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Abstract

In this paper, we will consider the Wiener index for a class of trees
that is connected to partitions of integers. Our main theorem is the fact
that every integer ≥ 470 is the Wiener index of a member of this class.
As a consequence, this proves a conjecture of Lepović and Gutman. The
paper also contains extremal and average results on the Wiener index of
the studied class.
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1 Introduction

Let G denote a simple, connected tree. Throughout this paper, we will use the
graph-theoretical notation from [1]. The Wiener index of G is defined by

W (G) =
∑

{u,v}⊆V (G)

dG(u, v), (1)

where dG(u, v) denotes the distance of u and v. Obviously, W (G)/
(|V (G)|

2

)
gives

the average distance between the vertices of G. It was first studied by Harold
Wiener in 1947 for acyclic molecular graphs G. The Wiener index is one of the
most popular topological indices in combinatorial chemistry.

There is a lot of mathematical and chemical literature on the Wiener index,
especially on the Wiener index of trees – [2] gives a summary of known results
and open problems and conjectures. One major problem for many topological
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indices is the so-called “inverse” problem, i.e. finding a graph from a certain
class given its index.

A conjecture of Lepović and Gutman [6] states that there is some bound M such
that for all w ≥ M there is a tree T of Wiener index W (T ) = w. The proof
of their conjecture will be the main result of this paper. To prove our result,
we investigate a class of trees we will call “star-like”. It is the class of all trees
with diameter ≤ 4. However, there is another class of trees – the trees with
only one vertex of degree > 2 – that is also called “star-like” in some papers,
e.g. [3]. The star-like trees of this paper have been studied in [5] for another
topological index, and they turned out to be quite useful in that context. Here,
we will even be able to give an easy and explicit construction of a tree T , given
its Wiener index W (T ).

In the second section, we will develop the necessary preliminaries for our the-
orems. The third section deals with an extremal result – we will characterize
the star-like tree of maximal Wiener index. Section 4 will contain the proof of
our main result. The last chapter is devoted to the asymptotical analysis of the
Wiener index of star-like trees.

2 Preliminaries

Definition 1 Let (c1, . . . , cd) be a partition of n. The star-like tree assigned to
this partition is the tree

v

v1 v2
. . .

· · · · · · · · ·

�
�

�

@
@

@
@ @ @

r
r r

where v1, . . . , vd have degree c1, . . . , cd respectively. It has exactly n edges. The
tree itself is denoted by S(c1, . . . , cd), its Wiener index by W (c1, . . . , cd).

Lemma 1

W (c1, . . . , cd) = 2n2 − (d− 1)n−
d∑

i=1

c2i . (2)

Proof: For all pairs (x, y) of vertices in S(c1, . . . , cd), we have d(x, y) ≤ 4. Thus
we only have to count the number of pairs (x, y) with d(x, y) = k, for 1 ≤ k ≤ 4.
We divide the vertices into three groups - the center v, the neighbors v1, . . . , vd

of the center, and the leaves w1, . . . , wn−d.

• Obviously, there are n pairs with d(x, y) = 1.
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• All pairs of the form (x, y) = (v, wi), (x, y) = (vi, vj) or (x, y) = (wi, wj)
(where wi, wj are neighbors of the same vk) satisfy d(x, y) = 2. There are

(n− d) +
(
d

2

)
+

d∑
i=1

(
ci − 1

2

)
such pairs.

• For all pairs of the form (x, y) = (vi, wj) with vi 6∼ wj we have d(x, y) = 3.
The number of these pairs is

d∑
i=1

(n− d− ci + 1).

• Finally, d(wi, wj) = 4 if wi, wj are not neighbors of the same vk. There
are (

n− d

2

)
−

d∑
i=1

(
ci − 1

2

)
such pairs.

Summing up, the Wiener index of S(c1, . . . , cd) is

W (c1, . . . , cd) = n+ 2

(
(n− d) +

(
d

2

)
+

d∑
i=1

(
ci − 1

2

))
+ 3

d∑
i=1

(n− d− ci + 1)

+ 4

((
n− d

2

)
−

d∑
i=1

(
ci − 1

2

))
.

