H

aXlv t 2ND I
at 2 Xbrl 9 Xlvi

so H Nn

Hx 2X X Va Va 2 Hut
i Xlv Elf

Similarly ie Xlv is an eigenvector ofH
with eigenvalue xt2

Hit 21 Y Va Va 2

Since V is finitedimensional and irreducible the eigenvalues of

H must be a finite sequence of the form

o in

for some ne E we'll shortly see n mustbe an integer



The picture is
H n 4 N n 2

X D x I Ian
ooo Vn MY 2 th

w

y Y Y
x

Choose any nonzero vector V EVn Evidently we have Xlv o

What is 46 Firstly
quay

n 4 y4v EMM
W d f Vernan W EV

Claim The vectors
spanked Yul 444 ooo span V iW V

Proof Frontheirreduability is enough to showthat

the subspace W spanned by these vectors is
invariant under the

action of H Xand Y
This is clear for the action of H

andY

but needs to be
checked for X

X v o from above picture

here is wherewe

X yw Yt Kid v use x Htt
0 t Htv

NV

842611 Yt kid 1461
Y nu t HYG



NY v t n 2 Y v

n t n a YW

So in general

X 4 1 n x na t n 2421 4 v

w ngEW
and we are done

Corollary 1 All the eigenspaces Y of M are 1 dimensional

Corollary 2 The representation is
determined by a singlecomplex

psll2ci
number ne E

It is also true to say that V is determined

vi gym.lv
by the complex

numbers in appearing in

µ
the decomposition V LOV

Finally since V is finitedimensional we must
have

Y4v o

for sufficiently large K Let Ko be the
smallest such k

Thes



Rykov o

but we've seen
n Inti 2 n

nm
X Ybor n x n 2 t n 2421 V

ko n ko i o
0

ooo O koe ni
ooo n is a nonnegative integer

So the eigenvalues of H form a string of integers

ditting by 2 and symmetric about the reflection ans e

eg n 5 re

soo

9
I 3 5

Conclusion For every nonnegative integer n there e a unique

irreducible representation V p of sll2 ro whose highest eigenate

of H is n It is on Cnn dimensional representation

In particular our irrep
earlier is irreducible and the

highest eigenvalue of H was n so it must be isomorphic

to V



What about representations of SLG e which aren't reducible

We're going to
need to take a step backfor a bit



Abstract interlude

Definition A Lie subalgebra hcg of a Lie algebra
is called

an ideal if g h eh i ie if h is a representation

of g
under the adjoint action

Ad g Endg
x LX 3

Exercise het G be a connected matrix Liegroup and HeG a

connected subgroup Let g
and h bethe Lie algebrasof Gond

H respectively Show that

H is a normal subgroup h is an ideal

of G of g

Definition A hie algebra is called simple if it contains no

nontrivial ideals and Iif din g 72 It is
called semisimple

if it is a direct sum of simple Lie algebras

Ig h Kil Kab KKXDHilal
X X Eg
1,42Eh



Defy If V and W are representationsof g their tensorproduct

How is the representation of g gives by

g now g1dg.w X view Hut w t V Hw

Note this definition comesfrom differentiating the tensor product of

two reps IT
and IT of G on V andW

know 1aeluowL
ItttoCettv ioGttw

daleo V t
ther t wt tXwt

o
VOW t know t V Xw t

µ w t v Kw

henna het Vitt be a representation of a Lie algebra g
and define a bilinear form B on g by

Barin Trf
Then B is symmetric

and g invariantytn.ua y rep
ie B is a morphism 9.09 10 in Rpg



Proof symmetry Baby Trfithlital
Trilateral
BUH

g
invariant Exercise

0

Defn The killing form
on a Lie algebra g is

the symmetric

bilinear form
B y Trg adxady T

eg for sl 2 e

UxI 2X CHY 27 X y H

H X y adn g g
M

ad Lu I If Luhan

u x Y x u
O O O 2X

ad Lt I If 2 o o

Y O O 2



ad fit I f ooo

Exercise Complete this calculation Compute that

B 2,24 49422 2,2EDGE

Is B nondegenerate

V Blum e k

B nondegenerate
o fall w
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Lecture 4

