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Abstract

By a theorem of Janson, the Wiener index of a random tree from a simply generated
family of trees converges in distribution to a limit law that can be described in terms
of the Brownian excursion. The family of unlabelled trees (rooted or unrooted),
which is perhaps the most natural one from a graph-theoretical point of view, since
isomorphisms are taken into account, is not covered directly by this theorem though.
The aim of this paper is to show how one can prove the same limit law for unlabelled
trees by means of generating functions and the method of moments.
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1 Introduction

The Wiener index, defined as the sum of all distances between vertices in a
connected graph, i.e.,

W (G) =
∑

{v,w}⊆V (G)

dG(v, w) =
1

2

∑

v∈V (G)

∑

w∈V (G)

dG(v, w),

was introduced by the chemist Harold Wiener in 1947 [14] as a simple pa-
rameter that is well correlated to various physico-chemical properties of a
molecule (modelled by a graph). Only 30 years later, it was introduced to
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the mathematical literature [2] and given the name distance or total distance.
Clearly the average distance between two randomly chosen vertices is precisely
(

n
2

)−1
W (G).

It was proved by Moon [9] that the average Wiener index of a random un-
labelled rooted tree on n vertices is asymptotically K · n5/2, where K ≈
0.5682799594 is a constant that is related to Otter’s tree enumeration con-
stants [11]. A very similar result was obtained by Meir and Moon for rooted
labelled trees [8] and more generally by Entringer, Meir, Moon and Székely in
[3], where it was shown that the average Wiener index of a random tree on
n vertices from a simply generated family of trees is always asymptotically of
the form C · n5/2. Several natural examples are simply generated, for example
plane trees, binary trees or rooted labelled trees. They are defined in terms of
a weight sequence 1 = w0, w1, . . ., which is used to define a weight

w(T ) =
∏

j≥1

w
cj(T )
j

for any rooted ordered (i.e., the order of the branches matters) tree T , where
cj(T ) is the number of vertices of outdegree j in T . Then it follows that the
associated generating function R(x) =

∑

T w(T )x|T | satisfies

R(x) = xΦ(R(x)), (1)

where Φ(t) =
∑

j≥0 wjt
j. Plane trees correspond to Φ(t) = 1

1−t
, d-ary trees to

Φ(t) = (1 + t)d, full d-ary trees (all internal nodes have degree d) to Φ(t) =
1 + td, and rooted labelled trees to Φ(t) = et. In the last example, one needs
to consider exponential generating functions. This construction is essentially
equivalent to the probabilistic model of Galton-Watson trees.

This connection to a random growth process was exploited by Janson [6] to
determine the limit distribution of the Wiener index of a random tree from a
simply generated family. His technique, which builds on Aldous’ theory of the
continuum random tree [1], shows that the limit distribution can be described
in terms of Brownian excursions:

Theorem 1. Let Tn be a random tree of order n from a simply generated family
of trees, and denote its Wiener index by ωn = W (Tn). Then the distribution
of the renormalised random variable n−5/2ωn converges to a random variable
ζ that can be described in terms of a normalised Brownian excursion e(t),
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0 < t < 1, as follows:

ξ = 2
∫ 1

0
e(t) dt,

η = 4
∫∫

0<s<t<1

min
s≤u≤t

e(u) ds dt,

ζ = ξ − η = 2
∫∫

0<s<t<1

(e(s) + e(t) − 2 min
s≤u≤t

e(u)) ds dt.

Even though the family of rooted unlabelled trees (where the order of branches
is irrelevant, so that isomorphisms are taken into account) does not belong to
the class of simply generated families, there are several similarities, and results
that hold for simply generated families can therefore be expected to hold
for rooted unlabelled trees (also known as Pólya trees) and unlabelled trees
(without root) as well. This is in contrast to families such as recursive trees,
which have a “flatter” shape that only yields a Wiener index of asymptotic
order n2 log n, see [10]. It is mentioned at the end of Janson’s paper that his
results are very likely to hold for (rooted or unrooted) unlabelled trees as well.
The aim of this paper is to provide a formal proof of this fact, which needs
quite some effort even though it is “heuristically clear”.

The probabilistic techniques employed by Janson cannot be applied directly,
since Pólya trees do not stem from a growth process; hence we follow a different
approach that makes use of generating functions and moments. The generating
function for the number of rooted unlabelled trees satisfies the well-known
equation

R(x) = exp





∑

j≥1

1

j
R(xj)



 , (2)

which is of a similar shape as (1). Indeed, in the asymptotic analysis, it turns
out that the terms corresponding to j ≥ 2 in (2) are essentially irrelevant for
the asymptotic behaviour. We also make use of this argument, which will be
detailed later, in the proof of our main result.

