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Abstract The problem of enumerating spanning trees in self-similar &gtigas
recently introduced to the literature by Chang, Chen and Yang, dgtermined
explicit formulae in the case of Siefmki graphs and some of their generaliza-
tions. The aim of this note is to show that their results holohore generality and
that there is a strong relation between this enumeration problehresistance
scaling on self-similar lattices.
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1 Introduction

Enumeration of spanning trees and the analysis of electritaionks are closely
related as it was already shown in the fundamental work of KirdH8{. This
interplay was further explored in various directions, see for msd26,37]; in
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particular, the famous Matrix-Tree-Theorem (see for instance [2lyi@ practi-
cal method to compute the number of spanning trees in graphshwilas used
in numerous works. The number of spanning trees is also of interesatisti-
cal physics, since it corresponds to a spegiat O limit of the partition function
of the g-state Potts model [11,39]. There are also other interestingaidsrter
coverings [32] and sandpile models [8].

A large number of results in the physical literature are concewigd the
number of spanning trees in two- and higher-dimensionakkst{7, 30,31, 38];
recently, Chang, Chen, and Yang [6] considered this problem #Sfiarphski
gasket and its variants. The Sidrpki gasket is probably the most classical ex-
ample of a self-similar fractal lattice: in contrast to the tratistal invariance of
lattices such as the square lattice or the honeycomb, one ofi#in properties of
self-similar lattices is scaling-invariance. Many other meds#lstatistical physics
have been investigated on self-similar lattices (in partictilarSierpinski gasket)
as well, see [4,5,10,12,13,15,16].

The results of Chang, Chen, and Yang are mainly based on thesanaf
systems of recurrences. The aim of this paper is a continuatitren research:
especially we aim to

— generalize their results to an entire class of self-similarciedti

— establish a relation between the asymptotic growth of the rumbspanning
trees and so-called (resistance) renormalization on theseefgttind

— prove a conjecture of [6].

The aforementioned conjecture was also proven by the authorsling8ty dif-
ferent methods that made use of the high degree of symmetry. Heegnwio
treat the problem in more generality. The main tool that we areggmiruse is a
technique that was recently developed by the authors in [36]itightlhe main
theorem of [36] states the following: If a part of a graph is sub&ity an elec-
trically equivalent part, then the weighted number of spagniees (where the
weight of a spanning tree is the product of the conductances etiges) changes
by a factor depending on the substituted graphs only.

Our paper is organized as follows:

— In Section 2 basic notions concerning the theory of electricelhorks are
recalled and the authors’ method from [36] is explained briefly.

— Section 3 provides an inductive construction scheme for selftagimattices.
Furthermore, renormalization of resistances/conductancedfesiradar lat-
tices is discussed.

— Section 4 contains the main results: The asymptotic growthehumber of
spanning trees on self-similar lattices is determined and agelat renormal-
ization is revealed.

Several examples are provided for illustration.

2 Electrical networks

The vertex (site) set of a grapgh is denoted by G and the edge (bond) set is
denoted byEG. In the following graphs are allowed to have parallel edges and
loops. An (electrical) network is an edge-weighted graph, i. eeight (conduc-
tance)c(e) is assigned to each edgef G. Graphs without explicit conductances
are considered as electrical networks with unit conductances,d(e) = 1 for
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each edge. The (weighted) Laplace matrix= Lg of a networkG is defined as
follows:
Lx7y = — C(e) and LX,X = — Lx_’z
ecEG zeVG

econnectx,y Z#X
for distinct verticesx,y of G. We say that two networks andG areelectrically
equivalentwith respect tdB C VFNVG, if they cannot be distinguished by ap-
plying voltages tdB and measuring the resulting currentsBirAs a consequence
of Kirchhoff’s current law two networkE andG are electrically equivalent if the
rows corresponding to the vertex &of the matrices  HE andLgHS are equal,
whereH§ is the matrix associated to harmonic extension. A speciatiitn of
electrical equivalence is the trace operation on networks:dhdG are networks
with VF CVGandF andG are equivalent with respect Y6F then the network
F is called thetrace of G with respect to the vertices &f. In terms of Laplace
matrices traces are Schur complements: VBiteVV F andC =V G\ B, then

Lr = (Le)ss— (La)ec (La)oe - (La)ce: 1)

where (Lg)sc denotes the submatrix dfs with rows corresponding t®8 and
columns corresponding . If the inverse of(Lg)cc does not exist, it must be
replaced by the Moore-Penrose generalized inverse, see [24].