Last time we ended with the killing form
but I'm going to

pause that and return at a law point

I want to tie up a loose end from the last lecture

Conclusion For every nonnegative integer n there e a ungic

irreducible representation V p of sll2 ro whose highest eigenate

of H is n It is on Cnn dimensional representation

I said existence was a cheat and that to do it abstractly needed

Verma modules infinitedim reps That
may
be true in general but

for sl 2,0 we can write
down the rep concretely

H n Hin4 N n 2

D x x I A Ran
vi thy tha w f

ng y y Y v

If we choose a basis

Uu Y v h o n



then we computed

Hk 211 thou n 2h un k
in
i i

iii

0 if k o

Conversely we can
define an abstract representation of SLGE on

Eluo ou

by the above formulae it indeed satisfies the commutation relations

So existence is clear here too

The other finitedimensional proof of existence is to use symmetric

powers



Defn The Kth symmetric power of a vector space V is

Sym4V Vote
span V ViVin Vu

t V Vit Vi Vu I I he

We write the elements of Syn V as homogenous polynomials eg

Wav V Va Vs VavUz Vayu etc

For example if V Else y the

Sym'll V
Synav spas E Ey y

yx
gym'll span of say xy2 y
etc

Lemma If V is a representation of a lie algebra g ther

the associated representation of g on V0h descends to Sym4V

via f f n

Xf Iv Vu Mvp Vu
Ohio Vu





Proof Must check action of X is welldefined

We have

V Vi Vit Vu V Vit Vi Vu

and indeed

X LHS
p

V Mvp Vu

Urus 1
A

because V Xlvi Vit Vu IV Vin Nui Vu

D

Exercise Does it make sense to take symmetric powers of group
representations

For example let V be the 2dim irrep of sll2 ci

span x y

H l
X fuel

y f x
z

Y se ferox





Representationsof sl3E

We want to classify irreps of sll3ci like we did for

sll2 ci Let V be any representation of SLGE

For IG e H played a pivotal role we decomposed a representation

V of SLG E into eigenspaces for U

JOY 8 dim

For sll3ec Xe Matz El Trt 0 therole

of H will be played by the 2
dimensional space hes E

of diagonal matrices

h a ta ta of

Fact For each Heh the operator H V V

is diagonalizable

Note that all the operators Heh commute with each

other so we can find a basis of simultaneous eigenvectors



By an eigenvector of h we mean a vector VEV

that is an eigenvector of each Heh Since the eigenvalue

depends linearly on Heh we can write

HH Hulu
afumber

for some linear functional j e h which we call an eigenvalue

forthe actionofhow We call these eigenvalues geht for
the action

of h un V the weights of V and the corresponding

eigenspacesVy the weight spaces of V So

Any finite dimensional representation V of Sl 3 E has a

decomposition ve Vr
V HH HH v

y r

where Vr is an eigenspace for h and y ranges over

a finite subset of h the weights of V

Oh we know what places the role of H for IGE

What plays the role of X Y
Recall for IG El













If V is irreducible we observe

The weights geht occoring in an
irreducible rpresenalin

of sl 3E differ from each other by integral linear

combinations of the root vectors arehit

7 7

ooo

7 ftdy
r 43

y
µ

a
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Recap classifying irreps of g sll3 E

We decompose

g h yoga
w

a
a

Tr x hi hj
gai spm Ei

where de ht are the roots of g satisfying

H X Nu t te ga

Then we observed that if V is any finite
dim rep of sll3gl

we can decompose

joy
where geht are the weights of V

and

HH yall v veVy

Finally we found that

Xe g Y Y



spoiled ol
v Van

sente 43 4 4 U f o
t Eso

i L O

i

µ

its fog Lrt
or

d Oo Ya L L h
L 4 a

43213Lz

roots of sll3ci Eh weightsofV
chit

If V is irreducible we observed

The weights geht occoring in an
irreducible rpresenalin

of sl 3E differ from each other by integral linear

combinations of the root vectors arehit

End of recap



For irreps of IG E what we did next was

characterize the entire irrep starting with an extremal vector v i

i n i en o
for

8 8 r b r 4 y 2 8

Here extremal meant V is annihilated by K ie

is annihilated by the extremal root space q g

g spank spank g span x uit 24

i
I a

extremal root a maximum

2 2 4 2

For SLGEl we should thus decide what the
extremal roots are

Let

Ar Z roots of g eh't

be the root lattice We fix a linear map

Mr722
Roots.ro IR roots ofg E ht

l Roots
r

R Roots
n E Eh

which is irrational with respect to the lattice Air This willdivide

our roots into the positive roots and the negate roots



regaliaroots

I fail 4 yeitrenal
root

21 go 043
O

µ
Epos e roo

a
x
L he

hit to Uga

root lattice A of 5lbE c bR
0

In our case we can
choose

a L t as tasty aa t bas t ca

where atbtc o and a bk so that the positive roots

the ones for which lb o and negativeroots are

A 42 13 23 421 431 432

bffisga Ey Ey Ea Ea Es Esa

raising operators lowering operators



X

We can extend L to a complex linear
functional on h

whose real part ther is a real linear functional on Aw

t h R
t v tis lb tilth

Now consider again our
irreducible representation V

The moral is

Acting with keg on VcVg raises the

value of E by Kal



Vy Vita

vx Is Hn then IG t Kal

j Jta

So if X comes from a positia
root then acting

withXwill

raise the value of t and if X
comes from a regaliaroot

then acting
with X will lower the valueof

Upshot For any irrep V of SLG El there exists a

vector veV such that

v e V for some weight y
v is killed by the positice roots E

E Esp

We call such a v a highest weight vector fr V

For reps of sl 2 E we then argued that the representation

was spanned by vectors of the form Y v We havethe

same here



henna Let V be an irreducible representation of IG E
andVEV

a highest weight vector
Ther V is spanned by the images of v

under successive applications of the lowering operators Ea

Esa Esa
As a consequence

boundary

y
423 1213

L47 dir h 043 4 4 ifi I ydoo old
a ok 042 4 4
L 4 N

o o
QELzLz

negative roots V supported on

these weights

dimly i

the boundary weight spaces Ying 1 Voting

also have dimension 7



Toprovethis we will use the following useful gereal fact

Reordering henna Suppose g is my Liealgebra
and that IT is a

representation of g Suppose Xn i t is an ordered basis fer

og as
a vector spaceThen any expression of the

form

thin Ittihad
can be expressed as a linear combination of termsof the form

a Xm
km

IT Xa Fft
k

where each K isanonnegah.ee dktkat itkmEN
Proof Induction For NY it's true as there is nothing to do