Simple algebraical manipulations yield

W (c1, . . . , cd) = n+ 2(n− d) + d2 − d+
d∑

i=1

(c2i − 3ci + 2) + 3d(n− d+ 1)

− 3
d∑

i=1

ci + 2(n− d)(n− d− 1)− 2
d∑

i=1

(c2i − 3ci + 2)

= 2n2 + n+ 2d− dn−
d∑

i=1

(c2i + 2)

= 2n2 − (d− 1)n−
d∑

i=1

c2i .

�
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3 An extremal result

Clearly, as the star is the tree of minimal Wiener index, it is also the star-
like tree of minimal Wiener index. Now, this section will be devoted to the
characterization of the star-like tree of maximal Wiener index. First, we note
the following:

Lemma 2 If a partition contains two parts c1, cj such that ci ≥ cj + 2, the
corresponding Wiener index increases if they are replaced by ci − 1, cj + 1.

Proof: Obviously, n and d remain unchanged. The only term that changes is
the sum

∑
i c

2
i , and the difference is

c2i + c2j − (ci − 1)2 − (cj + 1)2 = 2(ci − cj − 1) > 0.

�

Therefore, if a partition satisfies the condition of the lemma, its Wiener index
cannot be maximal. So we only have to consider partitions consisting of two
different parts k and k + 1. Let r < d be the number of k + 1’s and d − r the
number of k’s. Then n = kd+ r and we have to maximize

2n2 + n− dn− r(k + 1)2 − (d− r)k2.

We neglect the constant part 2n2+n and arrive – after some easy manipulations
– at the minimization of the expression

n(k + d) + r(k + 1)

subject to the restrictions that kd + r = n and r < d. We assume that k ≤ d
– otherwise, we may change the roles of k and d, decreasing the term r(k + 1).
Next, we note that k + d is an integer and r(k + 1) = kr + r < kd + r = n.
Therefore, the expression can only be minimal if k + d is. But

k + d =
⌊n
d

⌋
+ d =

⌊n
d

+ d
⌋
,

and the function f(x) = n
x + x is convex and attains its minimum at x =

√
n.

So k + d is minimal if either d = b
√
nc or d = d

√
ne (and perhaps, for other

values of d, too). If we write n = Q2 + R, where 0 ≤ R ≤ 2Q, we see that the
minimum of k + d is {

2Q R < Q

2Q+ 1 Q ≤ R ≤ 2Q.

In the first case, we write d = Q+ S and k = Q− S. Then we have r = S2 +R
and thus

r(k + 1) = (S2 +R)(Q− S + 1) = −S3 + (Q+ 1)S2 −RS + (Q+ 1)R.
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For 1 ≤ S ≤ Q, we have

S2−(Q+1)S+R = (S−(Q+1)/2)2−(Q+1)2/4+R ≤ (Q−1)2/4−(Q+1)2/4+R = R−Q < 0

and thus
−S3 + (Q+ 1)S2 −RS > 0.

So the minimum in this case is obtained when S = 0 or k = d = Q = b
√
nc.

Analogously, we write d = Q+ 1 + S and k = Q− S in the second case. Again,
we obtain the minimum for S = 0 or d = Q + 1 = d

√
ne and k = Q = b

√
nc.

Summing up, we have the following theorem:

Theorem 3 The star-like tree with n edges of maximal Wiener index is the tree
corresponding to the partition

(k, . . . , k, k + 1, . . . , k + 1),

where k = b
√
nc. The part k appears k2 + k − n times if k2 + k > n and

k2+2k+1−n times otherwise. The part k+1 appears n−k2 times if k2+k > n
and n− k2 − k times otherwise.

Remark: A short calculation shows that the maximal Wiener index of a star-
like tree is asymptotically

2n2 − 2n
√
n+ n+O(

√
n).