2 Auxiliary quantities, recursions, generating functions

Let us first consider a recursive procedure to determine the Wiener index of a
tree. For this purpose, we need an auxiliary quantity P (T ), known as the total
height or internal path length of a rooted tree T , which is defined as the sum
of all distances to the root of T . Suppose that T1, T2, . . . , Tk are the branches
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of T . Then it is easy to see that

P (T ) =
k
∑

j=1

(P (Tj) + |Tj|) = |T | − 1 +
k
∑

j=1

P (Tj). (3)

A limit theorem for the distribution of P was proven by Takács [12] for rooted
unlabelled trees (for unrooted trees, P obviously does not make sense). Here
we re-prove and refine his result to obtain our main theorem. The Wiener
index of T is now given by

W (T ) = P (T ) +
k
∑

j=1

W (Tj) +
∑

1≤j1<j2≤k

|Tj1|(P (Tj2) + |Tj2|).

As in Janson’s paper [6], it will be advantageous to consider another auxiliary
quantity, namely

Q(T ) = |T |P (T ) − W (T ). (4)

A more natural definition of Q can be given as follows: let r be the root of
T , and let u ∧ v denote the lowest common ancestor of two vertices u and v,
which is the last vertex that the paths from r to v and w have in common.
Then

Q(T ) =
∑

v∈V (G)

∑

w∈V (G)

dT (r, v ∧ w).

The relation between W and Q follows easily upon noticing that dT (r, v) +
dT (r, w) = dT (v, w) + 2dT (r, v ∧w). Q satisfies a somewhat simpler recursion,
namely

Q(T ) =
k
∑

j=1

(

Q(Tj) + |Tj|2
)

.

If the joint distribution of P and Q is known, then the distribution of W follows
automatically. Now let us translate these recursions to the world of generating
functions. If G(x, u) =

∑

T x|T |uP (T ) is the bivariate generating function where
the second variable marks P , then we obtain from (3) that

G(x, u) = x exp





∑

j≥1

1

j
G(ujxj, uj)



 ,

which extends (2). If one wants to include Q as well, the relations become
more complicated, and it becomes necessary to introduce two more auxiliary
variables: in the following, we work with the generating function

G(x, y, u, v) =
∑

T

x|T |y|T |2uP (T )vQ(T ),

where the sum is taken over all rooted (unlabelled) trees T . It is no longer
possible to obtain a functional equation for G(x, y, u, v), but if we set y = 1,
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we obtain the following functional equation from the recursions for P and Q:

G(x, 1, u, v) = x exp





∑

j≥1

1

j
G(ujxj, vj, uj, vj)



 . (5)

This will be sufficient to determine the asymptotic behaviour of all joint mo-
ments of P and Q, which will then in turn lead to the desired limit law. In the
following section, we show how this goal can be achieved for random rooted
trees with the aid of the functional equation (5). The step to unrooted trees
is then performed by means of Otter’s well-known dissimilarity theorem, see
Section 4.

3 Random rooted trees

In order to study the moments of P and Q, we introduce operators Φx, Φy, Φu, Φv

as follows: for a function A(x, y, u, v), we define

(ΦxA)(x, y, z, u) = x · ∂

∂x
A(x, y, z, u).

Φy, Φu, Φv are defined analogously. Note that these operators commute. Now
we can write

(Φr
uΦ

s
vG)(x, 1, 1, 1) =

∑

T

P (T )rQ(T )sx|T |,

which means that the coefficient of xn in (Φr
uΦ

s
vG)(x, 1, 1, 1), divided by the

coefficient of xn in G(x, 1, 1, 1), is precisely the joint moment E(P (Tn)rQ(Tn)s)
for random rooted trees of order n. In order to determine relations for gener-
ating functions of the form (Φr

uΦ
s
vG)(x, 1, 1, 1), which will then lead to asymp-

totic formulas, we differentiate (5) with respect to u and v to obtain

(ΦuG)(x, 1, u, v) = G(x, 1, u, v)
∑

j≥1

(

(ΦxG)(ujxj, vj, uj, vj) + (ΦuG)(ujxj, vj, uj, vj)
)

(6)
and

(ΦvG)(x, 1, u, v) = G(x, 1, u, v)
∑

j≥1

(

(ΦyG)(ujxj, vj, uj, vj) + (ΦvG)(ujxj, vj, uj, vj)
)

.

