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Abstract. A nonempty word w of finite length over the alphabet of positive integers is a
Stirling word if for each letter i in w all entries between two consecutive occurrences of i (if

these exist) are larger or equal to i. We derive an exact and also an asymptotic formula for the

probability that a random geometrically distributed word of length n is a Stirling word. We also
determine an asymptotic estimate for the number of compositions (called Stirling compositions)

that satisfy this property. Moreover, we find generating functions and asymptotics formulas
for statistics in Stirling compositions and geometrically distributed Stirling words, such as the

number of distinct values and the size of the maximum part. The proofs make use of various

techniques of advanced asymptotic analysis, including Mellin transforms and the saddle point
method.
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1. Introduction

In the last decades, several researchers have become interested in Stirling permutations and
Stirling words over a finite alphabet (see [1, 4, 6]). In this paper, we derive the probability that a
geometrically distributed word of length n is a Stirling word (for the case of set partitions, see [9]).

If 0 ≤ p ≤ 1, then a discrete random variable X is said to be geometric if P (X = i) = pqi−1

for all integers i ≥ 1, where q = 1− p. We will say that a word w = w1w2 · · · over the alphabet of
positive integers is geometrically distributed if the positions of w are independent and identically
distributed geometric random variables. The research in geometrically distributed words has been
a recent topic of study in enumerative combinatorics; see, e.g., [2, 3] and the references therein.
A nonempty word w of finite length over the alphabet of positive integers is a Stirling word if for
each letter i in w all entries between two consecutive occurrences of i (if these exist) are larger or
equal to i.

In this paper, we study the generating functions for the probabilities of geometrically distributed
Stirling words according to different statistics. In particular, we show that the probability Pn that
a geometrically distributed word of length n is a Stirling word is given by

(1) Pn =
pn

1− qn
n−1∏
j=1

(
1 +

(n+ 1− j)qj

1− qj

)
,

see Theorem 2.5.
We also study the closely related concept of Stirling compositions (see [5]). For a positive

integer n, a composition of n is a word over the alphabet N of positive integers whose summands
(letters) add up to n. Stirling compositions are those compositions that form a Stirling word. Note
that Stirling compositions are precisely the 212-avoiding compositions (a 212-avoiding composition
σ1σ2 · · ·σm is a composition such that there are no indices 1 ≤ i < j < i′ ≤ m with σi = σi′ > σj).

Moreover, we find generating functions for statistics in Stirling compositions and geometrically
distributed Stirling words of length n, such as the number of distinct values and the size of the
maximum part. In Section 3, by various techniques of advanced asymptotic analysis, including

1This material is based upon work supported by the National Research Foundation under grant number 81021.
2This material is based upon work supported by the National Research Foundation under grant number 96236.
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Mellin transforms and the saddle point method, we find an asymptotic estimate for Pn as n→∞,
namely

(2) Pn = n−
logn
2 log q−

1
2 (1− q)nΦ(q)e−

π2

6 log q

q1/12
exp (Ψ(log1/q n))

(
1 +O

(
1√
n

))
,

where Φ is the generating function for integer partitions and Ψ is an oscillating function (a precise
formula is given later). Asymptotic estimates for the mean values of the aforementioned statis-
tics in geometrically distributed Stirling words and Stirling compositions are also determined in
Sections 3 and 4.

2. Main results

At first, we study the generating function for the number of Stirling compositions of a positive
integer n.

Let ND(π) be the number of different summands (letters) in the word π. For instance, if
π = 112441 then ND(π) = 3.

Let SCn,m be the set of Stirling compositions of n with exactly m summands, and define

scm(t;u) =
∑
n≥m

∑
π∈SCn,m t

nuND(π) to be the generating function for the number of Stirling

compositions with exactly m summands according to the number of different summands. In
order to study scm(t;u), we define scm,d(t;u) to be the generating function for the number of
Stirling compositions with exactly m summands and largest summand d, so that scm(t;u) =∑
d scm,d(t, u).
Let π be a 212-avoiding composition of n with a maximal summand of d. Then π can be written

as π = π′dd · · · dπ′′, such that π′π′′ is a Stirling composition of n− dk, where k is the number of
occurrences of the letter d in π. Hence,

scm,d(t;u) = u

m∑
j=1

(m+ 1− j)tjd(scm−j,d−1(t;u) + · · ·+ scm−j,0(t;u))

with sc1,d(t;u) = utd, sc0,0(t;u) = 1 and scm,0(t;u) = 0 for m 6= 0. Thus,

scm,d(t;u)− tdscm−1,d(t;u) = mutd(scm−1,d−1(t;u) + · · ·+ scm−1,0(t;u))

or

(3) scm,d(t;u) = tdscm−1,d(t;u) +mutd(scm−1,d−1(t;u) + · · ·+ scm−1,0(t;u)),

with sc1,d(t;u) = utd.
Define scm(t;u; z) =

∑
d≥1 scm,d(t;u)zd to be the generating function for the sequence scm,d(t;u)

with fixed m ≥ 1. So, sc1(t;u; z) = utz
1−tz and

scm(t;u; z) =

(
1 +

mutz

1− tz

)
scm−1(t;u; tz)

by (3). Therefore, by induction on m, we obtain

(4) scm(t;u; z) =
utmz

1− tmz

m−1∏
j=1

(
1 +

(m+ 1− j)utjz
1− tjz

)
.

Hence, we can state the following result.

Theorem 2.1. The generating function for the number of Stirling compositions, where t marks
the sum of the terms, u the number of distinct summands, y the total number of summands, and
z the largest part, is given by∑

m≥1

scm(t;u; z)ym =
∑
m≥1

utmymz

1− tmz

m−1∏
j=1

(
1 +

(m+ 1− j)utjz
1− tjz

)
.

In particular, the following three corollaries are immediate.
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Corollary 2.2. The generating function for Stirling compositions with respect to the number of
distinct summands is ∑

m≥1

utm

1− tm
m−1∏
j=1

(
1 +

(m+ 1− j)utj

1− tj

)
.