4 Main result

Lepović and Gutman [6] conjectured that there are only finitely many “forbidden
values” for the Wiener index of trees. In particular, they claimed that all natural
numbers, except 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27,
30, 33, 34, 37, 38, 39, 41, 43, 45, 47, 51, 53, 55, 60, 61, 69, 73, 77, 78, 83, 85,
87, 89, 91, 99, 101, 106, 113, 147 and 159, are Wiener indices of trees. By an
extensive computer search, they were able to prove that any other “forbidden
value” must exceed 1206.
This chapter deals with the proof of their conjecture. We will even show a
stronger result: every integer ≥ 470 is the Wiener index of a star-like tree. By
Lemma 1, this is equivalent to showing that every integer ≥ 470 is of the form

2n2 − (d− 1)n−
d∑

i=1

c2i

for some partition (c1, . . . , cd) of n. First, we consider the special case of parti-
tions of the form

p(l, k) = (2, . . . , 2︸ ︷︷ ︸
l times

, 1, . . . , 1︸ ︷︷ ︸
k times

).
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By Lemma 1, the Wiener index of the corresponding star-like tree is

w(l, k) = 2 · (2l + k)2 − (l + k − 1) · (2l + k)− (4l + k) = 6l2 + (5k − 2)l + k2.

Next, we need a simple lemma similar to Lemma 2.

Lemma 4 If a partition contains the part c ≥ 2 twice, and if these parts are
replaced by c+ 1 and c− 1, the corresponding Wiener index decreases by 2.

Proof: Obviously, n and d remain unchanged. The only term that changes is
the sum

∑
i c

2
i , and the difference is (c+ 1)2 + (c− 1)2 − 2c2 = 2. �

Definition 2 Replacing a pair (c, c) by (c+1, c−1) is called a “splitting step”.
By s(l), we denote the number of splitting steps that one can take beginning
with a sequence of l 2’s.

Applying Lemma 4 s(l) times, beginning with the partition p(l, k), one can
construct star-like trees of Wiener index w(l, k), w(l, k)− 2, . . . , w(l, k)− 2s(l).
Our next goal is to show that there is a c > 1 such that s(l) > cl if l is large
enough (indeed, one can prove that s(l)/l tends to infinity for l→∞).

Lemma 5 For all l ≥ 0, s(l) ≥ 19l−77
16 .

Proof: First, b l
2c ≥

l−1
2 splitting steps can be taken using pairs of 2’s. Then,

b l
4c ≥

l−3
4 splitting steps can be taken using pairs of 3’s. Now, we may split

the 4’s and 2’s (b l
8c ≥

l−7
8 pairs each), and finally the 5’s and 3’s (b l

16c ≥
l−15
16

and b l
8c ≥

l−7
8 pairs respectively). This gives a total of at least 19l−77

16 splitting
steps, all further possible steps are ignored. �

It is not difficult to determine s(l) explicitly for small l. We obtain the following
table:

l 2 3 4 5 6 7 8 9 10 11 12 13 14 15
s(l) 1 1 3 4 4 7 9 10 10 14 17 19 20 20
l 16 17 18 19 20 21 22 23 24 25 30 50 75 100
s(l) 25 29 32 34 35 35 41 46 50 53 69 155 283 445

Trivially, s(l) is a non-decreasing function. Therefore, this table, together with
Lemma 5, shows that s(l) ≥ l + 5 for l ≥ 12 and s(l) ≥ l + 9 for l ≥ 16.

Now, we are able to prove the following propositions:

Proposition 6 Every even integer W ≥ 1506 is the Wiener index of a star-like
tree.
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Proof: It was mentioned that one can construct star-like trees of Wiener index
w(l, k), w(l, k)−2, . . . , w(l, k)−2s(l). For k = 0, 2, 4, 6, 8, 10 and l = x+1−k/2,
we have w(l, k) = 6x2 +(10−k)x+4. For x ≥ 16, l ≥ 12 and thus s(l) ≥ l+5 ≥
l + k/2 = x+ 1. Thus, all even numbers in the interval

[6x2+(10−k)x+4−2(x+1), 6x2+(10−k)x+4] = [6x2+(8−k)x+2, 6x2+(10−k)x+4]

are Wiener indices of star-like trees. The union of these intervals (over k) is

[6x2 − 2x+ 2, 6x2 + 10x+ 4] = [6x2 − 2x+ 2, 6(x+ 1)2 − 2(x+ 1)]

Finally, the union of these intervals (over all x ≥ 16) is [1506,∞). Thus, all
even integers ≥ 1506 are Wiener indices of star-like trees. �

Proposition 7 Every odd integer W ≥ 2385 is the Wiener index of a star-like
tree.