Suppose it's true for products of length N Then a product

of length Ntt car by using the
induction hypothesis be written as

a sum of terms of the form

j mm w

T Xmt t thenEN

repeatedly use it Xi X TIX it ti t ITCH att
I

IT Xm f
kit

pfy.pk
Ht

products with E N terms which offfedbe1 O



Now we can prae the previous lemma

Proof As for the proofof IG E let WEV be the subspace

formed by repeated applications ofthelowering operators Ea Esa Es to v

Wemustshow W is an invariant subspace which amounts to

checking that the raising operators En En Ea leaeW invariant

Select the following ordered basis for g

E3i 2
Eh2iEh3iE2

basisfor raising operators
loweringeraurs h

µ L o Hicit

Consider applying a raising operator X to a generating
vectorofW

v
X En En or Ea

a
Y Ea E or Es

YY H FX it n

T

By the Reordering Lonna we can write this as a sumof

terms of the form
where first raising operators are applied to

V which kill v then elements Heh are applied to v which

simply multiply by the scalar
factor 814 as v cVg then

lowering operators are applied to V Hence the result is in W O



Oh So our picture of the weights are

boundary 2
I

My.ioat u 32
it

u Ha

ka Ch
How long can this boundary

extend
Hayay ok

fact If is a root of a semisimple Lie algebra g ther

s ga to g a ga g a E g

is a subalgebra isomorphic to sl 2,0 That is we can choose

X E ga YaE g a H E h such that

HaX 2X HaYa 2b ItaYa Ha

Let's verify this in our exampleof Sll3 E Take 2 2,2
Write d

X Ea Ya Ea Ha HaYa
Eu Eu



I
Ther

Ha X 2x HaYa 27 lxa.lk H

Similarly for the others Exercisechedethi
So

For any
nitrite a the subspace W EV formed

by repeatedly
applying Eg to v is an irreducible

representation of Sl 2,07

In particular the boundary vectors are irreps of IG e

This boundarysegmentW is an irrep of
T slc2glEspn En En UnA TTT

o q Yt UnK 9 oof i eigenvalues of His are
0 O O S

j
9 integers symmetricwet 0

Hu nu 0.0 X d n

t c if
0 n.cn oh.lvo

f lo highest eigenvalue

aninteger

From this we see that the roots comprising Wa are of the
2 O 2

form o a o

j i f da J JHy g n 2

the 3dimrep



and they are symmetric with respect to the line

L Seti 8 tha o

42 l n O l
r i

g such its Titi
go ska e Soldo it q Yg Is

f grog K o
I

tie Tfadxady
i g got

qii 7 g gE 0 o h h E
o

f gy wtf lui C it 1h o L i Iga
g Lw

Exercise Equip the real subspace Roots spanned by the roots

with the dualizedversionof the killing form thought of as an inner

product on h r Show that with respect to this inner product

Lialineorthogonaltodi
The same analysis applies to the boundary roots ft kaza They

form an unbroken string symmetric
aboutthe line Laz



Liz

Eefi goof
a

OO

of I
o

10

Now consider the vector at the end of the top boundary string

v Ea v e Vy y ft Nda

LizV Walp p paid
23 Ogot

qq.fr

also a weight yes

go.it g i Ijoyyo
From the perspective of V the positive roots the

ones whose operators kill V are



13 I 23 I 421

These are obtained by swapping 142 ie reflecting in

the line 42 in the roots whose operators kill V

23 d131 12

In fact we assert somethin stronger

Fact Reflection in the lines Lij sends weights to weights

This means that

The set of weights of the representation V is bounded by a

hexagon symmetric with respect to the lines Lij and with

one vertex at g
ca 7 r thx
n s

p o the multiplicityof
b 8 r these border weightsIa le is 7orgy

there are weights
r o b insidetoo butwe
a S L 43 don'tyetknowmultiplicities



 
Lie Algebras

Lecture 6

Last time we are studying
irreducible representations Vof

sll3 ci The irrep V has a set of weights and we

arrived at the following picture for the weights

The set of weights of the representation V is bounded by a

hexagon symmetric with respect to the lines Lij and with

one vertex at f The hexagon is classifiedby two integers ab

b
r Kia a Tg

n s
of 8 n r

a k fb Ior

V
r o a
b s L 43

Let's do some examples



1 The standard rep of sll3ci on E

sll3ci acts on Ign edu by matrix multiplication

X v Xv Xe sll3ci

The eigenvectors for the action of

h hg h th th o

i.e the weight spaces ofV are the standard basis vectors

e Lo e e

weight h La

Recallihiflhjio.jo hi

because I

I.jo ei hfohnI ei
h



3 1 biz
1

g

Etuisc
do 23

I

pl l d Laus o

i v
1

Weights fr
bao a

How about the dual representation Vt

Defn V is a representationof a group GIf
Vx is gies bythe dual representation of G on

of v f giv

If V is a representation of a lie algebray

the dual representation of g ar V't is givenby

Kofu fff v



Exercise a Show that these are indeed repsof G
and g respectively

b If g is the lie algebra of G showthat

this definition of the dual ofthe lie algebra rep

is equal to differentiating the dualof the Liegroup

rep
fomplese

Exercise If A is a operator on a fdim vector space V

show that the eigenvalues of A on V are equal tothe

the eigenvalues of A V S V on Vt X f v ff Xv
Xt f

UH Xi the dual linear map ie

repof 9 given A V W

cV XE9 we get At W
V't

H defined by Atty v g Av

F fEV't se X if

So the weights of the dual representation of g
are the

negatives of the weights of
the original rep



2VI weight

near
highest

weight

a O 1

IUH

b

vectorspaces

V a
e iienm.fi if
basis Hua's

file Sii Weights of Vjstandard rep
Observe the weights of the irreps of SLG were invoint