The first few terms of this generating function are

ut+ 2ut2 + (2u+ 2u2)t3 + (3u+ 5u2)t4 + (2u+ 13u2)t5 + (3u+ 19u2 + 6u3)t6 + · · · .

Corollary 2.3. The generating function for Stirling compositions with respect to the total number
of summands is ∑

m≥1

tmym

1− tm
m−1∏
j=1

(
1 +

(m+ 1− j)tj

1− tj

)
.

The first few terms of this generating function are

yt+ (y + y2)t2 + (y + 2y2 + y3)t3 + (y + 3y2 + 3y3 + y4)t4 + (y + 4y2 + 5y3 + 4y4 + y5)t5 + · · · .

Corollary 2.4. The generating function for Stirling compositions with respect to the largest part
is ∑

m≥1

tmz

1− tmz

m−1∏
j=1

(
1 +

(m+ 1− j)tjz
1− tjz

)
.

The first few terms of this generating function are

zt+ (z + z2)t2 + (z + 2z2 + z3)t3 + (z + 4z2 + 2z3 + z4)t4 + (z + 6z2 + 5z3 + 2z4 + z5)t5 + · · · .
Generating functions for geometrically distributed Stirling words can now be derived as well: if

the letters are independent geometrically distributed random variables as explained in the intro-
duction, then the probability of a word w1w2 · · ·wm is

m∏
i=1

pqwi−1 = pmq−mq
∑m
i=1 wi .

Therefore, the generating function for the probabilities of geometrically distributed words to be
Stirling words can be obtained by means of the substitutions y = px/q and t = q, which gives the
following result.

Theorem 2.5. Let q ∈ (0, 1) be fixed and p = 1 − q. The generating function for the probability
of geometrically distributed words with parameter q to be Stirling words, where x marks the length,
u marks the number of distinct terms, and z the largest term, is∑

m≥1

upmxmz

1− qmz

m−1∏
j=1

(
1 +

(m+ 1− j)uqjz
1− qjz

)
.

In particular, we obtain the following corollary.

Corollary 2.6. Let q ∈ (0, 1) be fixed and p = 1− q. The generating function for the probabilities
of geometrically distributed words with parameter q and length n to be Stirling words, where u
marks the number of distinct terms, and z the largest term, is

upnz

1− qnz

n−1∏
j=1

(
1 +

(n+ 1− j)uqjz
1− qjz

)
.

In particular, setting u = 1 and z = 1 yields (1). Differentiating the generating function in
Theorem 2.5 with respect to u and setting u = z = 1 yields (after division by the probability Pn)

Corollary 2.7. The average number of different parts in a geometrically distributed Stirling word
of length n is given by

1 +

n−1∑
j=1

(n+ 1− j)qj

1 + (n− j)qj
.
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Likewise, differentiating with respect to z and setting u = z = 1 leads to the following corollary.

Corollary 2.8. The average size of the largest part in a geometrically distributed Stirling word of
length n is given by

1

1− qn
+

n−1∑
j=1

(n+ 1− j)qj

(1 + (n− j)qj)(1− qj)
.

Note that following the proof of Theorem 2.1 closely, we see that Stirling compositions with
maximal summand d can be constructed exactly as follows. Define π(1) to be the word 11 · · · 1
(possibly empty). Given the word π(j), we choose a position (between letters, leftmost position or
rightmost position) of π(j) and insert the word (j+1)(j+1) · · · (j+1) (possibly empty) to obtain the
word π(j+1), for all j = 1, 2, . . . , d− 1. For instance, to construct the composition 122233325552,
we have π(1) = 1, π(2) = 122222, π(4) = π(3) = 122233322 and π(5) = 122233325552.

3. Asymptotics for geometrically distributed Stirling words

We first study the asymptotic behaviour of the probabilities of a geometrically distributed
Stirling word of length n, given by

Pn =
pn

1− qn
n−1∏
j=1

(
1 +

(n+ 1− j)qj

1− qj

)
,

where q ∈ (0, 1) is a fixed constant and p = 1− q. Taking logarithms we obtain

logPn = n log p+

n−1∑
j=1

log(1 + (n− j)qj)−
n∑
j=1

log(1− qj).

Now write

1 + (n− j)qj = (1 + nqj)

(
1− jqj

1 + nqj

)
.

Then

n−1∑
j=1

log(1 + (n− j)qj) =

n−1∑
j=1

log(1 + nqj) +

n−1∑
j=1

log

(
1− jqj

1 + nqj

)

=

n−1∑
j=1

log(1 + nqj) +O

n−1∑
j=1

jqj

1 + nqj

 .

By the inequality between the arithmetic and geometric mean,

n−1∑
j=1

jqj

1 + nqj
≤
n−1∑
j=1

jqj

2
√
nqj
≤ 1√

n

∞∑
j=1

jqj/2

2
= O

( 1√
n

)
,

so it follows that
n−1∑
j=1

log(1 + (n− j)qj) =

n−1∑
j=1

log(1 + nqj) +O
( 1√

n

)
.

We next consider the behaviour of the sum

n−1∑
j=1

log(1 + nqj).

First of all, we extend the sum to infinity at the expense of an exponentially small error term:

n−1∑
j=1

log(1 + nqj) =

∞∑
j=1

log(1 + nqj) +O
( ∞∑
j=n

nqj
)

=

∞∑
j=1

log(1 + nqj) +O(nqn).
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It remains for us to analyse the remaining infinite sum, and the Mellin transform is an appropriate
tool to do so. Recall that the Mellin transform of a function f is defined by the integral

M(f(t); s) = f∗(s) =

∫ ∞
0

ts−1f(t) dt,

which converges in a certain fundamental strip (possibly empty) of the form 〈α, β〉 = {s ∈ C :
α < <s < β}. We need the following important property of the Mellin transform for our purposes:

M
(∑

j

µjf(λjt); s
)

=
∑
j

µjλ
−s
j M(f(t); s).