Proof: First, let x be an even number, and let k = 15, 1, 11, 21, 7, 17 and
l = x − 6, x, x − 4, x − 8, x − 2, x − 6 respectively. Then we obtain the fol-
lowing table:

k l w(l, k)
15 x− 6 6x2 + x+ 3
1 x 6x2 + 3x+ 1
11 x− 4 6x2 + 5x+ 5
21 x− 8 6x2 + 7x+ 1
7 x− 2 6x2 + 9x+ 7
17 x− 6 6x2 + 11x+ 7

For x ≥ 20, we have l ≥ 12 in all cases and thus s(l) ≥ l + 5. Using the
same argument as in the previous proof, all odd numbers (as x is even, the
terms w(l, k) are indeed all odd) in the following intervals are Wiener indices of
star-like trees:

k l Interval
15 x− 6 [6x2 − x+ 5, 6x2 + x+ 3]
1 x [6x2 + x− 9, 6x2 + 3x+ 1]
11 x− 4 [6x2 + 3x+ 3, 6x2 + 5x+ 5]
21 x− 8 [6x2 + 5x+ 7, 6x2 + 7x+ 1]
7 x− 2 [6x2 + 7x+ 1, 6x2 + 9x+ 7]
17 x− 6 [6x2 + 9x+ 9, 6x2 + 11x+ 7]

The union over all these intervals (considering odd numbers only) is
[6x2 − x+ 5, 6x2 + 11x+ 7].

Now, on the other hand, let x be odd, and take k = 3, 13, 23, 9, 19, 5 and
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l = x − 1, x − 5, x − 9, x − 3, x − 7, x − 1 respectively. Then we obtain the
following table:

k l w(l, k)
3 x− 1 6x2 + x+ 2
13 x− 5 6x2 + 3x+ 4
23 x− 9 6x2 + 5x− 2
9 x− 3 6x2 + 7x+ 6
19 x− 7 6x2 + 9x+ 4
5 x− 1 6x2 + 11x+ 8

Now, for x ≥ 21, we have l ≥ 12 in all cases and thus s(l) ≥ l+ 5; furthermore,
x− 3 ≥ 18 and thus s(x− 3) ≥ (x− 3) + 9 = x+ 6. Therefore, all odd numbers
in the following intervals are Wiener indices of star-like trees:

k l Interval
3 x− 1 [6x2 − x− 6, 6x2 + x+ 2]
13 x− 5 [6x2 + x+ 4, 6x2 + 3x+ 4]
23 x− 9 [6x2 + 3x+ 6, 6x2 + 5x− 2]
9 x− 3 [6x2 + 5x− 6, 6x2 + 7x+ 6]
19 x− 7 [6x2 + 7x+ 8, 6x2 + 9x+ 4]
5 x− 1 [6x2 + 9x, 6x2 + 11x+ 8]

The union over all these intervals (considering odd numbers only) is
[6x2 − x − 6, 6x2 + 11x + 8]. Combining the two results, we see that for any
x ≥ 20, all odd integers in the interval

[6x2 − x+ 4, 6x2 + 11x+ 8] = [6x2 − x+ 4, 6(x+ 1)2 − (x+ 1) + 3]

are Wiener indices of star-like trees. The union of these intervals (over all
x ≥ 20) is [2384,∞). �

It is not difficult to check (by means of a computer) that all integers 470 ≤
W ≤ 2384 can be written as W = W (S) for a star-like tree S with ≤ 40 edges.
Therefore, we obtain

Theorem 8 (Main Theorem) The list of Lepović and Gutman is complete,
and all integers not appearing in their list are Wiener indices of trees.

Remark: There are only 55 further values which are Wiener indices of trees,
but not of star-like trees, namely 35, 50, 52, 56, 68, 71, 72, 75, 79, 92, 94, 98,
119, 123, 125, 127, 129, 131, 133, 135, 141, 143, 149, 150, 152, 156, 165, 181,
183, 185, 187, 193, 195, 197, 199, 203, 217, 219, 257, 259, 261, 263, 267, 269,
279, 281, 285, 293, 351, 355, 357, 363, 369, 453 and 469.
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Example: Suppose we want to construct a star-like tree of Wiener index 9999.
This number is odd, and it is contained in the interval

[9564 = 6 · 402 − 40 + 4, 6 · 402 + 11 · 40 + 8 = 10048].