(7)

Remark 2. The following notational convention should be mentioned: in an
expression such as (ΦxG)(ujxj, vj, uj, vj), the operator Φx is applied to G
before ujxj, . . . are plugged in; if for instance A(x) = x2, then (ΦxA)(x2) = 2x4,
while Φx(A(x2)) = 4x4.

5



By means of simple induction, we can deduce the following relations for higher
derivatives:

Lemma 3. For r ≥ 1, s ≥ 0, we have

(Φr
uΦ

s
vG)(x, 1, u, v) =

r−1
∑

k=0

s
∑

ℓ=0

(

r − 1

k

)(

s

ℓ

)

(Φk
uΦ

ℓ
vG)(x, 1, u, v)

∑

j≥1

jr+s−k−ℓ−1

(

((Φx + Φu)
r−k(Φy + Φv)

s−ℓG)(ujxj, vj, uj, vj)
)

(8)

Similarly, for r ≥ 0, s ≥ 1, we have

(Φr
uΦ

s
vG)(x, 1, u, v) =

r
∑

k=0

s−1
∑

ℓ=0

(

r

k

)(

s − 1

ℓ

)

(Φk
uΦ

ℓ
vG)(x, 1, u, v)

∑

j≥1

jr+s−k−ℓ−1

(

((Φx + Φu)
r−k(Φy + Φv)

s−ℓG)(ujxj, vj, uj, vj)
)

. (9)

In particular, we obtain functional equations for the functions (Φr
uΦ

s
vG)(x, 1, 1, 1)

for arbitrary r and s. In order to derive asymptotic information, we first have
to review some known properties of G(x, 1, 1, 1), see [5]:

Lemma 4. The generating function R(x) = G(x, 1, 1, 1) of the family of rooted
trees has a square-root singularity at ρ ≈ 0.33832185, where it can be expanded
into a series

R(x) = 1 − c1

√

1 − x/ρ + c2(1 − x/ρ) + . . . ,

and can otherwise be continued analytically to a circle of radius ρ′ > ρ (with
a branch cut at ρ).

Now we show that this also holds for (Φr
uΦ

s
vG)(x, 1, 1, 1) (r, s ≥ 0), except for

the shape of the expansion around the singularity ρ:

Proposition 5. For r, s ≥ 0 and r+s ≥ 1, the function Rr,s(x) = (Φr
uΦ

s
vG)(x, 1, 1, 1)

has an expansion of the form

Rr,s(x) = br,s(1 − x/ρ)−(3r+5s−1)/2 + O
(

(1 − x/ρ)−(3r+5s−2)/2
)

around ρ and can otherwise be continued analytically to a circle of radius
ρ′ > ρ (with a branch cut at ρ). The coefficients br,s can be determined from
the recursion

br,s =
1

c1





3r + 5s − 4

2
· rbr−1,s +

(3r + 5s − 4)(3r + 5s − 6)

4
· sbr,s−1

+
1

2

r
∑

k=0

s
∑

ℓ=0
0<k+ℓ<r+s

(

r

k

)(

s

ℓ

)

bk,ℓbr−k,s−ℓ



 (10)
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with initial values b1,0 = 1
2

and b0,1 = 1
4

(and the convention that 0 · br,−1 =
0 · b−1,s = 0).

Proof. Let us start with a few more well-known facts on the function R(x)
(that are also essential for the proof of Lemma 4): from (2), one obtains

R(x) = −W



−x exp





∑

j≥2

1

j
R(xj)







 ,

where W denotes the Lambert W -function, which is known to have a branch
cut at −1/e (with W (−1/e) = 1). The function

∑

j≥2
1
j
R(xj) is analytic for

|x| <
√

ρ, which can be seen as follows (cf. again [5]): if

R(x) =
∑

n≥1

rnxn,

then

∑

j≥2

1

j
R(xj) ≤

∑

n≥1

rn

∑

j≥2

xjn =
∑

n≥1

rn
x2n

1 − xn
≤ 1

1 − x
R(x2) < ∞

for x <
√

ρ, which shows that the radius of convergence is
√

ρ. In the following,
we will frequently make use of the fact that similar sums represent analytic
functions within a larger circle without mentioning it explicitly every time.
This shows that ρ is also the unique positive solution to the equation

x exp





∑

j≥2

1

j
R(ρj)



 =
1

e
.