A graphT is atree, if T is connected and does not contain cycles. A subgraph
H of a graphG is calledspanningf VH =V G. See for example [2] for these and
other graph-theoretical notions. Given a netw8riwe writeNsT(G) to denote the
weighted number of spanning treesGn

Nst(G) = Z QQT c(e),

where the sum is taken over all spanning tréesf G. If G is equipped with unit
conductances theNst(G) is the usual number of spanning trees. The following
theorem was proven in [36] and is the main tool in the following.

Theorem 1 Suppose that a network X can be decomposed into G and H, so that

EG and EH are disjoint, EX- EGUEH, and VX=VGUVH. We set B=VGn
VH. Let H be a network with EGEH’ = @ and VG\VH’ = B, such that H and
H’ are electrically equivalent with respect to B, and assunag Mgr(H) # 0 and
NST(H,) 75 0. Then

Ns1(X) _ Nst(X")

Nst(H)  Nst(H’)’

3 Self-similar lattices and renormalization

We consider finite approximations, Xs,... to self-similar lattices of the fol-
lowing type: letZ be a template graph with a tupteof 8 distinguished vertices
ands “holes” described by a tuple & vertices for each hole. Lefy be a graph
andxp be a tuple off distinguished vertices. The grapf is obtained by fill-
ing the holes oZ with s copies ofXy, i. e., the vertices of a hole are identified
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with the distinguished vertices of the associated copypofurthermore, the ver-
tices corresponding to those imare used as tuple; of distinguished vertices
for X;. We write Z(Xp) to denote the resul; of this construction (keeping dis-
tinguished vertices in mind). Now this procedure is repeated ieram get the
graphsXz = Z(X1), X3 = Z(X2), ... with distinguished vertices, xs, ... A rigor-
ous description of this copy-construction can be found in [34]. Ieotdlillustrate
the construction above let us give the following examples.

Example 1The modified Koch curve is a simple but interesting variationhef t
classical Koch curve, see Figure 1 for an illustration of the tatepgraphZ
and the construction of the associated graph sequence (distivegl vertices are
drawn bold). The spectrum of the Laplace operator on these graghstudied in
[21].

Xo X1

X2 Z

4th 5th
copy copy

1st 2nd 3rd
o copy . copy . copy ©

Fig. 1 Modified Koch graphs(, X1, X2 and their template graph

Example 2The construction of the Sienpski graphsXg, X1, Xz, ... and the corre-
sponding template graphis outlined in Figure 2. Notice that the template graph
Zis edgeless. The number of spanning tldeg Xx) in Xk and higher dimensional
analogues are studied in [6]. Variants with a larger number aligigions on each
side of the template graph are considered in [6] as well. Thislyialfamily of
lattices with two parameters: the dimensiband the number of subdivisioms.
Notice that the number of distinguished vertices is givenfby d + 1 and the

number of copies is given bg= (m+g—1)_

(¢]
third copy
Xo X1 X2 z
. .
first copy second copy
© . o

Fig. 2 Sierpihski graphsXy, X1, X2 and their template graph
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Example 3A slightly modified version of the Sierpski graphs is given by the
Towers of Hanoi graphs. The vertices of the graglin this sequence correspond
to all possible configurations of the game “Towers of Hanoi'hidt+ 1 disks and
three rods, whereas the edges describe transitions betweerucatifigs, see for
example [17]. We remark that these graphs are finite Schreier grapte ldanoi
tower group, see [14]. Their construction is outlined in Figure 3.