40 is even, so we use the first case of proposition 7. 9999 is contained in

[9969 = 6 · 402 + 9 · 40 + 9, 6 · 402 + 11 · 40 + 7 = 10047],

so we start with the partition (2, . . . , 2, 1, . . . , 1) consisting of 40−6 = 34 2’s and
17 1’s. As 10047−9999 = 48, 24 splitting steps are necessary. After 17 splitting
steps, we have the partition containing 17 3’s and 34 1’s. After 7 further steps,
we arrive at the partition

(4, . . . , 4︸ ︷︷ ︸
7 times

, 3, . . . , 3︸ ︷︷ ︸
3 times

, 2, . . . , 2︸ ︷︷ ︸
7 times

, 1, . . . , 1︸ ︷︷ ︸
34 times

).

Indeed, the Wiener index of the corresponding star-like tree with 85 edges is

2 · 852 − (51− 1) · 85− 7 · 42 − 3 · 32 − 7 · 22 − 34 · 12 = 9999.

Remark: The proof of the theorem generalizes in some way to the modified
Wiener index of the form

Wλ(G) :=
∑

{u,v}⊆V (G)

dG(u, v)λ

for positive integers λ. Using essentially the same methods together with the fact
that s(l) grows faster than any linear polynomial, one can show the following:
if there is some star-like tree T such that W (T ) ≡ r mod 2λ(2λ − 1), then all
members of the residue class r modulo 2λ(2λ − 1) – with only finitely many
exceptions – are Wiener indices of trees. For λ = 2, 3, 5, 6, 7, 9, 10, this implies
that all integers, with finitely many exceptions, can be written as Wλ(T ) for
some star-like tree T , as all residue classes modulo 2λ(2λ − 1) are covered.
Unfortunately, for λ = 4 and all other multiples of 4, this is not the case any
more.

5 The average Wiener index of a star-like tree

Finally, one might ask for the average size of W (T ) for a star-like tree with n
edges. First we note that the correlation between partitions of n and star-like
trees with n edges is almost bijective: given a tree of diameter 4, the center is
uniquely defined, being the center of a path of length 4. For trees of diameter
3 (which have the form of “double-stars”, there are two possible centers, giving
the representations S(k, 1, . . . , 1) and S(n + 1 − k, 1, . . . , 1). The star (with
diameter 2) has the two representation S(n) and S(1, . . . , 1). It follows that
there are only bn

2 c exceptional trees belonging to two different partitions. This
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number, as well as the sum of their Wiener indices, is small compared to p(n),
So, we mainly have to determine the asymptotics of

1
p(n)

(∑
c

(
2n2 − (d− 1)n−

d∑
i=1

c2i

))
,

where the sum goes over all partitions c of n and d denotes the length of c. For
the average length of a partition, an asymptotic formula is known (see [4]):

1
p(n)

∑
c

d =
√
n

ν

(
log n+ 2γ − 2 log(ν/2)

)
+O

(
(log n)3

)
, (3)

where ν =
√

2/3π and γ is Euler’s constant. Thus, our main problem is to find
the asymptotics of the sum ∑

c

d∑
i=1

c2i . (4)

First, we have the following generating function for this expression:

Lemma 9 The generating function of (4) is given by S(z)F (z), where

S(z) =
∞∑

i=1

i2zi

1− zi

is the generating function of σ2(n) =
∑

d|n d
2 and

F (z) =
∞∏

i=1

(1− zi)−1

is the generating function of the partition function p(n).

Proof: This is simply done by some algebraic transformations: the number of
k’s in all partitions of n is p(n− k) + p(n− 2k) + . . .. Therefore,

∑
c

d∑
i=1

c2i =
∑
k≥1

k2
∑
i≥1

p(n− ik)

=
∑
m≥1

∑
d|m

d2p(n−m)

=
∑
m≥1

σ2(m)p(n−m).

So the expression (4) is indeed the convolution of σ2 and p, which proves the
lemma. �

Now, we can proceed along the same lines as in [4]. We use the following lemmas:
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Lemma 10 (Newman [7]) Let

φ(z) =

√
1− z

2π
exp

(
π2

12

(
− 1 +

2
1− z

))
.

Then we have
|F (z)| < exp

( 1
1− |z|

+
1

|1− z|

)
(5)

for |z| < 1 and
F (z) = φ(z)(1 +O(1− z)) (6)

for |1− z| ≤ 2(1− |z|) and |z| < 1.