Since the coefficients of R are all positive, there are no other solutions inside
a larger circle of radius ρ′ if ρ′ is chosen sufficiently small. This also implies
that R(x) 6= 1 inside this circle (except for the point x = ρ).

Now we proceed with the proof of the proposition by induction on r + s. For
r = 1 and s = 0, we have, in view of (6),

R1,0(x) = R(x)
∑

j≥1

(

xjR′(xj) + R1,0(x
j)
)

.

Solving for R1,0(x) yields

R1,0(x) =
R(x)

1 − R(x)



xR′(x) +
∑

j≥2

(

xjR′(xj) + R1,0(x
j)
)



 .

The last sum is analytic for |x| <
√

ρ, which proves that R1,0(x) is indeed
analytic inside a circle of radius ρ′ for sufficiently small ρ′, except for the
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singularity at ρ (and the associated branch cut). The asymptotic expansion of
R around ρ given in Lemma 4 now shows that

R1,0(x) =
1

2(1 − x/ρ)
+ O

(

(1 − x/ρ)−1/2
)

,

i.e., our statement holds, and b1,0 = 1
2
. Noting that (ΦyG)(x, y, u, v) = (Φ2

xG)(x, y, u, v)
by definition of G, one proves in a similar way that

R0,1(x) =
1

4(1 − x/ρ)2
+ O

(

(1 − x/ρ)−3/2
)

.

For the induction step, we apply Lemma 3: for arbitrary r ≥ 1 and s ≥ 0, we
obtain from (8) (making use of the identity (ΦyG)(x, y, u, v) = (Φ2

xG)(x, y, u, v)
again)

Rr,s(x) =
r−1
∑

k=0

s
∑

ℓ=0

(

r − 1

k

)(

s

ℓ

)

Rk,ℓ(x)
∑

j≥1

jr+s−k−ℓ−1

r−k
∑

h1=0

s−ℓ
∑

h2=0

(

r − k

h1

)(

s − ℓ

h2

)

(Φh1+2h2

x Rr−k−h1,s−ℓ−h2
)(xj). (11)

One of the terms on the right hand side of this equation (corresponding to
k = ℓ = h1 = h2 = 0 and j = 1) is R(x)Rr,s(x). We solve the equation for
Rr,s(x) to obtain

Rr,s(x) = (1 − R(x))−1





r−1
∑

k=0

s
∑

ℓ=0

r−k
∑

h1=0

s−ℓ
∑

h2=0

∑

j≥1

∗
jr+s−k−ℓ−1

(

r − 1

k

)(

s

ℓ

)(

r − k

h1

)(

s − ℓ

h2

)

Rk,ℓ(x)(Φh1+2h2

x Rr−k−h1,s−ℓ−h2
)(xj)



, (12)

where
∑∗ indicates that the summand corresponding to k = ℓ = h1 = h2 = 0

and j = 1 is left out. It remains to identify the terms inside the bracket whose
asymptotic order at the singularity ρ is highest: by the induction hypothesis,

• the terms corresponding to j ≥ 2 are O
(

(1 − x/ρ)−(3r+5s−4)/2
)

,
• for j = 1, we have

Rk,ℓ(x)(Φh1+2h2

x Rr−k−h1,s−ℓ−h2
)(x)

= bk,ℓbr−k−h1,s−ℓ−h2

(

3(r − k − h1) + 5(s − ℓ − h2) − 1

2

)h1+2h2

· (1 − x/ρ)−(3r+5s−h1−h2−2)/2 + O
(

(1 − x/ρ)−(3r+5s−h1−h2−3)/2
)
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if (k, ℓ) 6= (0, 0), and

R0,0(x)(Φh1+2h2

x Rr−h1,s−h2
)(x)

= br−h1,s−h2

(

3(r − h1) + 5(s − h2) − 1

2

)h1+2h2

· (1 − x/ρ)−(3r+5s−h1−h2−1)/2 + O
(

(1 − x/ρ)−(3r+5s−h1−h2−2)/2
)

otherwise.