third copy
first copy second copy
o

Fig. 3 The Towers of Hanoi graphs, Xi, X2 and their template graph

Example 4Another variation of the Sierpiski graphs (similar to the Towers of
Hanoi graphs) is shown in Figure 4. The main point here is theenge of cycles
in the template grapA.

third copy
flrst copy : : second copy

Fig. 4 The first three graph%p, X1, Xz constructed using the template

Example 5The sequence of graphs depicted in Figure 5 exhibits two phenam
which have influence on the number of spanning trees. Firbigygtaphs in the
sequence are less symmetric; secondly the template graphtains a cycle.

o 0 © % o s (@)

fourth copy third copy

% % e 2l 1]
first copy ~ second copy

o O o O (€] —e ©

Fig. 5 The first three graph¥p, X1, X, constructed using the templade

Example 6 The Lindstram snowflake is a well-known self-similar fractal, s€g.[2
The approximating graphs and their template graph are showgurd-6.
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QO + O
Z e4th copye 3rd copye
o e
©5th copys 1st copye 2nd cop®
e e e e o o
« 6th copye 7th copye
O « ¢ O

Fig. 6 The snowflake graph, X1, X, and their template graph

In the following we describe the notion of (conductance/restgarenormal-
ization on self-similar lattices, see for instance [1,18,27} Xg¢= Kg be the
complete graph witt® vertices, and fix a template graghand endow its edges
with fixed conductances. Let Xy, X5, ... be constructed as above. There are two
natural operations for conductancesXyandX;, respectively:

— Replication: If we are given conductanagson Xp, thenX; naturally inherits
conductances fro{g andZ. Let us denote these conductanceXpby S(co).

— Traces: If we are given conductanagson X;, consider the trace of the net-
work X; with respect to its distinguished vertices The underlying graph of
this trace is a complete graph wihvertices, which can naturally be identified
with the vertices oiXy. Hence the trace operation defines conductance§on
which we denote by (c;).

The so-called renormalization m&s the composition of andS i. e.,

R=ToS: R(G) —REG).
Note here thaXy = Kg has(g) edges. Both the replication m&and the trace
mapT are rational in all coordinates, due to the representation (1) éoképlace
matrix of a trace. ThusR is also rational in all coordinates. Moreover, if the
template graplZ is edgeless, the renormalization mRps homogeneous, i. e.,
R(ac) = aR(c). Generally, the renormalization mapis a rational function in
the conductances on Xy = Kg andcz on Z. Writing R(c,cz) to emphasise the
dependence onandcz, we haveR(ac,acz) = aR(c,cz).

The basic question in renormalization is the dynamical behanof the iter-
ated mapR". Fix some conductances on X and set, = R"(cp) for n> 0. In
well-behaved instances of the graph construction above (incpkatiin all our
examples) it turns out that there exists a consfant 1, so that the sequence
(p"cn)n>0 is bounded from above and below by positive numbers. In this case w
call p theresistance scaling factaf the self-similar lattice. Even more holds true
for all examples above: There are conductamges 0, so thap"c, = Co +0(1).
Assume that the limit

Re(C) = Jian R(c,acz)
exists and is continuous im Notice that this limit corresponds to the shortening
(contraction) of all edges iB. In this case"c, = ¢« + 0(1) implies

Coo = PR (Cwo), 2

asp"tlc,, 1 = pR(p"cn, p"cz). Hencep andc,, form a solution of the non-linear
eigenvalue problem above. Notice that if the template g edgeless, then
R(c) = R»(c). Existence and uniqueness of solutions of this non-linggareialue
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problem, as well as contractivity 8have been studied for a variety of self-similar
lattices, see for instance [20,22,23, 25, 28]. We remark thatgaefisymmetries
of the sequenc¥y, Xy, ... often reduces the complexity of effective computations
significantly.