Lemma 11 Let

ψ(z) =
2ζ(3)

(1− z)3
,

where ζ(s) denotes the Riemann ζ-function. Then we have

|S(z)| ≤ 4
(1− |z|)3

(7)

for |z| < 1 and
S(z) = ψ(z) +O(|1− z|−2) (8)

for |1− z| ≤ 2(1− |z|) and 1
3 ≤ |z| < 1.

Proof: For |z| < 1, we obtain

|S(z)| ≤ 1
1− |z|

∞∑
i=1

i2|z|i

1 + |z|+ . . .+ |z|i−1

=
1

1− |z|

∞∑
i=1

i2|z|(i+1)/2

|z|−(i−1)/2 + |z|−(i−1)/2+1 + . . .+ |z|(i−1)/2

≤ 1
1− |z|

∞∑
i=1

i2|z|(i+1)/2

i
=

1
1− |z|

∞∑
i=1

i|z|(i+1)/2

=
|z|

(1− |z|)(1−
√
|z|)2

≤ 4
(1− |z|)3

.

Now, let z = e−u. By the Euler-Maclaurin summation formula, we have

S(e−u) =
∞∑

i=1

i2

eiu − 1
=
∫ ∞

0

t2

etu − 1
dt−

∫ ∞

0

(
{t} − 1

2

)−2t+ eut(2t− ut2)
(eut − 1)2

dt.

Now∫ ∞

0

t2

etu − 1
dt =

1
u3

∫ ∞

0

s2

es − 1
ds =

1
u3

∫ ∞

0

∞∑
i=1

s2e−is ds =
1
u3

∞∑
i=1

2
i3

=
2ζ(3)
u3
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and, for v = Reu,∣∣∣ ∫ ∞

0

(
{t} − 1

2

)−2t+ eut(2t− ut2)
(eut − 1)2

dt
∣∣∣ ≤ 1

2

∫ ∞

0

∣∣∣∣−2t+ eut(2t− ut2)
(eut − 1)2

∣∣∣∣ dt
≤ 1

2

∫ ∞

0

∣∣∣∣ 2t
eut − 1

∣∣∣∣ dt+
1
2

∫ ∞

0

∣∣∣∣ ut2eut

(eut − 1)2

∣∣∣∣ dt
≤
∫ ∞

0

t

evt − 1
dt+

|u|
2

∫ ∞

0

t2evt

(evt − 1)2
dt

=
1
v2

∫ ∞

0

s

es − 1
ds+

|u|
2v3

∫ ∞

0

s2es

(es − 1)2
ds

= O(v−2) +O(|u|v−3) = O(|u|v−3).

If |1 − z| ≤ 2(1 − |z|) and 1
3 ≤ |z| < 1, |u|/v is bounded by some constant K.

Therefore, the latter expression is O(|u|2). Replacing u by − log z = 1 − z +
O(|1− z|2) gives us the desired result. �

Proposition 12 If s(n) =
∑

c

∑d
i=1 c

2
i and F (z)ψ(z) =

∑∞
n=0 s

′(n)zn, then

s(n) = s′(n) +O
(
n1/4 exp(π

√
2n/3)

)
. (9)

Proof: Let C = {z ∈ C | |z| = 1− π/
√

6n}. Then, by Cauchy’s residue theorem,

s(n)− s′(n) =
1

2πi

∫
C

(FS − Fψ)(z)
zn+1

dz.

We split C into two parts: A = {z ∈ C |1− z| < π
√

2/(3n)} and B = C \A. On
A, we use the approximations (6) and (8) from Lemmas 10 and 11:

IA =
∣∣∣ 1
2πi

∫
A

(FS − Fψ)(z)
zn+1

dz
∣∣∣

�
∫
A

|φ(z)|
|1− z|2|z|n+1

dz

�
∫
A
|1− z|−3/2 exp

( π2

6(1− |z|)

)
|z|−n dz

� n3/4 exp(π
√
n/6) exp(π

√
n/6)n−1/2

= n1/4 exp(π
√

2n/3).
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Similarly, on B, we use (5) together with the estimate ψ(z), S(z) � (1− |z|)−3

from Lemma 11:

IB =
∣∣∣ 1
2πi

∫
B

(FS − Fψ)(z)
zn+1

dz
∣∣∣

�
∫
B

exp
( 1
|1− z|

+
1

1− |z|

)
· 1
(1− |z|)3

· |z|−n dz

� exp
(√ 3n

2π2
+

√
6n
π2

)
n3/2 exp

(√π2n

6

)
= exp

(9 + π2

π
√

6

√
n
)
n3/2

� exp
( 2π2

π
√

6

√
n
)

= exp(π
√

2n/3).