Therefore, the relevant terms are those corresponding to j = 1 and either
(k, ℓ, h1, h2) = (0, 0, 1, 0) or (k, ℓ, h1, h2) = (0, 0, 0, 1) or h1 = h2 = 0 ((k, ℓ) 6=
(0, 0) arbitrary), and we can conclude that

Rr,s(x) = br,s(1 − x/ρ)−(3r+5s−1)/2 + O
(

(1 − x/ρ)−(3r+5s−2)/2
)

with

br,s =
1

c1





3r + 5s − 4

2
· rbr−1,s +

(3r + 5s − 4)(3r + 5s − 6)

4
· sbr,s−1

+
r−1
∑

k=0

s
∑

ℓ=0
k+ℓ>0

(

r − 1

k

)(

s

ℓ

)

bk,ℓbr−k,s−ℓ



. (13)

Similarly, (9) yields, for r ≥ 0 and s ≥ 1,

br,s =
1

c1





3r + 5s − 4

2
· rbr−1,s +

(3r + 5s − 4)(3r + 5s − 6)

4
· sbr,s−1

+
r
∑

k=0

s−1
∑

ℓ=0
k+ℓ>0

(

r

k

)(

s − 1

ℓ

)

bk,ℓbr−k,s−ℓ



. (14)

The double sums might look different, but they are not, and they can both be
easily rewritten as

r−1
∑

k=0

s
∑

ℓ=0
k+ℓ>0

(

r − 1

k

)(

s

ℓ

)

bk,ℓbr−k,s−ℓ =
r
∑

k=0

s−1
∑

ℓ=0
k+ℓ>0

(

r

k

)(

s − 1

ℓ

)

bk,ℓbr−k,s−ℓ

=
1

2

r
∑

k=0

s
∑

ℓ=0
0<k+ℓ<r+s

(

r

k

)(

s

ℓ

)

bk,ℓbr−k,s−ℓ,

which completes the proof of our proposition. �

9



With Proposition 5 at hand, we can apply singularity analysis [4, Theo-
rem VI.4] to the functions Rr,s(x) and obtain

[xn]Rr,s(x) =
br,s

Γ ((3r + 5s − 1)/2)
· n(3r+5s−3)/2 · ρ−n

(

1 + O(n−1/2)
)

.

Dividing by the number of rooted trees, which is

[xn]R(x) =
−c1

Γ (−1/2)
n−3/2 · ρ−n

(

1 + O(n−1/2)
)

,

we obtain the mixed moment E(P (Tn)rQ(Tn)s) for a random rooted tree Tn

of order n:

E(P (Tn)rQ(Tn)s) =
[xn]Rr,s(x)

[xn]R(x)
=

2
√

πbr,s

c1Γ ((3r + 5s − 1)/2)
·n(3r+5s)/2

(

1+O(n−1/2)
)

.

Finally, define the numbers ωr,s (which turn out to be integers) by

ωr,s =
cr+s−1
1 22r+3s−1

r!s!
br,s,

so that, after a few manipulations,

E(P (Tn)rQ(Tn)s) =

√
πr!s!ωr,s

2(5r+7s−4)/2Γ ((3r + 5s − 1)/2)
·
(√

2

c1

)r+s

n(3r+5s)/2
(

1+O(n−1/2)
)

.

The recursion for br,s in Proposition 5 becomes

ωr,s = 2(3r+5s−4)ωr−1,s+2(3r+5s−4)(3r+5s−6)ωr,s−1+
r
∑

k=0

s
∑

ℓ=0
0<k+ℓ<r+s

ωk,ℓωr−k,s−ℓ,

(15)
with initial values ω0,1 = ω1,0 = 1 and the convention that ωr,s = 0 if r < 0 or
s < 0. As shown by Janson in [6], the fraction

√
πr!s!ωr,s

2(5r+7s−4)/2Γ ((3r + 5s − 1)/2)
(16)

is precisely the mixed moment E(ξrηs), where ξ and η are defined as in The-
orem 1. In view of (4), this also shows that the mixed moments including the
Wiener index satisfy

E

(

P (Tn)rQ(Tn)sW (Tn)t
)

= E

(

ξrηs(ξ − η)t
)

·
(√

2

c1

)r+s+t

n(3r+5s+5t)/2
(

1+O(n−1/2)
)

.

The moments of ζ = ξ−η grow slowly enough to characterise the distribution.
Indeed, since

E(ζk) ≤ E(ξk) =
k!
√

πωk,0

2(5k−4)/2Γ ((3k − 1)/2)
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and

ωk,0 ∼
1

2π
· 6k(k − 1)!,

see [6], the moment generating function E(etζ) of ζ converges for all t, so that
convergence of moments implies convergence in distribution (see [4, Theorem
C.2]). Hence we have our first main theorem:

Theorem 6. The normalised Wiener index n−5/2W (Tn) of a random rooted

tree on n vertices converges in distribution to
√

2
c1

· ζ, where ζ is defined in
terms of the Brownian excursion as in Theorem 1. Furthermore, all moments
converge:

E

(

W (Tn)k
)

= E

(

ζk
)

·
(√

2

c1

)k

n5k/2
(

1 + O(n−1/2)
)

.