under g y ie V't EV but for reps of slbel

this is not true Vt V in general



Recall the definitions of the tensor product and symmetric product

of lie algebra reps V Vn

X V un 1 V Xlvi Un

EV Vn

X Viva fi Vi vi Xlvi un
CSymV Un

From this we see that the weights of a tensor product

or a symmetric
product are the sums of the weights ofthe

feeders it's just that their
multiplicities will be different

eg 3 V V
9 dimensional

do do

ooo

ooo ooo

u r



24g
spenteDea See

µ
spm exe

Littz
r

2L

Kno Van Ya o Kong w
VT

4 Syn'll 2,5 For

yn

24
2 ol

iV
W Lowinglu us e b din

irreducible a us asniIeduYiibmkot
subrep of

24 two hexagons



5 V Vt

a 4

ter
Too

f 9 dim

Now V V is not irreducible as there exists a
equivariant

nonzero equivariant map Kelflew f p
ev

9D rep
f v i s fCul

Exercise Check that this map is g equivariant



So the kernel of this map is a nontrivial subrpresentation

of HOV
fdim

Exercise For
any

vector Space V we have a canonical isomorphism

A V V End dinah

dimwt
f u w f w U

q
Show that under this identification

WE A Keef Traceless 3 3 matrices E End
Vt

and that the resultant action of y or W is just the adjoint

representation of g

sucz gaugethey G much QE
In physics sumac

I 1 issues

V't adjoint trivial eightfold

wayFs Figures gdin l din

We can summarize our investigations of irreps of sll3ci by



Theorem for any pair of natural numbers azo b to thee

unptuiso

exists a unique finitedimensional irreducible rpresentation Pub

of sets E with highest weight ah bls All irreps are
often ie Ving ofSLGEl VET

Proof Existence Since Symal is generated by a highest

weight veder
V of weight ah and Sym V is

generated by a highest weight vector w of weight by
SymaV Symbut

will have a highest weight vector view of weight al b

The irrep generated by applying towering operators to now

is the Pais

Uniqueness Let V and W be two irreducible reps of

g with the same highest
weight x and let vet

and weW be the corresponding highest weight vectors
Then

W X v w Xvtw

is a rep of g with highest weight
vector Yw

of weight a let



U EV W

be the associated irrep of y
obtained by applying

towering opeators to v w Then the projection maps

HT U V Tw U SW

are nonzero maps
between irreducible representations and

hence must be isomorphisms by Schur'sLemma So

U EV and V W Here KW

All irreps are of this form Gives any rep V we know

there exists a highest weight vector vet This highest weight y

must lie in the weight lattice

Aw lattice in h generated by the Li

al bb a beIN o

since for each positive root 2 we trace the irrepVa
Va

of sll2 0 sitting
inside V 4

v

V Yak v e

nonnegative



n g
and the eigenvalues of hk on Va mustbe integers ie

secret Halu p Hdv x positia
rootix ii Mph et rlui

jfy.jo
racing

In our case by calculation

a an H X ya 84 o
eh

EY
2 4 Ha y

o c h

x daz Ha I eh

So 8 tha J Hz y Haz c Nao

ie y al bhs

so for any irrep V the highest weight y of V

must lie in the weight lattice So if re Vr then the

irrep obtained by applying towering operators to V willbe

a copy of Pais
O



 

Lie Algebras Lecture7

It is time to generalize our study of irreps of sl 2 o
and

sets e to arbitrary semisimple lie algebras

However I'm going to take
a geometric approach

sameas Hall Tha

means I perceive a compact Lie group G as the fundamental

object and I am studying irreps of its
Lie algebra g

and its

compherificalin go notfor its
own sake but because I'm interested in G

things

This simplifies a lot as it enables us to avoid a lot of algebra

which is good since I don't really like that
immediately

The thing that a compact hie group G gives us
which

a purely algebraic approach
must workvery

hard to do is

an innerproduct on representations of G and of g

ooo Explain Haw integral from
Haar integral roles

Lemma hee G be a compact hie group Then any
finitedim

rep H of G admits an inner product making IT

a unitary representation



Proof Let ti t be any inner product on V Then we

can usethe
normalized Haar measure won G to average it overG

in order to make a nee inner product C with respect

to which IT is unitary

u w f thaw a w wa

aEG

This is dearly on inner product Let's check if its unity

Tcg v Hg w 4TH gv.TW

Tlg1wYwaaCb
ag Hgtv May w wa

f f w
G

whee Ha STlaglutTCagw o

fr failing Ii't



light Eg w

w as W is

G invariant

Ila v HalW Wa

v w
0

Let's call a realLie algebra which is isomorphic to the Lie

algebra of a compact tie group a compact hie algebra

Bigger picture we have an equivalence of categories carton'stheorem

didn'tdothisfunctor lastyear
Itsexistence is called Lie's third

tangent space ate Theorem

Simplyconnected Tf Real Lie algebras
real Lie groups I

integrate

i
sold

sun



Corollary the lie algebra g of a compact tie group G

admits a g invariant inner product ie

ad Y Z SY ad 2

Proof from the above theorem thereexists on inner product on g
making the

Adjoint rep of G unitary

Ad G s Autly

Adly X gXg
l at least for

a Matrix
Liegroup

Now differentiate
0

Corollary Every f dim representation VIT of a compactLiealgebra

g
admits a g invariant

inner product ie the operators theyseffadjoint

th v w Gv Ict w

Proof g integrates to a compact hie group G andV becomes

a representation of G So it
admits a G invariant innerproduct

Then we differentiate D



Exercise Work out explicitly the inner product on
soca

using

this technology ie choose an arbitrary inner product

X ion fiery fire

and then average it out
And compare to killing firm

K AB Trcadaads

and littine AB Tr ATB



 