Thus
|s(n)− s′(n)| ≤ IA + IB = O

(
n1/4 exp(π

√
2n/3)

)
.

�

Proposition 13

s′(n) =
12
√

6ζ(3)
π3

p(n)(n3/2 +O(n(log n)2)). (10)

Proof: From the definition of s′(n), we have

s′(n) = 2ζ(3)
n∑

k=0

(
k + 2

2

)
p(n− k).

We divide the sum into three parts and use the well-known estimate

p(n) =
eν
√

n

4
√

3n
+O

(eν
√

n

n3/2

)
,

which follows directly from Rademachers asymptotic formula ([8], cf. also [4]).
The first sum is

A1 =
∑

k>n/2

(
k + 2

2

)
p(n− k) � n3p(n/2) � n2eν

√
n/2,

13



the second sum is

A2 =
∑

n/2≥k>
√

n log n/ν

(
k + 2

2

)
p(n− k)

�
∑

n/2≥k>
√

n log n/ν

k2 e
ν
√

n−k

n− k

(
1 +O

( 1√
n− k

))
� 1

n
eν
√

n
∑

k>
√

n log n/ν

k2eν(
√

n−k−
√

n) ≤ 1
n
eν
√

n
∑

k>
√

n log n/ν

k2e−(νk)/(2
√

n)

∼ 1
n
eν
√

n

∫ ∞

√
n log n/ν

t2e−(νt)/(2
√

n) dt =
1
n
eν
√

ne−(log n)/2 2 + log n+ (log n)2/4
(ν/(2

√
n))3

� (log n)2eν
√

n,

and the third sum, which gives the main part,

A3 =
∑

k≤
√

n log n/ν

(
k + 2

2

)
p(n− k)

=
∑

k≤
√

n log n/ν

(
k + 2

2

)
eν
√

n−k

4
√

3(n− k)

(
1 +O

( 1√
n− k

))

=
eν
√

n

4
√

3n

∑
k≤

√
n log n/ν

(
k + 2

2

)
eν(

√
n−k−

√
n)
(
1 +O

( log n√
n

))

=
eν
√

n

4
√

3n

∑
k≤

√
n log n/ν

(
k + 2

2

)
e−(νk)/(2

√
n)+O(k2n−3/2)

(
1 +O

( log n√
n

))

=
eν
√

n

4
√

3n

∑
k≤

√
n log n/ν

(
k + 2

2

)
e−(νk)/(2

√
n)
(
1 +O

( (log n)2√
n

))
.

The last sum has the form

N∑
k=0

(
k + 2

2

)
qk =

1
2(1− q)3

(
2−qN+1(N2(1−q)2+N(1−q)(5−3q)+2(q2−3q+3))

)
with N =

√
n log n/ν + O(1), q = e−ν/(2

√
n) = 1 − ν/(2

√
n) + O(n−1) and

qN ∼ 1/
√
n, which gives us

A3 =
eν
√

n

4
√

3n
· 8n3/2

ν3

(
1 +O

( (log n)2√
n

))
= p(n) · 6

√
6n3/2

π3

(
1 +O

( (log n)2√
n

))
.

Summing A1, A2 and A3 yields the desired result. �

Combining Propositions 12 and 13 with the expression (3), we arrive at our final
result:

14



Theorem 14 The average Wiener index av(n) of a star-like tree with n edges
is given by

av(n) = 2n2 −
√

6n3/2

2π

(
log n+ 2γ − log

π2

6
+

24ζ(3)
π2

)
+O(n(log n)3). (11)

Remark: We have noted that the maximal Wiener index of a star-like tree
is aymptotically 2n2 − 2n

√
n + n + O(

√
n). On the other hand, the minimal

Wiener index is n2. This shows that “most” star-like trees have a Wiener index
close to the maximum.
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