In our case, we have µj = 1 and λj = qj , and the Mellin transform of log(1 + t) is well known to
be given by π

s sin(πs) , with fundamental strip 〈−1, 0〉. Therefore, the Mellin transform of

F (t) =

∞∑
j=1

log(1 + tqj)

is given by

F ∗(s) =M(F (t), s) =

∞∑
j=1

q−js · π

s sin(πs)
=

1

qs − 1
· π

s sin(πs)
.

Now we follow the classical paper of Flajolet, Gourdon and Dumas [10]:

Lemma 3.1 ( [10, Corollary 1 to Theorem 4]). Let F (t) be a continuous function on (0,∞) with
Mellin transform f∗(s) having nonempty fundamental strip 〈α, β〉. Assume that F ∗(s) admits a
meromorphic continuation to 〈α, γ〉 for some γ > β, and that it is analytic for <s = γ. assume
further that the following growth condition holds for some r > 1 and η ∈ (α, β):

F ∗(s) = O(|s|−r)

when <s ∈ {η, γ} and |s| → ∞, and also when η ≤ <s ≤ γ and |s| → ∞ along a denumerable set
of horizontal segments |=s| = Tj, Tj →∞.

If F ∗(s) admits the singular expansion

F ∗(s) �
∑

(ξ,`)∈A

dξ,`
1

(s− ξ)`

in the strip 〈α, γ〉 (i.e., if the right side is subtracted from F ∗(s), the remaining function is analytic
in this strip), then F (t) has the following asymptotic expansion as t→∞:

F (t) =
∑

(ξ,`)∈A

(−1)`

(`− 1)!
dξ,`t

−ξ(log t)`−1 +O(t−γ).

Note that | sin(πs)| increases exponentially as =s → ±∞, and that
∣∣ 1
qs−1

∣∣ is bounded by a

constant if we take <s ∈ {−1, 12}, and also if −1 ≤ <s ≤ 1
2 and =s = ± (2k+1)π

log q (k ∈ Z). Hence

the technical conditions of Lemma 3.1 are satisfied. Inside the strip 〈−1, 12 〉, F
∗(s) has a triple

pole at 0 and further poles at χk = 2πik/ log q for k ∈ Z \ 0. We have the singular expansion

F ∗(s) � 1

(log q)s3
− 1

2s2
+

π2

6 log q + log q
12

s
−

∑
k∈Z,k 6=0

1

2k sinh(2kπ2/ log q)(s− χk)
,

so we find that

F (t) = − log2 t

2 log q
− log t

2
− log q

12
− π2

6 log q
+

∑
k∈Z,k 6=0

1

2k sinh(2kπ2/ log q)
t−χk +O

( 1√
t

)
.
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The infinite sum can be regarded as a Fourier series:∑
k∈Z,k 6=0

1

2k sinh(2kπ2/ log q)
t−χk =

∑
k∈Z,k 6=0

1

2k sinh(2kπ2/ log q)
exp

(
− 2πik log t

log q

)
=

∞∑
k=1

cos(2kπ log1/q t)

k sinh(2kπ2/ log q)
.

In conclusion, we have
∞∑
j=1

log(1 + tqj) = − log2 t

2 log q
− log t

2
− log q

12
− π2

6 log q
+ Ψ(log1/q t) +O

( 1√
t

)
as t→∞, where Ψ is a periodic function with period 1 that has mean value 0 and is given by

(5) Ψ(u) =

∞∑
k=1

cos(2kπu)

k sinh(2kπ2/ log q)
.

Consequently, we also have

n−1∑
j=1

log(1 + (n− j)qj) = − log2 n

2 log q
− log n

2
− log q

12
− π2

6 log q
+ Ψ(log1/q n) +O

( 1√
n

)
as n→∞.

Moreover,

−
n∑
j=1

log(1− qj) = −
∞∑
j=1

log(1− qj) +O
( ∞∑
j=n+1

qj
)

= log Φ(q) +O(qn),

where

(6) Φ(q) =

∞∏
j=1

1

1− qj

is the well-known generating function for the number of integer partitions.
In conclusion, we have

logPn = n log p− log2 n

2 log q
− log n

2
− log q

12
− π2

6 log q
+ Ψ(log1/q n) + log Φ(q) +O

(
1√
n

)
,

and hence the following theorem.

Theorem 3.2. As n→∞, the probability Pn for a geometrically distributed word of length n to
be a Stirling word is

Pn = n−
logn
2 log q−

1
2 (1− q)nΦ(q)e−

π2

6 log q

q1/12
exp (Ψ(log1/q n))

(
1 +O

(
1√
n

))
,

where Φ is given by (6) and Ψ is given by (5).

The term Ψ(log1/q n), plotted below for q = 1/2, implies that Pn has tiny oscillations, although
these do grow in size for q close enough to 0.

3.1. Approximations to the partition generating function. We see that the asymptotic
estimate for Pn depends on the values of the partition generating function Φ(q). Highly accurate
approximations can be deduced from the well-known functional equation

Φ(e−t) =
√
t/(2π) exp

(
π2/(6t)− t/24

)
Φ(e−4π

2/t).

Setting t = − log q, we obtain the approximation

Φ(q) = exp

(
− π2

6 log q

)√
− log q

2π
q1/24Φ(e4π

2/ log q) ≈ exp

(
− π2

6 log q

)√
− log q

2π
q1/24.



GEOMETRICALLY DISTRIBUTED STIRLING COMPOSITIONS 7

Figure 1. Ψ(log1/q n) for q = 1/2.

For example, when q = 1/2 the approximation is 3.4627466194550636115379567 · · · , as compared
to the exact value Pn = 3.4627466194550636115379573 · · · , a difference of only 6.4 × 10−25. For
the partition function that occurs on the right side of the identity, one can use the estimate

1 ≤ Φ(x) ≤ 1 + x/(1− 2x),

which follows from the fact that the number of partitions of n is bounded above for each n, by
the number of compositions of n. Hence the relative error of the approximation is bounded by

1/(e−4π
2/ log q − 2). This gives, for example, 1.8× 10−25 when q = 1/2. When q is very small, the

accuracy is lower, but in such cases one can simply approximate Φ by the first few terms of its
series expansion.