Haar measure on compactLie groups
short version

The longer version of these notes is also
available

Every compact hie group G admits a unique normalized

Haar measure ie a measure µ on G such that

G invariant M gU MCU for every Borueleset

gEG
normalized µ G 7

That's the measure theory definition of Haar measure but

its not constructive and not Vey geometric



Here is a geometric
description which uses the language of

manifolds and differential forms

A volume form w on a manifold M is a sectionofthe

topexterior power of the cotangent
bundle

totalspace In µ if dimM n

T Ifw Tow idm

is in eiiiHim
That is for each xeM we have

w e Antrim e NEM
t



That is since NT.cm is the space of volumeelements

in the tangent space at

i m

foreachc
WI NEM

SIR

is thus a linear functional on the volume elements at a cM

and it depends smoothly on a

This is just to motivate why it makes sense to integrate a

volume form w over as oriented
manifold M

W Jw
M

W

So a volume form n is a smooth way of constructing a

Measure on M
open

µ U Jw V E G

U



How do we define the integral of an nform on ar ndin

oriented manifold M

An orientation of a vector space V is an element of

ERjntopvlfoescalum.tt Felenert

Oral set

If V has basis e i i en

Basis for AN is e n re eane nesn re

nm Tx nmVo X
eve n ne O ein nen

So any
manifold M has an orientation bundle

Oran

ILJs
M

An orientation of M is a section of the orientation bundle

An orientedmanifold is one equipped with an orientation



To integrate an nform w over an ndimensional
orientedconpac

manifold M we choose a finite cover

Vien di Vip Ui
oriented

of M by coordinate charts
and a partition of unity

y M
Smith

Con ie I

At each ace M

f like i

support of Ti e Ui

Then we set

µ fdilxloitwdxi
id.cn

Vi

ordinary
Riemann integral

over vi Theorientation
on M is necessary to

makethis

welldefined



So in geometric terms we are interested in constructing a

canonical volume form w on a compact hie group Also

as far as G invariance goes

µ is G invariant w is a G invariant nform

ie Mgk NH ie Lj w w Vget
U geG

KEMI

That's easy
choose an arbitrary nonzero element

we c ATeV
1dim

and then translate it to each tangent space

G

gG
Lg G sG

a ga

µ go steer

0 9 Mfg Mtg ARG



Pulling bade forms

M
F

N

smooth Mcp

Wfm smooth sections of µµw
h forms on M M

For each xeM

w e NTIM T.MY

ie w MTM IR

v n nu 1 w c V n Nu

f
M N

f Df

fff T.cm TfaN
n

in



we RYN

f we film

seem f w A T.CM SIR

Wfldt
h N

A V W

NA NV MW
v n Nu 1 Au n inAva

f S s

ftp.qq

MH Ho ez

windff and why is it an integer

t IR F

et iii is i t
suit

N0f
fpy

y



Wy NTgG Ra

WoNA
gyro

since it is defined by taking something at the identity and

translating
it over all of G it will be G invariant bydefe

hjw a Wgi MUD

we Ndaa1 0 N Lg
we N Lay Lg
we A Lai

Wa

nai
Lga



By multiplying our initial choice of we e NTeG an element

of a 1dim space by an appropriate
scaler we canensure that

Jw
7

G

Moral There is a canonical
way

to construct a Ginvariant
volumeform

w on a compact hie group
normalized St Jw

G

Ok can we make this more explicit

In the accompanying Haar measure on Lie groups notes which

go into this
in a bit more depth you will find

1 How w looks like in an arbitrary coordinatechartfor G

het U EIR Io U G be a chart for G suchthat

lolol e

ii i i i



Then pulledback to the local coordinates x xn on U

04W det DA doc n rdx

where

A of o Lpa P

is the smooth mop of LR defined in a neighborhood of Kell
which sends x o and DAX is its derivative at x

2 How w looks like in the exponential
coordinate chart

Recall that the exponential map is a local diffeomorphism

ie there exists an open ball U E TeG such that restricting
y

exp g G

to V is a diffeomorphism onto its image Now TeG is

just a vector space isomorphic to IR so we can regard

exp as a coordinate chart on G

um
g



If we pick a basis Y i Yn for g then

expkwl det I dy n ndY

where

G i Lie G LieG

r f Il
is the derivative of the exponential

which you
learnt about last

year when proving the
Baker Campbell Hausdorff formula

Here ad is the linear
map

ady i g s g
y Lxii

and

I e
adx

adx

is just a
shorthand for the power series of



j

gk je iz l l z 1

l Zz t
2 t

applied to ady

ad
I e I aday tad a t

adx

3 How w looks like for 5062

It turns out that for 5012
which is 53 as a manifold

W is just 1 x canonical
volume form on 53 arising

fromthe

21T

fact that 53 is a submanifold of IR

In terms of spherical coordinates on 53

Yet
I cost sino Kitty 4

of 0 ri l cos0 sinor n'Gpl sindcop sinasinp cosa

w
CS2 EIR EIR

i.e O xp T cosd sinosinacosp sinosinasinfs sindcosa



we have

w i siriOsinadOndandp

2t2r_thevoluneofS32TgiriOsin2ii.I.os.o



 
Lie Algebras Lecture 8

Every realorcomplex f dim representation V it of a compactLiealgebra

k admits a k invariant inner product ie the operators theftseffadjoint

th v w su TWW Xek

Corollary If WEV is a subrepresentation of k ther W
is also a sub representation so

W Wt

as representations of K Xek

Proof Let Ve Wt We must show Xlv EW Indeed

for all we W

w Hd 5MW v dehoft

Hbd v
O 0

Corollary Every f dim representation of a compact Lie algebra

splits as a direct sum of irreducible representations

Proof Induction on dimension o



Note this isn't true for non compact Lie algebras

es IR I o is not a compact lie algebra

Lie algebra of GR t 1

Have rep

R s End ee

t l s

Clearly
spent is a subrepresentation but it

doesn't admit

a complementary
sub representation This is simply the fact that

i
is not diagonalizable

Definition A hie algebra is called simple if it contains no

nontrivial ideals and Iif din g 72 It is
called semisimple

Tie isnotabdin

if it is a direct sum of simple Lie algebras

Theorem A complex Lie algebrag g E ke whee k is a
compactLiegrap

is semisimple and thecenterof K istrivial
ie certelk isdiscretegroup



Alternatively

A complex Lie algebra g g ko whee k is
is simple a compact simpleLiegroup

i.e g is non
abelian ie K is compact and

and has nonontrivial has no nontrivial corrected
ideals normal subgroups

Proof If g ke then we can decompose g as

oftheorem
g gi

where each 9 contains no nontrivial
ideals We must just

show that
center g o ding 22

qcenelg

Indeed if center g o then dearly dingi 22 because

the only 1dim Lie algebra is which is abelin so

its center is O

Omitted
D



Examples

Amongst the matrix Liegroups from
last year and onefromthis

Center Lie algebra k corplexified ADE
Liealgebra classification

SU n ma II Suhl sun An

4012nA
n t b t tht Bn

50 2n Ms I solan Solan O Dn

Splan n7l II Sphl spca Cn

Un U in

50121 04 UG IR

Fiona Spink ns 3 te Sdn soln.ci B ordn
Liegroup

oddareven



Classification of finitedim representations of semisimple Lie algebras

Let g be
a semisimple complex Lie algebra Write g ke

Fix a maximal torus t e k ie a commutative subalgebra

which is maximal ie there doesn't exist a commutative subalgebra

of k which strictly contains t torus UGY KY
i
Liealgebra

Clearly such a maximal torus exists We write h to

Now let V be any representation of 9 Equip V withthe

K invariant inner product So

Xl V N

is skew self adjoint for all XEK

Hence it is diaonalizable With purely imaginary eigenvalues Hence

decomposes as an orthogonal direct sum of its weight spaces
He th to V8 y n is purely