Let us discuss renormalization and resistance scaling for tragbes above:

Example 1(continued from page 4) Endo¥y = Ky with conductance, then the
renormalization map is given by

R: x— 3x.
Thus the resistance scaling factopis- %.

Example Zcontinued from page 4) First, let us consider the usual (d &s,2,

A A
N e
VAR VAN

Fig. 7 Conductances 0¥y and one way to specify conductancesXarusing replication.

m= 2) Sierphski graphz = Xo, X1, ... equipped with conductances as indicated
in Figure 7, i. e.co = (X1,%2,%3). The renormalization map is then given by

(X1 Xp+XoX3-+X3X1 ) (3X1 (X1 +X0+X3) +XoX3)
60 (Xo+X3) X5 (X1+%3) 35 (X1+X2) ) +14x1XoX3

X
R: Xl - (XaXp+XoX3+X3X1) (3Xp (X1 +Xp+X3) +X1%3)
: X2 B(X2 (Xp+X3)-HX3 (X1 +X3) +X5 (X1 +X2) ) +14% XoX3
3

(X X2 +XoX3+X3X1 ) (3X3 (X1 +Xo+X3) +X1X2)
60 (Xo+X3) X5 (X1+%a) 35 (X1+X2) ) +14x1XoX3

Now, let us take symmetry into account: assume xhatx; = xo = X3. Then the
renormalization map reduces to

3x

R:x»—>5

whencec = (1,1,1) andp = % is a solution of (2). For arbitrary dimensiohand

number of subdivisionsn unit conductances = (1,...,1) € R%+! always yield
an eigenvalue for some > 1, but no explicit formula fop is known. However,

in the special case = 2, it is known thaip = %.

Example 3continued from page 4) Let us fix constant conductarges (z,z z)
on the template grapB and equipXy = K3z with constant conductanceg =
(x,X,X). Then the renormalization mapis given by

3xz

R: x .
~ 3x+ 5z
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Note that the Sierpiski graphs are obtained by the linzit— . Although the
renormalization map is slightly more complicated, one stillaiis an explicit
formula for the iterateg, = R"(X):

Yo — (3) e
5/ 3(1-@))x+7
as the reciprocal of, satisfies the linear recursion
1 1 5

oz 3
In particular, the resistance scaling factor is giverpby %

Example 4(continued from page 5) As before we fix = (z,z,z) and equipXy =
K3 with conductancesy = (X, x,X). Then the renormalization madpis given by
XZ(5x+ 22)

In this and in the following example the iterates of the renorra#ilin map cannot
be given explicitly any longer. However, it is possible taide information about
the asymptotic behaviour. Since

2X X 2X+2
Rx)==—"(1-2.=—"=
) 3 < 2 X243xz+ 22>

it follows thatR(x) < %x for x,z> 0. Thusx, = R"(x) satisfies

2\" nt Xj 2x; +2
Xn = — . 1_4.17 .
" (3> LL( 2 x12+3sz+22>

The infinite product

® Xj 2Xj+z
= 12, _Are
Gz JI_L< 2 X +3xz+ 22>

converges since its factors tend to 1 at an exponential ragzeldre the resistance
scaling factor igp = % andp"x, — Cyz asn — oo,

Example 5continued from page 5) Assign conductaade all edges in the tem-
plate graph, conductaneeo the “side” edges angto the diagonal edges of the
initial graphXo = K4, see Figure 8. The renormalization map is given by

2(2XC+ 2yx+22%+y?2)

R: X . X2+yx+6zx+422+yz
“\y 2 (9 +19yC+1228+11y2 X2+ 472 X2+ 24y 7R +y3x-+ 8y 2x-+ 1242 7%+ 2y 72)
(XC+yx+62x+4Z2+y2) (2B + 4y X2+ T2R+ 2y2X+-422X+ By zX+- 2y 2 +y27)

For the sake of simplicity, we assunze= 1, which does not actually mean a
loss of generality. We writ&®; and R, to denote the first and second coordinate
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Fig. 8 Conductances oXy = K4 andX;.