3.2. Asymptotics for parameters in geometrically distributed Stirling words. Now that
we have an asymptotic estimate for the probabilities Pn, we continue with the asymptotic study
of different statistics. The first one is the number of distinct parts.

Theorem 3.3. The average number of distinct parts in a geometrically distributed Stirling word
of length n is given by

1 +

n−1∑
i=1

(n+ 1− i)qi

1 + (n− i)qi
= log1/q n+

1

2
+ Ψ1(log1/q n) +O

(
1√
n

)
as n→∞, where Ψ1 is a periodic function with period 1 given by

Ψ1(u) =
2π

log q

∞∑
k=1

sin(2kπu)

sinh(2kπ2/ log q)
.

Proof. In view of Corollary 2.7, we need to estimate the sum

1 +

n−1∑
i=1

(n+ 1− i)qi

1 + (n− i)qi
.

We have

(7)
(n+ 1− i)qi

1 + (n− i)qi
=

nqi

1 + nqi
+

qi

1 + nqi
+

iqi(qi − 1)

(1 + (n− i)qi)(1 + nqi)
,

and the sums
n−1∑
i=1

qi

1 + nqi
and

n−1∑
i=1

iqi(qi − 1)

(1 + (n− i)qi)(1 + nqi)

are both found to be O( 1√
n

) in the same way as in the proof of Theorem 3.2.

Moreover,
∞∑
i=n

qi

1 + nqi
≤
∞∑
i=n

qi = O(qn),
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so it remains to analyze the sum
∞∑
i=1

nqi

1 + nqi
.

To this end, we consider the Mellin transform of the function

G(t) =

∞∑
i=1

tqi

1 + tqi
,

in the same way as in the proof of Theorem 3.2. The Mellin transform of t
1+t is − π

sin(πs) for

−1 < <s < 0, so the Mellin transform of the sum that defines G(t) is given by

− π

sin(πs)(qs − 1)
,

with fundamental strip −1 < <s < 0. In this case, the singular expansion is

G∗(s) � − 1

(log q)s2
+

1

2s
+

∑
k∈Z,k 6=0

iπ

(log q) sinh(2kπ2/ log q)(s− χk)
,

which gives

G(t) = − log t

log q
− 1

2
−

∑
k∈Z,k 6=0

iπ

(log q) sinh(2kπ2/ log q)
t−χk +O(t−1/2).

The series can be simplified as

2π

log q

∞∑
k=1

sin(2kπ log1/q t)

sinh(2kπ2/ log q)
,

so putting everything together gives us

1 +

n−1∑
i=1

(n+ 1− i)qi

1 + (n− i)qi
= 1 +G(n) +O

( 1√
n

)
= log1/q n+

1

2
+ Ψ1(log1/q n) +O

( 1√
n

)
,

where

Ψ1(u) =
2π

log(1/q)

∞∑
k=1

sin(2kπu)

sinh(2kπ2/ log(1/q))
.

This completes the proof.

Theorem 3.4. The average size of the largest part in a geometrically distributed Stirling word of
length n is given by

1

1− qn
+

n−1∑
i=1

(n+ 1− i)qi

(1 + (n− i)qi)(1− qi)
= log1/q n+

∞∑
j=1

qj

1− qj
+

1

2
+ Ψ1(log1/q n) +O

(
1√
n

)
as n→∞, where Ψ1 is the same periodic function as in Theorem 3.3.

Proof. We can follow the same steps as in the proof of the previous theorem to show that

1

1− qn
+

n−1∑
i=1

(n+ 1− i)qi

(1 + (n− i)qi)(1− qi)
= 1 +

∞∑
i=1

nqi

(1 + nqi)(1− qi)
+O

(
1√
n

)
.

Now we focus on the sum on the right side of this equation:

H(t) =

∞∑
i=1

tqi

(1 + tqi)(1− qi)
.

The Mellin transform associated with this function is

− π

sin(πs)

∞∑
i=1

q−is

1− qi
.
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Making use of the geometric series, we can rewrite this as

− π

sin(πs)

∞∑
i=1

∞∑
j=0

q−isqij = − π

sin(πs)

∞∑
j=0

1

qs−j − 1
.

The sum converges locally uniformly and exhibits poles at j + 2kπi/ log q (j, k ∈ Z, j ≥ 0). Now
we can apply Lemma 3.1 again as in the previous proof. The singular terms at 0 are

− 1

(log q)s2
+

1

2s
− 1

s

∞∑
j=1

qj

1− qj
,

the last term being the only difference compared to Theorem 3.3. The singular terms at the poles
χk remain the same, and all poles with positive real part only contribute to the error term.

Remark 3.5. We observe that the average size of the largest part in a geometrically distributed
Stirling word of length n is only a little larger than the average number of distinct parts. In the
limit as n→∞, the difference is the constant

∞∑
j=1

qj

1− qj
.

This means that geometrically distributed Stirling words are typically “almost” gap-free: there are
only few values (or none) missing between 1 and the maximum.

4. Asymptotics for Stirling compositions

In this section we determine an asymptotic estimate for the number of Stirling compositions of
a positive integer n and also study different statistics again. Recall that the generating function
for Stirling compositions of length m is given by

tm
m∏
j=1

1 + (m− j)tj

1− tj
,

see Theorem 2.1. As it turns out, the main contribution to the asymptotic behaviour stems from
the product

∏m
j=1(1 + (m− j)tj). This contribution is quantified in the following lemma.

Lemma 4.1. For all positive integers m and N , we have

log
(

[tN ]

m∏
j=1

(1 + (m− j)tj)
)
≤
√

2N logm+O(
√
N).

This holds uniformly in m, i.e. the constant in the O-term is independent of m.

Proof. Let Q(N,m) be the set of all subsets of {1, 2, . . . ,m} whose sum is N (equivalently, one
can think of partitions of N into distinct elements of {1, 2, . . . ,m}). We have

[tN ]

m∏
j=1

(1 + (m− j)tj) =
∑

J∈Q(N,m)

∏
j∈J

(m− j).