geht to go.NU eht imus

Et c LightsofV

Moreover each weight ye if E h



Recall

Lemma Let A V V be a skew self adjoint mop Then eigenabe

of A are purely imaginary

Proof Let Av v where V is normalized So

I Lv Av
Atv v

f Av V
Lv Av
J

i I is purely imaginary

Applying this to the adjoint representation gives

g Ego 9
h

where the set of roots R is purely imaginary ie

Re it e ht



Also by the same proof as before

Xa V s Va aeR

real
Lemma ferkerf fo we're regarding a t liner IR



Proof Suppose H et and NH o for all roots x

Then for X cga

H X aw x
0

By the decomposition we conclude H commutes with everything

in og So H is in the center so it is zero o
t IIR 2 it IR

corollary R spans the real linear space I E g't

Proof If this was false then there would be a nonzero

Het such that x H o for all AER But bythe

Lemma this implies H O so it's a contradiction

Now we have a complex conjugation map on g ko

t i

g s g
Xtita s X ita

Lemma B is a real linear automorphism of g
Proof MXtix E Y tik XHa4the K



X its Y it

t.int Hail iflx.is Hay

thxtita Y tik
0

Lemma If a cR ther x cR and

q g s g a

Proof Suppose Het and X E ga Ther

In ran film NH Hulu

If H X t is automorphism

t aw x

NM th
au TCH

So th is an eigenvector of adu with eigenvalue KH



If V is a repof gKc with invariant inner product f it
then we know

H V sV te k

is skew self adjoint g X titz it keek

Nv w Lv Nwl vwell
Kek

But what about Teg ko
Lemma For X E g

MH61 w Lu Hui

Proof Write X X tits X X Ek

th ul w SH itallul w
Xcul wt ti Givlin
su X w il v Kiwi

Lv Hut O



Definition For each root DER we define its coroot

Ha c it E h

as the unique element satisfying

H I Kern a Ha L

Recall
spoilers

g
the roots lie in
a dim h real

it spoiler 423 4 4 subspaceof ht
i l namely it

da i 2din od LL 4 d And it't if
i do t

r

d Oo a L L h
L 4

43213Lz

µ
roots of sll3ci Eh

g ke de R
x t sik

ore x it SIR



Real spaces

x

Ha

e n en Kera
it't reallinearbasis ie L dualof it
t.it

Exercise Since he it can be written as

x Sa 7
for some vector Sa C it Determine 5 and compare it

to Ha



Theorem Let a cR Then there exists the g suchthat

Ya Ya Xa Ha Haskett
HUH 2

satisfy the sl 2,0 commutation relations f f
Ha Xa 2K 14,4 2 IX it Ha

To prove we will need

henna Suppose X c ya Ye g a
and Heh Then

lxidehmdn.u.ygyHMLTH.TT
Proof Clearly til eh We compute

H CMD LH adyCH

sad HI Y Y na

because SHHH Y
79 2

ur go Hour Y

so HEYLIN fauteuil
NH THY o



Proof of theorem Choose any nonzero Xa c92 We automatically

Ha X dutta Ha Ya Ha that
2X 2

Also we have fXd Ya c Keat as if Hikes

tu Ira Ya ACHY stud

And

Ina lx.in aCn 1Glxiih Kamal
t

2 f Ya Ya
2 1142112

0

So XaYa differs from Ha by a positive real factor

If we scale X H dXa Ie Et they

Ya FY

kayaks Hail
positive



So by choosing d appropriately we can arrange

Xa Ya Ha

Note there was a Uhl's worth of choices of 4

a
fixed 0a



 
Lie Algebras Lecture 9

How does this all work for sub

K sub Lie algebra of SVG

fi corpact Lie algebra

3 3 antittermileas traceless
matrices

It turns out the invariant
inner product can belakes tobe

y y Tr X Y X conjugatetranspose

check need adult 2 4 ad 2

fry yr 2 SYR 2x

use
X TRY 2 try2 Tr y th yeezy

Tr 4 2 XYZ Tr yxz Yu

The maximal torus t e k is the diagonal matrices 2 din

t
a
ia
ia f i aiHR aitaita

write a a a fr this
The inner product onk restricted to t is matrix

a a as bibub tiliab t ab tab
ab ta.be t Usb



Euclidean inner product on IR
restricted to subspace ataeta0

The vectors F 1 1 o F f1,0111,936,1 1 spas t

Nae
cosff.gbadbdf.eu GriHTiHHTzH

I 7

fro Bra
F Ti

e ego 12
T3Of i D 1200

Complexification g ke Sl 3 E
traceless 3 3 complex matrices

h h
Carin subalgebra h to he I'sh h h h

Roots g Eh dij Li Lj 64J

ti
h
heh

hi

root space of a j spas Ei E g



Note R
roots

E k't

because the roots take on imaginary
values on

Lij ia
pa

ai a

Ta aIR

Recall

Theorem Let a cR Then there exists the ga suchthat

Ya Ya Xa Ha Haskett
dual 2

satisfy the sl 2,0 commutation relations f f
Ha Xa 2K 14,4 21 IX it Ha

Also we showed that for any root in

ga g EH

which hints that ga is l
dimensional



henna het a ER Thes din ga L
Moreover R n Ra x a

Proof het

Ella 9ps
BeRnR2

ga JB
Us

6 p V
i

a

p

Then V is a representation of

Sa OH ga g
I sl 2,0

So it decomposes into weight spaces
These weight spaces are

the eigenspaces of Ha which are simply the gp as farXegp

Ha Xp pln Xp

So the weights of V are just f Boy with weight spacegp



Let Vera be the part of V with ever weights ie

Vem EH gpw
weight o PERNIK nd nc240

plus c 22

Then Vern splits up into dim Ella irreducible reps So Vem

is irreducible But I

subrepresentation

µHa go ga E em

Vem Ella ga g a
Oo

ooo dinga T
and R n Za f a a

There remains the possibility that odd weights exist ie that

Todd Gp
BeRnkd 1 2 42 apal isodd

is nonzero But Todd splits into dim gas irreducible reps

And if g is a root of g ther we
couldrun the entire analysis

again starting
with d g Wewould conclude that 22 Lis

not a root which is a contradiction So Vodd O o



Let 2 ER We write

it sit

for orthogonal reflection in her a map

µ
recall Hathera

5am r Hd NH 2 9

Kera
ie City

x
real innerproduct spaces

In a formula

Salil H att Ha

as the reader will verify

Exercise Verify this



The dual map

wa Si Litt s it
t

sends

j j Kuala

and can be interpreted as orthogonal reflection in the

hyperplane Lt as the reader will verify

Exercise Verify that Sf is gies by and that it canbe

interpreted as orthogonal reflection in the hyperplane Lt

We also write

s h h
r SE i ti s hit

for their complex linear extensions givesby and resp

Lemma For every AER there exists
a Lie algebra automorphism

Ola g s g
such that

h
sa



Proof Fix XaYa such that Ha ta b is a standard

SLGG triple Set

U Ia ta Ya

Ther da ead is an automorphism of g

mil 1 Ig.lekieeT

Also for H E h

adu.CH HuaH
U Ya LH Xa

I fHulk Hulk
to Eo

so old o on Kera It remains to proe that

4 Ma Ha



But this is an equation
formulated completely in terms of the stroke

of Seth e So we can
check it there

L y fi L a kilo fi
i it tail

o e ne u fi X X
I

H V 0

Corollary For every root LER orthogonal reflection in Lt