As expected, the behaviour of the Wiener index of random rooted unlabelled
trees is exactly the same as for simply generated trees. In the following section,
we show that this remains true if random unlabelled trees without root are
considered.

4 Random unrooted trees

Recall Otter’s dissimilarity theorem [11,5], which states that the number of
edge orbits of a tree is always one less than the number of vertex orbits, unless
the tree has a symmetry edge (in which case the numbers are the same).
Hence if R(x) and R̃(x) are the generating functions for rooted and unrooted
unlabelled trees respectively, one obtains

R̃(x) = R(x) − 1

2

(

R(x)2 − R(x2)
)

,

see again [11,5]. The first summand counts rooted trees (and thus unrooted
trees weighted by the number of their vertex orbits), the second summand
edge-rooted trees (unrooted trees weighted by the number of their edge orbits),
and the last one takes trees with a symmetry edge into account. For our
purposes, we need a version of this identity for the generating functions

Wr(x) =
∑

T

W (T )rx|T |, W̃r(x) =
∑

T

W (T )rx|T |

in which the sums are taken over all rooted resp. unrooted unlabelled trees
T . It is easy to express Wr in terms of the functions Rr,s from the previous
section:

Wr(x) =
r
∑

p=0

(−1)r−p

(

r

p

)

Φp
xRp,r−p(x), (17)

11



since W (T ) = |T |P (T )−Q(T ) for all trees T . In order to write W̃r in terms of
these functions, we first need a formula for the Wiener index of an edge-rooted
tree: suppose that T is obtained by joining two rooted trees T1 and T2 by an
edge. Then it is easily verified that

W (T ) = W (T1) + W (T2) + |T1|P (T2) + |T2|P (T1) + |T1||T2|
= (P (T1) + P (T2))|T | − Q(T1) − Q(T2) + |T1||T2|.

Hence we obtain, by way of Otter’s dissimilarity theorem, that

W̃r(x) = Wr(x) − B(1)
r (x) + B(2)

r (x),

where

B(1)
r (x) =

1

2

∑

k1+k2+k3+k4+k5=r

(−1)k3+k4

(

r

k1, k2, k3, k4, k5

)

Φk1+k2

x

((

Φk5

x Rk1,k3
(x)
) (

Φk5

x Rk2,k4
(x)
))

(18)

and

B(2)
r (x) =

1

2

∑

k1+k2+k3

(−1)k222k1+k2

(

Φk1+2k3

x Rk1,k2

)

(x2).

For the following asymptotic analysis, B(2)
r (which corresponds to trees with

a symmetry edge) is negligible, since its radius of convergence is
√

ρ > ρ. It
remains to deal with Wr and B(1)

r : in the equation (17) for Wr, plug in (11)
for Rp,r−p to obtain

Wr =
r
∑

p=1

(−1)r−p

(

r

p

)

Φp
x





p−1
∑

k=0

r−p
∑

ℓ=0

(

p − 1

k

)(

r − p

ℓ

)

Rk,ℓ(x)
∑

j≥1

jr−k−ℓ−1

p−k
∑

h1=0

r−p−ℓ
∑

h2=0

(

p − k

h1

)(

r − p − ℓ

h2

)

(Φh1+2h2

x Rp−k−h1,r−p−ℓ−h2
)(xj)





+ (−1)r
r−1
∑

ℓ=0

(

r − 1

ℓ

)

R0,ℓ

∑

j≥1

jr−ℓ−1
r−ℓ
∑

h=0

(

r − ℓ

h

)

(Φ2h
x R0,r−ℓ−h)(x

j).