Suppose that J ∈ Q(N,m) has k elements. Then the sum of all terms in J is at least 1+2+ · · ·+k,
so

N ≥ 1 + 2 + · · ·+ k =
k(k + 1)

2
≥ k2

2
,

which implies that k ≤
√

2N . Hence

[tN ]

m∏
j=1

(1 + (m− j)tj) =
∑

J∈Q(N,m)

∏
j∈J

(m− j)

≤
∑

J∈Q(N,m)

m|J|

≤ m
√
2N |Q(N,m)|.



10 A. KNOPFMACHER, S.-M. MA, T. MANSOUR, AND S. WAGNER

The cardinality |Q(N,m)| is certainly less or equal to the number q(N) of partitions of N into

distinct summands. It is well known that log q(N) = O(
√
N) (see e.g. [11]), so the desired

inequality follows immediately upon taking the logarithm.

If we suitably restrict m, it is possible to make the formula more precise. This is achieved by
means of the saddle point method. Our goal is the following result.

Proposition 4.2. Let δ > 0 be fixed. For all positive integers m and N that satisfy N1/2+δ ≤
m ≤ N , we have

log
(

[tN ]

m∏
j=1

(1 + (m− j)tj)
)

=
√

2N
(

log2m+
π2

3

)1/2
+O

(N
m

+ logN
)
.

Again, this holds uniformly in m.

In order to prove this statement, we need some additional ingredients, which are provided in
the following lemma.

Lemma 4.3. Let

Gm(u) =

m∑
j=1

log(1 + (m− j)e−τj+iju),

where u is a real variable. If mε−1 ≤ τ ≤ m−ε for some fixed ε > 0, then we have, as m→∞,

Gm(0) =
1

τ

( log2m

2
+
π2

6

)
+O

( log2m

τ2m
+ logm

)
,

G′m(0) =
i

τ2

( log2m

2
+
π2

6

)
+O

( log2m

τ3m
+

logm

τ

)
,

G′′m(0) = − 1

τ3

(
log2m+

π2

3

)
+O

( log2m

τ4m
+

log2m

τ2

)
,

G′′′m(u) = O
( log3m

τ4

)
if |u| ≤ τ/ log2m.

These estimates hold uniformly in τ and u (provided they satisfy the respective inequalities).

Proof. We first consider

Gm(0) =

m∑
j=1

log(1 + (m− j)e−τj).

This can be rewritten as

(8) Gm(0) =

m∑
j=1

log(1 +me−τj) +

m∑
j=1

log
(

1− j

m+ eτj

)
.

A simple application of the Euler-Maclaurin sum formula gives us
m∑
j=1

log(1 +me−τj) =

∫ m

0

log(1 +me−τv) dv +O(logm).

Now we use the substitution me−τv = w:∫ m

0

log(1 +me−τv) dv =
1

τ

∫ m

me−τm

log(1 + w)

w
dw

=
1

τ

∫ m

0

log(1 + w)

w
dw +O

(m
τ
e−τm

)
= −1

τ
Li2(−m) +O

(m
τ
e−τm

)
,

where Li2 is the dilogarithm:

Li2(x) = −
∫ x

0

log(1− t)
t

dt =

∞∑
n=1

xn

n2
,
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where the series representation converges for |x| ≤ 1. Since the dilogarithm satisfies the functional
equation

Li2(x) + Li2(1/x) = −π
2

6
− 1

2
log2(−x),

we have

−Li2(−m) =
log2m

2
+
π2

6
+O

( 1

m

)
.

The error term O(τ−1me−τm) is smaller than any power of m by our assumptions on τ . Thus
m∑
j=1

log(1 +me−τj) =
1

τ

( log2m

2
+
π2

6

)
+O(logm).

It remains to estimate the second sum in (8):
m∑
j=1

log
(

1− j

m+ eτj

)
= O

( m∑
j=1

j

m+ eτj

)
= O

(∫ ∞
0

v

m+ eτv
dv
)

= O
(
− 1

τ2m
Li2(−m)

)
= O

( log2m

τ2m

)
.

In conclusion, we find

Gm(0) =
1

τ

( log2m

2
+
π2

6

)
+O

( log2m

τ2m
+ logm

)
,

as claimed. The proofs of the asymptotic formulas for G′m(0) and G′′m(0) are analogous, so we
only consider the last estimate (for the third derivative) in the remainder of this proof. We have

G′′′m(u) = −
m∑
j=1

ij3(m− j)eτj+iju(eτj − eiju(m− j))
(eτj + eiju(m− j))3

,

so

|G′′′m(u)| ≤
m∑
j=1

j3meτj(eτj +m− j)
|eτj + eiju(m− j)|3

.

Now consider the following two cases:

• If |ju| ≤ π
3 , then we have

|eτj + eiju(m− j)| ≥ <(eτj + eiju(m− j)) ≥ eτj +
1

2
(m− j) ≥ 1

2
(eτj +m− j).

• On the other hand, if |ju| > π
3 , then by the assumption that |u| ≤ τ/ log2m, we have

τj ≥ |ju| log2m ≥ π
3 log2m, so (for sufficiently large m, to be precise for m ≥ 5)

eτj ≥ 3m ≥ 3(m− j)
and thus

|eτj + eiju(m− j)| ≥ eτj − (m− j) ≥ 1

2
(eτj +m− j).

Hence, we get

|G′′′m(u)| ≤
m∑
j=1

8j3meτj(eτj +m− j)
(eτj +m− j)3

=

m∑
j=1

8j3meτj

(eτj +m− j)2
,

which no longer depends on u. Now we can proceed as in the estimate for Gm(0).

We also need a tail estimate, which is provided in the following lemma.

Lemma 4.4. Suppose that mε−1 ≤ τ ≤ m−ε for some fixed ε > 0, and set z = e−τ+iu, u ∈ [−π, π].
For sufficiently large m, we have∣∣∣∏m

j=1(1 + (m− j)zj)
∣∣∣∏m

j=1(1 + (m− j)e−τj)
≤ exp

(
− u2

30τ3
+O(1)

)
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if |u| ≤ 3τ , and ∣∣∣∏m
j=1(1 + (m− j)zj)

∣∣∣∏m
j=1(1 + (m− j)e−τj)

≤ exp
(
− 1

6τ

)
otherwise.