r sit ft
t ift t

sends R to R Moreover for xpcR ra p EptZx

Proof het to be an automorphism of g
which tears h invariant

Let ae R and X e ga Then for Heh



In ohh pforth x

Hatorah
a fkn 041

So Y a dog is a root This applies to our

restricted to it is
case of Ola Nde that

i p s or h
just orthogonal reflection in Kera So

Must still prove that ra p e Bt 22

Q Br
ga

r
ra I

21

Let
gptkaKEI



Then dearly V is a representation of SLGEla And

since the skinok
ead sends V SV

But that means

9rags go.jp ok 9p EV
D

Exercise Choose one of the roots x for sl 3 E and workout

4 slb.ci sslC3 e

Does it restrict to the real subspace
isula E Sl 3 E
R8

Does it hace a geometric interpretation



 
Lie Algebras
Lecture 10

Definition The Weyl group W is the group generated by the

reflections

r it s Tt't a cR

Lemma The Weyl group is finite Homomorphism

Proof We have as injective homomorphism
Hrarp fGdftp

f W g permutations of R
finite D

Example For sl 2,8 W Za

x s if't R
2 0 2



Exercise Work out the Weyl group fr seG e

Review

We can now classify the irreducible representations of any semisimple

Lie algebra g ke

Let h to where is a maximal torus in

k We call h the
Cartas subalgebra of g We

can simultaneously diagonalize the actions of the Heh on

any rep

That is if V is a rep of g we can decompose

V
relay t

In particular

g htO i.e 9

and each ga is
t dimensional

We hae

Xa Vg Y ta 92



Each a R has a associated
copyof sll2ro

sl 2 E OH ga g aw
CVy Grootof a
Hu HMV and V is thus also a rp of slC2EL

In particular the eigenvalues of Ha mustbe integers

µ nv So the weights NV live in the weight lattice

W I
n o ye glad c Z forall AER

We f x a linear functional

f it SIR

which decomposes the roots as

R R't u R Note R Rt

The raising operators are the X E ga a cRt

lowering operators are the Y E ga ne R

Any rep V must contain a highest weight maximizing

e if V is irreduciblethen dimly 4
and a



highest weight vector Voe Vo Clearly

is generated by successively applying

towering operators to

The set of weights Nv e it't is invariant

under the Weyl group reflections ra it it

Exercise Check this More precisely define

Ya V sV

to be the linear mop Ya e where it

is the representation of g en V Show that

y aweightofV ra r is also a weight

and Ya v e Vr.irand ve Vg

In fact f I
O u

Nv Connex Hull W gol n A



The possible highest weights yo
are those satisfying

f Ha to V x eRt
all

The set of weights satisfying these inequalities is called

the positive Weyl
chamber In termsof inner products

Jo d to a e R't

In summary we
have

Theorem The irreducible representations ofgare classified by

their highest weight The set of possible highest weights is

A n positiceWeyl chamber

Rt
weightlattice L

is X
roots a Weyl chamber

K irreps
e od ON 80 of

an Oo slug
isomorphism

432



Root systems

From a semisimple Lie algebra we have
extracted a collection of

vectors in a real inner product space the root vectors 4 R living in it

having certain properties
Let's axiomatize this

dinCEI is calledthe rankoftherootsystem

Definition A root system is a pair E R where E is a

fnice dim real inner product spaceand afiniteset R Ello satisfying

I R spans E

2 If a cR ther R nRa a a

3 If a peR then so is ra p where his

reflection in the hyperplane

4 For a BER Elp e p t Za

p f i.e projalp
r i 9 is an integera

orhalf integer
too multipleof d

L n

ra p i d ez

p 2proja p p a
2,2



Two root systems E R and E R are isomorphic if there

exists a linear isomorphism T E E with TCR R

Let us review Given a Cnecessarily real compact Lie algebra k

with trivial center s the tie group K has at most discretehence

finite center and a choice of maximal abelian subalgebra t Ek

we constructed a root system E it't R e it't

Theorem l The isomorphism class of E it't Reitt does

not depend on the choice of maximal torus t e k

2 The resulting map

redwi.fmauiafiecaif.sebras frootsysiensf

is a bijection

iso

Serre wrotedown an explicit inverse map

More

For now let's look at some properties of root systems and some

examples



Lemma In a root system suppose a B are roots http

and x a 7 CAR Then oneof the following holds

1 L B o f Oso et
W

2 4,27 pp and Anglet p Iz or 2

3 La a 2GBP and Angle xp Ia or 3

4 La a 3Cpp and Angle ap or 5ft

P gBPon A B
JTG F P p

g i g T't's F HEY

1 2 3 4
I 1

Note 0 acute projap Ea

O obtuse projacp g

Proof het M 24 p ez Ma 25Pa c Z Then
a a pp

Mima 442BP 4cost fAngKp
ar pp

M 42,2 s 1 if ap to



Ma 42,2 s 1 if p O

Mi Lpp

Only possibilities

4050 O m M

N or o
O 2

p Iz or I I

2 If or 541 I 2

3 Ig or 5 I 3

0

Corollary Suppose x and B are roots Let D Anglais

0 is strictlyacute 0 0city d P is a root

0 is strictlyobtuse EaCOCA atp is a root

Proof We know ra p p 2projap is always a root

x if 0 is acute

a if 0 is obtuse

o



Examples of root systems

Ronk 7 only 12 a allowed overall scale irrelevant

I
y x

root system of SOG

Ronk 2

Liealgebra sub sub Liealgebra SVG
bdin

I l
f

i r
I I

Liealgebra 5015 Lie Gz
dim10 dim14 Lie

algebra



Proposition Evey rank 2 root system is isomorphic to one of these

Proof Let R c IR Let 0 be smallest anglebetween roots Let

ap be lin
ind roots If Anglop Ia ther Ang x pl Is

so 0 Eta So O c th Hy TttThe

het in B hale Ang hp D Ther rpk is at angle20from a
a Spb

cm O
r

Similarly ssp.ca p is at angle 30 from a We will eventually

These must be all the roots else there's an anglesmaller
come back to d thaO

O Kj A xA

O keg Az
O e th B
O Keg Ga

D



 
Lie algebras
Lecture 11

We want to classify root systems Eir

Note that if Ei R and EaRa are root systems then so

is the orthogonal direct sum E Ea Rar We say a root

system is
irreducible if it cannot be written as a

nontrivial orthogonal

direct sum So we want to classify irreducible root systems

eg r o s e A A
A not irreducible

u

We call a positive root simple if it cannot be written as a sum

of other positice roots

f o dz3 Li
e n

t 2,3 4
T i dnt223

l 32,2 4 hL l

T simple roots 22,223l

Nole the angle between two simple roots 2 B cannot be acute else 1k
x B is a positive root and B at x p contradiction