This formula looks long and messy, but in fact many of its terms are not
actually needed or cancel. Note first that all terms with j ≥ 2, h1 + h2 > 2
(h > 2 in the second sum) or h1 + h2 = 2, (k, ℓ) 6= 0 (h = 2, ℓ 6= 0 in the

second sum) are O
(

(1 − x/ρ)−(5r−4)/2
)

. A priori, the terms with h1 + h2 = 2

and (k, ℓ) = (0, 0) (h = 2, ℓ = 0) would be of higher order, but it turns out

12



that the essential parts cancel:

r
∑

p=0

(−1)r−p

(

r

p

)

Φp
x



R0,0(x)
∑

h1+h2=2

(

p

h1

)(

r − p

h2

)

Φh1+2h2

x Rp−h1,r−p−h2





= R0,0(x)
r
∑

p=0

(−1)r−p

(

r

p

)

∑

h1+h2=2

(

p

h1

)(

r − p

h2

)

Φp+h1+2h2

x Rp−h1,r−p−h2

+ O
(

(1 − x/ρ)−(5r−4)/2
)

= O
(

(1 − x/ρ)−(5r−4)/2
)

,

which follows easily upon noticing that the coefficient of Φa+4
x Ra,r−a−2 is

2
∑

h1=0

(−1)r−a−h1

(

r

a + h1

)(

a + h1

h1

)(

r − a − h1

2 − h1

)

=
(−1)r−ar!

2a!(r − a − 2)!

2
∑

h1=0

(−1)h1

(

2

h1

)

= 0.

This leaves us with j = 1 and h0 +h1 ≤ 1. However, the terms with (h0, h1) =
(0, 0) (h = 0 in the second sum) cancel identically with the summand k5 = 0
in formula (18) for B(1)

r :

r
∑

p=1

(−1)r−p

(

r

p

)

Φp
x





p−1
∑

k=0

r−p
∑

ℓ=0

(

p − 1

k

)(

r − p

ℓ

)

Rk,ℓ(x)Rp−k,r−p−ℓ(x)





+ (−1)r
r−1
∑

ℓ=0

(

r − 1

ℓ

)

R0,ℓR0,r−ℓ(x)

=
1

2

∑

k1+k2+k3+k4=r

(−1)k3+k4

(

r

k1, k2, k3, k4

)

Φk1+k2

x (Rk1,k3
(x)Rk2,k4

(x)) ,

which follows easily upon comparing coefficients of Φp
xRk,ℓ(x)Rp−k,r−p−ℓ(x).

Since the terms corresponding to k5 ≥ 2 in (18) are also O
(

(1−x/ρ)−(5r−4)/2
)

,
the only relevant parts that remain are

W̃r(x) =
r
∑

p=1

(−1)r−p

(

r

p

)

Φp
x





p−1
∑

k=0

r−p
∑

ℓ=0

(

p − 1

k

)(

r − p

ℓ

)

Rk,ℓ(x)

(

(p − k)ΦxRp−k−1,r−p−ℓ(x) + (r − p − ℓ)Φ2
xRp−k,r−p−ℓ−1(x)

))

+ (−1)r
r−1
∑

ℓ=0

(

r − 1

l

)

(r − ℓ)R0,ℓ(x)Φ2
xR0,r−ℓ−1(x)

− r

2

∑

k1+k2+k3+k4=r−1

(

r − 1

k1, k2, k3, k4

)

Φk1+k2

x (ΦxRk1,k3
(x)ΦxRk2,k4

(x))

+ O
(

(1 − x/ρ)−(5r−4)/2
)

.
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All remaining summands are of order (1 − x/ρ)−(5r−3)/2, except possibly for
those with (k, ℓ) = (0, 0) (ℓ = 0 in the second sum). However, all terms of
higher order cancel (as in the case h1 + h2 = 2 before), so that we can indeed
conclude that

W̃r(x) = λ̃r(1 − x/ρ)−(5r−3)/2 + O
(

(1 − x/ρ)−(5r−4)/2
)

,

where (with b0,0 = −c1 and thus ω0,0 = −1
2
, so that (16) remains correct)

λ̃r =
r
∑

p=1

(−1)r−p

(

r

p

)

(

5r − 2p − 3

2

)p




p−1
∑

k=0

r−p
∑

ℓ=0

(

p − 1

k

)(

r − p

ℓ

)

bk,ℓ(x)

(

(p − k)(5r − 2p − 3k − 5ℓ − 4)bp−k−1,r−p−ℓ

2

+
(r − p − ℓ)(5r − 2p − 3k − 5ℓ − 4)(5r − 2p − 3k − 5ℓ − 6)bp−k,r−p−ℓ−1

4

))

+ (−1)r
r−1
∑

ℓ=0

(

r − 1

l

)