Proof. An easy calculation shows that

|1 + (m− j)zj |2

(1 + (m− j)e−τj)2
= 1 +

2(m− j)e−τj

(1 + (m− j)e−τj)2
(cos(ju)− 1) ≤ 1.

We focus on those values of j for which | logm − τj| ≤ 1. By our assumptions on τ , this means
that j = O(τ−1 logm) = O(m1−ε logm). Note also that there are 2

τ + O(1) such vaues. If j
satisfies the condition, then

1

e

(
1 +O

( logm

mε

))
≤ (m− j)e−τj ≤ e,

which in turn implies

2(m− j)e−τj

(1 + (m− j)e−τj)2
≥ 1

3

for sufficiently large m. Thus∣∣∣∏m
j=1(1 + (m− j)zj)

∣∣∣2∏m
j=1(1 + (m− j)e−τj)2

≤
∏

| logm−τj|≤1

(
1 +

1

3
(cos(ju)− 1)

)
≤ exp

(1

3

∑
| logm−τj|≤1

(cos(ju)− 1)
)
.

Making use of the geometric series, we find that the sum evaluates to∑
| logm−τj|≤1

(cos(ju)− 1) = −2

τ
+

cos(u logm/τ) sin(u/τ)

sin(u/2)
+O(1)

= −2

τ
+

2 cos(u logm/τ) sin(u/τ)

u
+O(1).

If π ≥ |u| > 3τ , then

−2

τ
+

2 cos(u logm/τ) sin(u/τ)

u
+O(1) ≤ −2

τ
+

2

u
+O(1) < −1

τ

for sufficiently large m. This yields∣∣∣∏m
j=1(1 + (m− j)zj)

∣∣∣∏m
j=1(1 + (m− j)e−τj)

≤ exp
(1

6

∑
| logm−τj|≤1

(cos(ju)− 1)
)
≤ exp

(
− 1

6τ

)
.

On the other hand, if |u| ≤ 3τ , then |u/τ | ≤ 3. If then follows that

sin(u/τ)

u/τ
≤ 1− (u/τ)2

10
,

and consequently

−2

τ
+

2 cos(u logm/τ) sin(u/τ)

u
+O(1) ≤ −2

τ
+

2

τ

(
1− (u/τ)2

10

)
+O(1) = − u2

5τ3
+O(1),

and we conclude in the same fashion as before.

Now we can apply the saddle point method to prove Proposition 4.2.
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Proof of Proposition 4.2. By Cauchy’s integral formula, we have

[tN ]

m∏
j=1

(1 + (m− j)tj) =
1

2πi

∮
|z|=R

z−N−1
m∏
j=1

(1 + (m− j)zj) dz

for every R > 0. We set R = e−τ and perform the substitution z = e−τ+iu to obtain

(9) [tN ]

m∏
j=1

(1 + (m− j)tj) =
eτN

2π

∫ π

−π
e−iuN

m∏
j=1

(1 + (m− j)e−τj+iju) du.

Our first goal is to determine τ in such a way that the derivative of the expression

Fm,N (u) = −iuN +

m∑
j=1

log(1 + (m− j)e−τj+iju) = −iuN +Gm(u)

vanishes for u = 0: we have

F ′m,N (0) = −iN +

m∑
j=1

ij(m− j)
m− j + eτj

= −iN +G′m(0),

so τ has to satisfy

(10)

m∑
j=1

j(m− j)
m− j + eτj

= N.

Since the left side of this equation is decreasing in τ , the solution (if it exists) is unique. Moreover,
the assumptions on m imply that the left side of the equation is

m∑
j=1

j(m− j)
m− j + 1

=
m2

2
+O(m logm) > N

for τ = 0 (and sufficiently large N), and it tends to 0 as τ → ∞. Therefore, a solution of (10)
must exist by the intermediate value theorem.

Now we can use the asymptotic information from Lemma 4.3 to estimate τ : since we need to
have

G′m(0) = iN,

we get

1

τ2

( log2m

2
+
π2

6

)
+O

( log2m

τ3m
+

logm

τ

)
= N,

so

τ ∼ logm√
2N

and more precisely, with the assumption that m ≥ N1/2+δ,

(11) τ =

√
3 log2m+ π2

√
6N

+O
( logm

N
+

1

m

)
.

Note here that τ does indeed satisfy the conditions imposed in Lemma 4.3 and Lemma 4.4 by the
assumptions made on m.

As is typical for applications of the saddle point method, we split the integral (9) into a central
part [−T, T ], where T is chosen to be N−5/7 here, and the rest. Let us first estimate the tails, i.e.
the integrals where |u| > T : by Lemma 4.4, we have∣∣∣ ∫ π

T

e−iuN
m∏
j=1

(1 + (m− j)e−τj+iju) du
∣∣∣ ≤ K m∏

j=1

(1 + (m− j)e−τj) exp
(
− T 2

30τ3

)
= KeGm(0) exp

(
− T 2

30τ3

)
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for some positive constant K. Since T 2

30τ3 ∼
√
2N1/14

15 log3m
, the final factor goes to 0 faster than any

power of N . The same estimate applies to the integral over the interval [−π,−T ], so we focus on
the remaining integral∫ T

−T
e−iuN

m∏
j=1

(1 + (m− j)e−τj+iju) du =

∫ T

−T
exp

(
− iuN +

m∑
j=1

log(1 + (m− j)e−τj+iju)
)
du

=

∫ T

−T
exp

(
− iuN +Gm(u)

)
du.