The simple roots must be linearly independent by the following exercise

Exercise Show that if a collection of vectors 4 i Un in a Euclidean

space all have pairwise obtuse angles and if theyall lie on oneside

of a hyperplane then theyare linearly
independent

It follows that the simple roots form a basis fr E



The Dynkin diagram of the root system is obtained by drawing one

node for each simple root
and joining two

nodes by a certainnumber

of edges depending on the angle
between the simple roots

Bn

youth L BK

P r
g III y 3
I x p

Br j 354ti ya og Xp

D SI
r n

b
t s Joo
B a p

Note in the case 0 314 0 561 the arrow goesfrom longertoshader

root

root system Dynkindiagram

eg
simpleroot

I Ar y

tc
y

AHA



n

f Aa
d

y Ba
Lsp

Joo Ga

up

a

As

ir B
a p y

L



Theorem The Dynkin diagrams of irreducible root systems are precisely
The subscripts indicate the

number of nodes

An ooo nm Subha

Bn nss 50h2m n22

n f Cnn since Ba G sp 2n

Dn nm else An so 2n

EG eco
l

Ey of
a e

Eg a eg

F f44

Ga ooo ga



Nole some coincederas fer low n

f reflects so5 Esp 4
B S

a reflects su 4 I 5016

A3 B

y
fromGriffiths Harris

Proof The angles alone no arrows to indicate relative lengths

and no restrictions coming fromtheaxioms of a root system

determinethe possible diagrams Let's say that
a diagram

of n nodes witheach pair of nodes separated by 91,2 or 3 edges

is admissible if there exists a configuration of n unit vectors e e

in Euclidean space
such that

If if

Any eiej 2 if

3 if
511 if6

The claim is that the above diagrams are the only connected admissible

diagrams Note that

46 ej
number of edges between ei and eg



Then

1 Any subdiagram of an admissible diagram
obtained by removing a

node and all edges connected to it is admissible

Clear

2 There are at most G i pairs of nodes that are
connected by

edges Also the diagram contains no cycles ie a connected admissible

diagram is a tree

If ei and ej are
connected by an edge then 2 ei ej s l

So

ei fei n t 82 ei e
icj1 1

70
since the ei are 1in ind n t Hei ej

pairsheretheirsum is not200 ofnodesconnected 9
byedges E I

ooo pairsofnodes
correctedbyedges

s n

This also proves
there are no cycles else

e
y f poadiesof nodes corrected

by edges



3 No node has more than 3 edges coming out of it

By d we can restrict ourselves to diagrams of thisform

4 3

y 2

s Ha

Note by Cal no edges
between i j for i j 22

We must show

g
Eg4G e c 4

But since ea n en are all mutually orthogonal and e is

not in their span we must have

Engle gr 2fV EceiIuei

which is what we wanted to show

4 In an admissible diagram any stringof single edges can be
collapsed and the resulting diagram is still admissible

Iii S Iii



If e er are the unit vectors corresponding to the string

of nodes ther e e eat ter is a unit vector as

eye EI emei t 2 6iie12
r r l

I

Also e has the same inner products with the bordernodes

as e and er used to hue eg

f e Sf e

g e't gner

Ok now we can begin Clearly G is the only diagram with a

triple edge Next there can only be one
double edge in a diagram

else we would have a subdiagram of theform
collapse

o

not allowed

By the same reasoning there can be at most ore
triple node a

node with singleedges to three other nodes

collapse
omy

o o

not allowed

similarly you can't have a double edge and a triple edge in the same diagram

f Il



or a doubleedge and a triple node ie only one feature allowed

To finish off double edges it remains only to rule out the following

diagram

ooo ooo

e ez es ee e

It turns out such a configuration will violatethe Cauchy Schwarz inequality

Set
die aged W a e ta ee ases

Cauchy
Schwarz

v w
2 v.v w w

aptai as't94 as aay a as
a a 2a.ae
18

2 3 6

To violate we want to make a and a as large as possible

while keeping Hull
and Hull fixed The following maximize this and violate

C S
e t 2e W 3est Lee t es

It remains to classify the singleedge diagrams in particular those with

a triple node We must rule out the following cases

E5
ee

es ee
He
Ey



Consider the three perpendicular unit veders

U Le tes ve
2egytes

we

2eyters is

Then as in 3 since e is not in the spanof them we mustHae

Se eP s Sued't Gue 2t Sw e
2

F T is T
a contradiction This and the other two possibilities

i
f

t I i
ar ytoo

can be ruled out by the following
exercise

Exercise Show that if the legs emanating from a triple node hae

p g and r nodes respectively then

f t tf t t s l

ofTh
I

pdo
I



QED
0

Since we can concretely
construct a lie algebra whose root system corresponds

to each of these diagrams we
have completed the classification of

semisimple complex Lie algebras compact real Lie algebras withtrivialcenter

Finally I want to write down Serre's inverse functor

g
note this isbetter

thanroot
systems

semisimple lie
y

Dynkindiagram more
algebras functorial

Theorem Sore Given a Dynkin diagram with n nodes formthe

free Lie algebra on the following generators

Hi Un X Xn Y i Yn

and quotient by the following relations

HiUj o Hi j

Hi Xj nj Kj Vij
Hi Yj Nj Yj Vig

Xi Yi H Vi



Xi Yj o tiff
and

ad tj o

ady Yj o

Then the result is a semisimple lie algebra whose Dynkin diagram

is the one you started with