of R(x,y), respectively. Since the differen&(x,y) — Rx(X,y) is a rational func-
tion in x,y without negative coefficients y > 0 impliesRy(x,y) > Rx(x,y) > 0.
Furthermore, ik >y > 0, then

2
Ri(xY) = 22X 4 2yx+ 2x+y < X(4x+3)

X2+ yX+6x+y+4 = X2+ 6x+4

3x X(3x+2) 3x

= (1- =" ) <=
4 3(x+6x+4)) ~ 4

As a consequence the iterafes,yn) = R"(x,y) satisfy 0< y, < % < (%)”*1x1
for n > 1. Now consider the quotietf = yn/Xy: since

Ro(X,y)  OX*+ 193y + 12 4+ 11x%y? + 24x2y + 4x% + 12xy> + Xy + 8Xy+ 2y
RiX,Y) (24 2xy+ 2X+Y)(2X3 + 4x2y + Tx2 + 2Xy2 4 8Xy + 4X + Y2 + 2y)

it follows that

At +2 q
(1+0((3/4) ))_W(1+0((3/4) ))-

2X2 + AXnyn + Y2
thi1= e 1 u\2
(2X0+Yn)
The function
t2+4t+2
(t+2)2

is a contraction off0, 1] with Lipschitz constan% and unique fixed point/3—1,
which shows that

t—

th=v3—1+0((3/4)").
Thus we finally obtain
Xn1 = 7(1+V3)% (1+0((3/4)"),
which implies that the resistance scaling factor in this gxars

4
P=Ar1

Furthermorep"(Xn,yn) — Cxy(1, v/3—1) for n — o and some constafy.

=2(V/3-1).
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Example 6(continued from page 5) As in the previous example, one needs$eve
variables: we assign conductancéo the sidesy to the shorter diagonals arzd

to the main diagonals of a hexagon. The resulting renormalizatiap is rather
complicated, the entries are rational functions whose numeratatglenomina-
tors are of degree 7 and 6 respectively. Some numerical detailé/areig [29]. It
can be shown that the resistance scaling fagtisran algebraic number of degree
8 whose numerical value is841467.

4 Counting spanning trees in self-similar lattices

In the following, we exhibit the relationship between spanrtieg enumeration
and the renormalization map. We fix a template grdpand conductances on
this template graph, and define a sequence of grphs,,... as shown in the
preceding section. Then by the above consideratiéng electrically equivalent
to a complete grapKg with suitable conductances, which are given as iterates
of the renormalization map:

Cn == R(Cn_l)

Assuming the existence of a resistance scaling factor, varotte following very
general theorem:

Theorem 2 Suppose that the factgr > 1 and the vector & > 0 are such that
limh_» p"ch = Cw. Then the number of spanning trees gfs4tisfies the asymp-
totic formula

NST(Xn) ~ A.prn/(%l) i Bsn (3)

for certain constants A and B, whekeis defined as follows: fill the holes of the
template graph with copies ofgkto obtain the graph ZKp), and let r be the
smallest possible number of edges in a spanning tre€l&§ Zthat are not edges
of Z. Then

K=s0—-s—r.

Furthermore, the formuld3) is exact (i. e., it holds with= instead of~) if ¢, =
p "¢, for all n and the template graph Z does not contain any edgei§ k0= 0.

Remark 1The parameter can also be defined as follows: contract all edges in
Z(Kg) that already belong t@. Thenr is the number of edges in a spanning

tree of the resulting graph. Clearly, the order of the contractephgi®at most

s8 — (s— 1) (for otherwise the contracted graph could not be connected), asd th
r<sf—(s—1)—1=s8-s, sothatk > 0.