(r − ℓ)(5r − 5ℓ − 4)(5r − 5ℓ − 6)b0,ℓb0,r−ℓ−1

4

− r

2

∑

k1+k2+k3+k4=r−1

(

r − 1

k1, k2, k3, k4

)(

5r − 2k1 − 2k2 − 3

2

)k1+k2

(3k1 + 5k3 − 1)(3k2 + 5k4 − 1)bk1,k3
bk2,k4

4

This proves convergence of moments: it is well known that the number of

unrooted trees on n vertices is asymptotically
c3
1

4
√

π
n−5/2ρ−n(1+O(n−1/2)) (see

[5]), so that singularity analysis yields

E(W (T̃n)r) =
4
√

πλ̃r

c3
1Γ ((5r − 3)/2)

n5r/2(1 + O(n−1/2))

for the r-th moment of the Wiener index of a random unrooted tree T̃n. How-
ever, it is not yet clear that the moments are (asymptotically) the same as in
the unrooted case. On the other hand, we can write

Wr(x) = λr(1 − x/ρ)−(5r−1)/2 + O
(

(1 − x/ρ)−(5r−2)/2
)

with

λr =
r
∑

p=0

(−1)r−p

(

r

p

)

(

5r − 2p − 1

2

)p

bp,r−p,

so that

E(W (Tn)r) =
2
√

πλr

c1Γ ((5r − 1)/2)
n5r/2(1 + O(n−1/2))

We are done if we can show that λ̃r =
c2
1
λr

5r−3
. The proof of this fact is sim-

ple albeit indirect: one can repeat the exact same steps for labelled rooted
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and unrooted trees; in the labelled case, it is trivial that the distribution of
the Wiener index has to be the same for rooted and unrooted trees, hence
the stated identity between λr and λ̃r must hold. Our main theorem follows
immediately:

Theorem 7. The normalised Wiener index n−5/2W (Tn) of a random unrooted

tree on n vertices converges in distribution to
√

2
c1

· ζ, where ζ is defined in
terms of the Brownian excursion as in Theorem 1. Furthermore, all moments
converge:

E

(

W (Tn)k
)

= E

(

ζk
)

·
(√

2

c1

)k

n5k/2
(

1 + O(n−1/2)
)

.

5 Conclusion

Not surprisingly, Janson’s limit theorem for the Wiener index of simply gen-
erated trees extends to unlabelled (rooted or unrooted) trees. It would be
possible to add additional constraints, e.g. prescribing the set of possible ver-
tex degrees as in [13]. However, it seemed reasonable to present only the main
case to keep the technicalities at a decent level.

The author has been unable to find a direct proof of the identity λ̃r =
c2
1
λr

5r−3

from the recursion for the coefficients bk,ℓ (or ωk,ℓ); it would be interesting to
see such a proof. One can also obtain another interesting identity for these
numbers: note first that the Wiener index of a tree T can be written as

W (T ) =
∑

e∈E(T )

n1(e)n2(e),

where n1(e) and n2(e) are the orders of the two connected components of
T \ e. Now consider labelled trees; edge-rooted labelled trees correspond to
unordered pairs of rooted labelled trees. Hence we have

1

2

∑

T1

∑

T2

|T1||T2|(W (T1)+W (T2)+|T1|P (T2)+|T2|P (T1)+|T1||T2|)r−1 x|T1|+|T2|

(|T1| + |T2|)!

=
∑

T

W (T )r x|T |

|T |!

by the above formula for W (T ), where the first double sum is over all rooted
labelled trees T1 and T2 and the second sum is over all unrooted labelled
trees T . If both sides of the identity are translated to generating functions
and the moments are computed both ways, one obtains (after some additional
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manipulations) the curious identity

r

2

r
∑

p=0

(−2)p
(

5r − 2p − 1

2

)p

ωp,r−p

=
r
∑

p=1

(−2)p
(

5r − 2p − 1

2

)p p−1
∑

k=0

r−p
∑

ℓ=0

(3k+5ℓ−1)(5r−2p−3k−5ℓ−4)ωk,ℓωp−k−1,r−p−ℓ

for all r ≥ 1. These observations suggest that the array of numbers ωk,ℓ defined
by the recursion (15) has several interesting properties that deserve further
study (cf. also [7]).

References

[1] D. Aldous. The continuum random tree. II. An overview. In Stochastic analysis
(Durham, 1990), volume 167 of London Math. Soc. Lecture Note Ser., pages
23–70. Cambridge Univ. Press, Cambridge, 1991.

[2] R. C. Entringer, D. E. Jackson, and D. A. Snyder. Distance in graphs.
Czechoslovak Math. J., 26(101)(2):283–296, 1976.

[3] R. C. Entringer, A. Meir, J. W. Moon, and L. A. Székely. The Wiener index of
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