Taylor expansion gives us, combined with the last item of Lemma 4.3,

−iuN +Gm(u) = Gm(0) +
u2

2
G′′m(0) +O

(T 3 log3m

τ4

)
= Gm(0) +

u2

2
G′′m(0) +O(N−1/7).

Note that the linear term vanishes by our choice of τ . Finally, since −G′′m(0)T 2 ∼ 2
√
2N1/14

logm →∞,

we have the standard estimate∫ T

−T
exp

(u2
2
G′′m(0)

)
du =

√
2π√

−G′′m(0)
+O

(
eG
′′
m(0)T 2/2

)
.

Putting everything together gives us

[tN ]

m∏
j=1

(1 + (m− j)tj) =
eτN+Gm(0)√
−2πG′′m(0)

(
1 +O(N−1/7)

)
.

Plugging in the asymptotic formula (11) for τ and invoking Lemma 4.3 to estimate Gm(0) and its
second derivative, we end up with the following formula:

log
(

[tN ]

m∏
j=1

(1 + (m− j)tj)
)

= τN +Gm(0) +O(logN)

= 2τN +O
(N
m

+ logN
)

=
√

2N
(

log2m+
π2

3

)1/2
+O

(N
m

+ logN
)
,

as required.

Now we are able to prove the main asymptotic formula for the number of Stirling compositions.

Theorem 4.5. Let S(n,m) be the number of Stirling compositions of n with m parts. The fol-
lowing estimates hold:

• For all positive integers n,m with m ≤ n, we have

logS(n,m) ≤
√

2(n−m) logm+O(
√
n).

• Fix a constant δ > 0. For all positive integers n,m with n1/2+δ ≤ m ≤ n/3, we have

logS(n,m) =
√

2(n−m) logm+O
( √n

log n

)
.

In both formulas, the error terms are uniform in m.

Proof. We have

S(n,m) = [tn]tm
m∏
j=1

1 + (m− j)tj

1− tj

=
∑

N1+N2=n−m

(
[tN1 ]

m∏
j=1

(1 + (m− j)tj)
)(

[tN2 ]

m∏
j=1

(1− tj)−1
)
.(12)
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We start with the unconditional estimate: by Lemma 4.1, we have

log
(

[tN1 ]

m∏
j=1

(1 + (m− j)tj)
)
≤
√

2N1 logm+O(
√
N1) ≤

√
2(n−m) logm+O(

√
n)

for all N1 ≤ n −m. Moreover, we note that [tN2 ]
∏m
j=1(1 − tj)−1 is the number of partitions of

N2 whose maximum (or equivalently length) is at most m. Clearly, this is at most equal to the
total number of partitions of N2, so the celebrated Hardy-Ramanujan-Rademacher formula for
the partition function (see [11]) gives us

log
(

[tN2 ]

m∏
j=1

(1− tj)−1
)

= O(
√
N2) = O(

√
n).

Combining the two, we immediately obtain that

logS(n,m) ≤
√

2(n−m) logm+O(
√
n).

Now we make the additional assumption that n1/2+δ ≤ m ≤ n/3. Consider first the term
corresponding to N2 = 0 in (12): in this case, N1 = n−m, so

N
1/2+δ
1 ≤ n1/2+δ ≤ m ≤ n−m = N1,

which means that we can apply Proposition 4.2. This gives us

log
(

[tN1 ]

m∏
j=1

(1 + (m− j)tj)
)

=
√

2N1

(
log2m+

π2

3

)1/2
+O

(N1

m
+ logN1

)
=
√

2(n−m) logm+O
( √n

log n

)
,

hence

logS(n,m) ≥
√

2(n−m) logm+O
( √n

log n

)
.

Now we derive a matching upper bound. If N1 < m, we also have N1 < (n−m)/2, thus

log
(

[tN1 ]

m∏
j=1

(1 + (m− j)tj)
)
≤
√

2N1 logm+O(
√
N1) ≤

√
n−m logm+O(

√
n),

while still

log
(

[tN2 ]

m∏
j=1

(1− tj)−1
)

= O(
√
n).

This renders all terms in (12) with N1 < m asymptotically irrelevant. If, however, N1 ≥ m, then
the conditions of Proposition 4.2 are met again, so

log
(

[tN1 ]

m∏
j=1

(1 + (m− j)tj)
)

=
√

2N1 logm+O
( √n

log n

)
as before in the case N1 = n−m. On the other hand, it is well known that almost all partitions of
N have length and maximum part (the two are equivalent by conjugation of the Ferrers diagram)√

6N
2π logN(1+o(1)), see [12]. This implies that almost all partitions of N2 have maximum at most
m, so by the Hardy-Ramanujan-Rademacher formula

log
(

[tN2 ]

m∏
j=1

(1− tj)−1
)

= log
(
p(N2)(1 + o(1))

)
= π

√
2N2

3
+O(logN2).

Combining the two estimates, we obtain

(13) log
(

[tN1 ]

m∏
j=1

(1+(m−j)tj)
)

+log
(

[tN2 ]

m∏
j=1

(1−tj)−1
)

=
√

2N1 logm+π

√
2N2

3
+O

( √n
log n

)
.
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Subject to the condition that N1 + N2 = n − m, the maximum of the expression without the
O-term is √

2(n−m) logm+O
( √n

log n

)
,

which means that the logarithm of each term in the sum (12) for S(n,m) is bounded above

by
√

2(n−m) logm + O
( √

n
logn

)
. This is exactly the matching upper bound that we needed to

complete the proof of Theorem 4.5.

In order to find an asymptotic estimate for the total number of Stirling compositions of a
positive integer n, we determine where the maximum of S(n,m) occurs (as a function of m). This
will yield the following theorem.

Theorem 4.6. Let S(n) denote the total number of Stirling compositions of n. We have

logS(n) =
√

2n
(

log n− log log n+ log 2− 1
)

+O
(√n log log n

log n

)
.

Proof. We first estimate the contribution of “very small” and “very large” m: if m ≤ n1/2+δ, then
by the first statement of Theorem 4.5, we have

logS(n,m) ≤
√

2n logm+O(
√
n) ≤

(
1
2 + δ

)√
2n log n+O(

√
n).

If on the other hand m ≥ 4n log logn
logn , then the same statement gives us

logS(n,m) ≤
√

2(n−m) log n+O(
√
n) ≤

√
2n(log n− 2 log log n+O(1)).