Proof Let Y, be a complete graph of vertices endowed with conductanags
so thaty, is electrically equivalent t&,. Note thatx, 1 comprises of the template
graphZ ands copies ofX,, each of which is now replaced by a copy¥gf The
resulting graph is denoted #8n1 = Z(Y,) (keeping conductances in mind). By
Theorem 1, we have

NsT(Xn+1) = NsT(Rnt1) - <NST(Yn)



251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

11

By our assumptionsg, — 0 holds componentwise as— o. Note that both
Nst(Rn+1) = P(cn) andNst(Yn) = Q(cn) are polynomials irty,. Thus the quotient
Nst(Rnt1)/Nst(Yq)® is a rational function. Furthermordlst(Yy) is even homo-
geneous of degre@— 1, so that

Nst(Yn) = Q(cn) = p~®~P"Q(p"cy).

On the other hand, the smallest total degree of a monomRlsn (by definition
of r), and so we have

Nst(Rn+1) = P(Cn) = p~"Ryr) (p"cn) (1+0(0 ™),

whereP, is the polynomial that consists of all monomials of total k&g in P,
which correspond to all spanning trees in the grRsh; (or, if conductances are
neglectedZ(Kg)) that haver edges not belonging . Hence we obtain

Pry(p"cn)
Q(pncn)®

s (1+0n),

Nst(Xnt1) = o5 Ne7(X0)S- -(1+0(p™)

P
= p"" Ng1(Xn)®-

whered, tends to 0. Seth = 10gNsT(Xn), a = 10gP(Cx) —Sl0gQ(Cx ), anden =
log(1+ &) to obtain
Unt1 = Knlogp + Sth+a+ &n.

Iteration yields

n-1 .
U = S'Up + Z)s”‘l‘l (kjlogp +a+gj)

B a(s"—1) k(s"—ns+n-—1)logp -1g, 1-j
=3s"up+ ) + - 12 +§“Zos Zs” gj.

The sumy s/~ 1¢; converges sincej — 0, and the suny $_,s™*~I¢; tends
to O for the same reason. Thus we end up with

~ logA— Knlogp

+s"logB+0(1)
with

A— pr/(Sfl)z ) ( Q(Coo)s > 1/(s-1)
Py (C) ’

Nst(Xo) (m St >
B= expl ¥ s e ),
A ,Zo .

which proves the asymptotic result. It remains to show that the dtariis exact
in the two cases mentioned in the statement of the theorene tethplate graph
does not contain any edges, theris homogeneous as well, and the condition
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p"ch = ¢ implies thatd, = &, = 0 in the above argument. It follows that the
formula is exact.

On the other hand, & = 0, then every spanning tree Bf, 1 contains at least
r =s6 —s=s(0 — 1) edges in thes copies ofY;,,. This is also an upper bound,
since each of these copies hawertices, so that more edges would necessarily
result in a cycle. Hence every spanning tredigf1 is composed of some edges
in Z that connect the parts and spanning trees in theopies ofY,. This implies
that

NsT(Rn+1) = C-Ns1(Yn)®

for some constar@ that only depends oA, and thus

NsT(Xnt1) = C-Ns1(Xn)®,
from which an exact formula follows immediately. ad

Remark 21t is possible that the formula (3) is exact even if none of the tiatesl
conditions holds. An example is given below by the Towers afitigraphs.

In the casex = 0, the structure of the resulting sequence of graphs is “tree-
like”, and a spanning tree X, 1 induces spanning trees on each of the copies of
X it comprises of.

If Zis edgeless and the automorphism grouppacts with full symmetry (or
at least 2-homogeneously) on the set of distinguished vertiben the condition
ch = p "¢ is always satisfied, sinc¥, is electrically equivalent to a complete
graph with constant conductances in this case, and the reripati@h map re-
duces to a one-dimensional linear map.

Remark 3If (3) only holds asymptotically, then the constaAtandB can gener-
ally only be determined numerically.

Let us now determine the number of spanning trees in our example

Example 1(continued from page 7) In this case Theorem 2 yields an exact re-
sult, sinceR"(x) = p~"x with p = %, and since the template graph is edgeless.