Now, we focus on the case that n1/2+δ ≤ m ≤ 4n log logn
logn . By the second part of Theorem 4.5, we

have

logS(n,m) =
√

2(n−m) logm+O
( √n

log n

)
.

The expression
√

2(n−m) logm increases up to a point

m0 =
2n

log n

(
1 +

log log n

log n
+O

( 1

log n

))
,

then decreases. Indeed, if m ≤ 2n
logn (1− (log n)−1/3) or m ≥ 2n

logn (1 + (log n)−1/3) , then we have

(14) logS(n,m) ≤
√

2n
(

log n− log log n+ log 2− 1− 1

2(log n)2/3
+O

( log log n

log n

))
.

On the other hand, the maximum attained at m0 is

logS(n,m0) =
√

2n
(

log n− log log n+ log 2− 1 +O
( log log n

log n

))
.

This readily proves the desired formula, since the summation over m can only contribute at most
O(log n) to logS(n).

Remark 4.7. While it might be possible to determine further terms in an asymptotic expansion
of logS(n), it seems that an actual asymptotic formula for S(n) is difficult, if not impossible, to
obtain.

Finally, we consider the asymptotic behaviour of statistics associated with Stirling compositions.
The proof of Theorem 4.6 immediately gives us the following result.

Theorem 4.8. Let Xn be the length of a uniformly random Stirling composition of n. We have

Xn

n/ log n
→ 2,

both in expectation and in probability.
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Proof. From the proof of Theorem 4.6, it can be seen that values of m that are “too far away”
from 2n/ log n only play a negligible role. Specifically, (14) implies that

P
(∣∣∣Xn log n

2n
− 1
∣∣∣ ≥ 1

(log n)1/3

)
≤ exp

(
−

√
2n

2(log n)2/3
+O

(√n log log n

log n

))
,

and the statement of the theorem readily follows.

The number of distinct summands satisfies a similar theorem, which is shown in the following
result.

Theorem 4.9. Let Yn be the number of distinct summands of a uniformly random Stirling com-
position of n. We have

Yn√
n
→
√

2,

both in expectation and in probability.

Proof. First of all, if r is the number of different summands, then we trivially have

r2

2
<
r2 + r

2
= 1 + 2 + · · ·+ r ≤ n,

so r ≤
√

2n (compare the proof of Lemma 4.1).
On the other hand, we estimate the probability that the number of different summands is

“much” less than
√

2n. To this end, we use the standard saddle point bound (see [13, Proposition
IV.1]) in the version

[urtn]F (t, u) ≤ u−r0 [tn]F (t, u0),

valid for every positive real u0. We apply it to the bivariate generating function∑
m≥1

utm

1− tm
m−1∏
j=1

(
1 +

(m+ 1− j)utj

1− tj

)
(see Theorem 2.1), with u0 = 1/m for every m:

[urtn]
∑
m≥1

utm

1− tm
m−1∏
j=1

(
1 +

(m+ 1− j)utj

1− tj

)
≤ [tn]

∑
m≥1

mrtm

m(1− tm)

m−1∏
j=1

(
1 +

(m+ 1− j)tj/m
1− tj

)

≤ [tn]
∑
m≥1

mr−1 tm

1− tm
m−1∏
j=1

(
1 +

tj

1− tj

)

≤ nr−1[tn]
∑
m≥1

tm
m∏
j=1

1

1− tj
.

The latter sum is exactly equal to the generating function for partitions (m representing the
maximum or equivalently the length), so this gives us an upper bound of nr−1p(n), where p(n) is
the number of partitions of n. As before, we use the estimate log p(n) = O(

√
n). Combined with

Theorem 4.6, this gives

P (Yn = r) ≤ nr−1p(n)

S(n)
≤ exp

(
log n(r −

√
2n) +O(

√
n log log n)

)
for every r, thus

P
(
Yn ≤

√
2n
(
1− (log n)−1/2

))
≤ exp

(
−
√

2n log n+O(
√
n log log n)

)
,

from which the desired statement follows.

Finally, we consider the largest summand. Interestingly, its asymptotic behaviour differs from
that of the number of distinct summands only by a constant factor of 3

2 .
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Theorem 4.10. Let Zn be the largest summand of a uniformly random Stirling composition of
n. We have

Zn√
n
→ 3√

2
,

both in expectation and in probability.

Proof. Note that the difference between the largest part and the number of distinct parts is
governed by the factor

m∏
j=1

1

1− tjz

in the generating function, see Corollaries 2.2 and 2.4. This can be interpreted as the generating
function for the number of partitions of a positive integer into parts of size at most m, where the
second variable z marks the length.

We need to revisit the proof of Theorem 4.5 in order to determine which values of N2 contribute
most to the total number of Stirling compositions. By Theorem 4.8 and its proof, we may focus
on values of m for which

(15) m =
2n

log n
(1 + o(1))

holds. Looking back at (13), we find that the maximum of the expression√
2N1 logm+ π

√
2N2

3
,

subject to the condition that N1 +N2 = n−m, occurs when

N2 =
(n−m)π2

3 log2m+ π2
∼ π2n

3 log2 n
.

Following the same line of proof as in Theorem 4.8, we find that only terms where N2 is close to
this value, in the sense that

(16) N2 =
π2n

3 log2 n
(1 + o(1)),

make an asymptotically relevant contribution to S(n,m), while the others are negligibly small.
Fixing m and N2, we can regard the difference between the largest summand and the number

of distinct summands as the length of a random partition of N2 into parts of size at most m.
As mentioned before, almost all partitions of N2 are known to have length and maximum part√

6N2

2π logN2(1 + o(1)). In view of (15) and (16), this is asymptotically much less than m, so the
restriction on the largest part is in fact irrelevant. Hence we find that the difference between the
largest part and the number of distinct parts is concentrated around

√
6N2

2π
logN2 ∼

√
n

2
.

Combining this with Theorem 4.9, we arrive at the desired statement.
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