Obviouslys=5, 8 = 2, k = 1. FurthermoreQ(c) = x andP(c) = 3x*, so that

8\ "
i = (8) " s

Example 2continued from page 7) For the sequence of Sresiiigraphs, the
formula is exact for the same reason as before. Indeed, we have

N0k = {2 (3) " (9580)° ®

which was obtained in different ways in [6,33, 35]. It is clear thhéorem 2 also
applies more generally to Siefygki graphs in higher dimension with an arbitrary
number of subdivisions. For arbitrary dimensio> 2 and the simplest case of
only two subdivisions, one obtains

d-1

NsT(Xn) = (2d((d+1)n,1) (d+ 1)(d+l)n+1+dn+d71 (d+3) (d+1)nfdnfl> W’ ©
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which was conjectured in [6] and proven by means of a different atethat de-
pends on the high degree of symmetry in [35]. In order to derive it froeofém 2
and its proof, one needs to determine the resistance scalimgy &t the polyno-
mialsP(c) andQ(c) (s=0=d+1,k = %d(d —1), andNst(Xo) = Ns1(Kg+1) =
(d+1)9-1 are easy to obtain).

(a

(b) 1 (c) 1

)
A
Loy A

3x
X X X X
A 3x AW
/ \/ \ 3></L % )\ £ Y 2z Y
X X « 7 ~ « ~

(d)

N2

./3></ \Sx\ /ﬁ é\

Fig. 9 Starting graph (a) and all steps (b)-(f) in the simplificatifor two-dimensional
Sierpihski graphs @ = 3).

3x (
+ ¥
)4 3x 3
v 5 5
A
2 9 9%
3x

As mentioned in the preceding section, the resistance scioigr is %,
which can be seen as follows (see Figure 9)clet (x,x,...,X) be constant con-
ductances o)Xy = Kg; we substitutes= d + 1 copies ofXg into the template graph
(which is edgeless). Each of these copies is now replaced byainiehlly equiv-
alent star with conductancéx. The centers of these stars form a complete graph
with subdivided edges of conductand®s These can be reduced to single edges
of conductancéx/2. The resulting complete graph can now be transformed to a
star with conductance8?x/2. The new graph is a star whose edges are all sub-
divided into two parts whose conductances @xeand 62x/2. These are reduced
to single edges of conductan@éx/(8 + 2). Finally, the star is transformed back
to a complete graph with conductanddg/ (6 + 2). This shows that the renormal-
ization map is given by

6 « d+1 «
_ — _ —_—
6+2 d+3 7’

so thatp = =3 must be the resistance scaling factor.

It remains to determine the polynomi&sandQ. Let againc = (x,X,...,X) be
the conductances. Thé&pis easily found to be

X

Q(C) _ XeleST(K9> _ X6719972 _ Xd(d + 1)d717

andP can be determined by means of the same transformations that vesréous
determine the resistance scaling factor together with Thedrettme subdivided
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star with conductance8x and 82x/2 has only one spanning tree whose weight
is (63x2/2)®. The first replacement step yields a factty (x62))? from Theo-
rem 1, the serial replacemer{@9x)?(®~1/2 and the final transformation from a
complete graph to a star a factor of(B3x). Therefore, we have

1\° _ 2
P(c) = ()«92) - (26x)9(6 1>/2.@.(e3x2/2)9

2(6-1)(6-2)/2(6+3)(6-2)/2,(6-1)(6+2)/2

_ 2d(d71)/2(d + 1)(d+4)(d71)/2Xd(d+3)/2_
Putting everything together, one obtains formula (6).

Example 3continued from page 7) In this example, the two polynomizknd
Q are given by

P(c) =27°Z2(2z+3x) and Q(c)=3%
if ¢ = (x,X,X). Write ¢, = (Xn, Xn, Xn) = R"(c) for the iterates. Then
Pcn) o[22z (X422 (5\"
qep 203 = =5 (5)

The recursion foNst(X;) thus reduces to

Nst(Xnt1) = 22<)2(: +3) = 722(3)(: 22). <2)nNST(Xn)3.

In view of the cancellations, the formula we obtain in this exkemp exact even
though the conditions for an exact formula given in Theorem 2 ateatisfied,
which shows that these conditions are sufficient, but notsezng:

Nst(X) = ﬁ\/ zZ(TXJrZz) (Z) —n/Z' (\‘yﬁ\/x3zz(3x+ 22))3n.

In particularx = z= 1 yields a formula for “ordinary” Towers of Hanoi graphs:
_ 4 3 5\ "2 4/ 3

lim 2_3/2(3n_1) NST(Xn)

Z—00

The limit

gives the number of spanning treesXp which contain all edges of weiglzt
This corresponds exactly to spanning trees in the associageuiffski graphs that
result from contracting these edges, so that we obtain the fornfitie previous
example as a special case.
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Example 4(continued from page 8) Here one easily firds 3, and the constants
A andB can be determined numerically:

3 -3n/2 N
NsT(Xn) ~ A- <2> -B°

with A= 0.071944 and ~ 54.521061.

Example 5continued from page 8) Let; be unit conductances amgd = (1,0)
be fixed. Then all requirements of Theorem 2 are satisfied, and ta&ob

Nsr(Xe) ~ A-p /3. B
with A~ 0.105066 and ~ 35.126433.

Example 6(continued from page 10) We take the initial graph to be the d@ggle
as shown in Figure 6 (i. e., the initial conductances @®,0)). As mentioned
before, the resistance scaling facmrhas numerical value.841467, and one
obtains

Ns7(Xn) ~A-p~"-B"
with A~ 0.257362 andB ~ 16.887511.

5 A final remark

(@) (b)
X3 X2 X3
&

Fig. 10 Two ways to construct the Siefki graphXs: (a) X3 is obtained by glueing three copies
of Xz, (b) X3 is obtained by replacing each upright triangle (cop%efby X;.

The self-similarity of a sequence of graphs as defined in Sectiomag be
used in two ways: first by using the copy-construction directygomnd by insert-
ing “microstructure” at the right places, see Figure 10 for antiat®on in the
case of Sierpiski graphs. Both variants were used to study several problenms (spi
models, random walks, spectral theory, etc.). In order to illustitase two per-
spectives we quote two different descriptions of the partitiorcfion of the Ising
modell on the sequence of Sianpki graphs. Consider the Ising modell with near-
est neighbour interactions only and constant interactiomgthel. Let 3 be the
“inverse” temperature and writ&,(3J) for the partition function. Then using the
“high temperature expansion” and the first construction methadgs shown in
[9] that

Zn(BJ) = 226" D/2cosKBI)" 17y (tanh(BY)),
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wherely(z) is defined by the recursion

(2 _ (1+2 and (@Y 2%+ Y(2)®

¥6(2) 7+ 2 Yar1(2) Ya(2’Mn(2) +Y(2°)
On the other hand, using the second construction it was shievi@] ithat, for
y = ePJ, the quite different recurrence equation

Zaia(y) = (€(y)¥ Za(f(y))
with
_ 1/4
= (L2250 and o)=Lt (o -y e

holds. In this note we have studied the number of spanning trsiag the copy-
construction. Of course, one can also use the second one. én edtbes we obtain
a recurrence equation fdlst(Xn). Let us write down this equation for the case of
two-dimensional Sierpiski graphs. Equation (4) implies

Nst(Xt, (3)M)

Nst(Xnt1) = Nor(Xo, (3)7)2 ERE

“Ns7(%n)® = 2(3)"Ns1(%0)?,

sinceY;, is nothing else bukp with constant conductancéé)” andRy,1 is X
with constant conductanc(e%)”. On the other hand, we obtain

NsT(X1)

3n
N L3 = (3)Y2540"/2N
NST(Xo,E)) 570%:5) = (5) 570%)

NsT(Xn+1) = (

by 3" substitutionsX; — (Xo, g) in Xn1. Again note the difference between these
two recurrence equations. Furthermore, equating these equdtrectly yields
Formula (5).
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