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Abstract The problem of enumerating spanning trees in self-similar lattices was6

recently introduced to the literature by Chang, Chen and Yang, who determined7

explicit formulae in the case of Sierpiński graphs and some of their generaliza-8

tions. The aim of this note is to show that their results hold inmore generality and9

that there is a strong relation between this enumeration problem and resistance10

scaling on self-similar lattices.11
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1 Introduction15

Enumeration of spanning trees and the analysis of electrical networks are closely16

related as it was already shown in the fundamental work of Kirchhoff [19]. This17

interplay was further explored in various directions, see for instance [26,37]; in18
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particular, the famous Matrix-Tree-Theorem (see for instance [2]) yields a practi-19

cal method to compute the number of spanning trees in graphs, which was used20

in numerous works. The number of spanning trees is also of interest in statisti-21

cal physics, since it corresponds to a specialq→ 0 limit of the partition function22

of the q-state Potts model [11,39]. There are also other interesting ties to dimer23

coverings [32] and sandpile models [8].24

A large number of results in the physical literature are concernedwith the25

number of spanning trees in two- and higher-dimensional lattices [7,30,31,38];26

recently, Chang, Chen, and Yang [6] considered this problem for the Sierpínski27

gasket and its variants. The Sierpiński gasket is probably the most classical ex-28

ample of a self-similar fractal lattice: in contrast to the translational invariance of29

lattices such as the square lattice or the honeycomb, one of the main properties of30

self-similar lattices is scaling-invariance. Many other models of statistical physics31

have been investigated on self-similar lattices (in particularthe Sierpinski gasket)32

as well, see [4,5,10,12,13,15,16].33

The results of Chang, Chen, and Yang are mainly based on the analysis of34

systems of recurrences. The aim of this paper is a continuation of their research:35

especially we aim to36

– generalize their results to an entire class of self-similar lattices,37

– establish a relation between the asymptotic growth of the number of spanning38

trees and so-called (resistance) renormalization on these lattices, and39

– prove a conjecture of [6].40

The aforementioned conjecture was also proven by the authors in [35] using dif-41

ferent methods that made use of the high degree of symmetry. Here weaim to42

treat the problem in more generality. The main tool that we are going to use is a43

technique that was recently developed by the authors in [36]. Shortly, the main44

theorem of [36] states the following: If a part of a graph is substituted by an elec-45

trically equivalent part, then the weighted number of spanning trees (where the46

weight of a spanning tree is the product of the conductances of its edges) changes47

by a factor depending on the substituted graphs only.48

Our paper is organized as follows:49

– In Section 2 basic notions concerning the theory of electrical networks are50

recalled and the authors’ method from [36] is explained briefly.51

– Section 3 provides an inductive construction scheme for self-similar lattices.52

Furthermore, renormalization of resistances/conductances on self-similar lat-53

tices is discussed.54

– Section 4 contains the main results: The asymptotic growth of the number of55

spanning trees on self-similar lattices is determined and a relation to renormal-56

ization is revealed.57

Several examples are provided for illustration.58

2 Electrical networks59

The vertex (site) set of a graphG is denoted byVG and the edge (bond) set is60

denoted byEG. In the following graphs are allowed to have parallel edges and61

loops. An (electrical) network is an edge-weighted graph, i. e., aweight (conduc-62

tance)c(e) is assigned to each edgee of G. Graphs without explicit conductances63

are considered as electrical networks with unit conductances, i. e., c(e) = 1 for64
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each edgee. The (weighted) Laplace matrixL = LG of a networkG is defined as65

follows:66

Lx,y = − ∑
e∈EG

econnectsx,y

c(e) and Lx,x = − ∑
z∈VG
z6=x

Lx,z

for distinct verticesx,y of G. We say that two networksF andG areelectrically67

equivalentwith respect toB ⊆ VF∩VG, if they cannot be distinguished by ap-68

plying voltages toB and measuring the resulting currents onB. As a consequence69

of Kirchhoff’s current law two networksF andG are electrically equivalent if the70

rows corresponding to the vertex setB of the matricesLFHF
B andLGHG

B are equal,71

whereHF
B is the matrix associated to harmonic extension. A special situation of72

electrical equivalence is the trace operation on networks: IfF andG are networks73

with VF ⊆VG andF andG are equivalent with respect toVF then the network74

F is called thetrace of G with respect to the vertices ofF . In terms of Laplace75

matrices traces are Schur complements: WriteB = VF andC = VG\B, then76

LF = (LG)BB− (LG)BC · (LG)−1
CC · (LG)CB, (1)

where(LG)BC denotes the submatrix ofLG with rows corresponding toB and77

columns corresponding toC. If the inverse of(LG)CC does not exist, it must be78

replaced by the Moore-Penrose generalized inverse, see [24].79

A graphT is atree, if T is connected and does not contain cycles. A subgraph80

H of a graphG is calledspanningif VH = VG. See for example [2] for these and81

other graph-theoretical notions. Given a networkG we writeNST(G) to denote the82

weighted number of spanning trees inG:83

NST(G) = ∑
T

∏
e∈ET

c(e),

where the sum is taken over all spanning treesT of G. If G is equipped with unit84

conductances thenNST(G) is the usual number of spanning trees. The following85

theorem was proven in [36] and is the main tool in the following.86

Theorem 1 Suppose that a network X can be decomposed into G and H, so that87

EG and EH are disjoint, EX= EG∪EH, and VX= VG∪VH. We set B= VG∩88

VH. Let H′ be a network with EG∩EH′ = ∅ and VG∩VH′ = B, such that H and89

H ′ are electrically equivalent with respect to B, and assume that NST(H) 6= 0 and90

NST(H ′) 6= 0. Then91

NST(X)

NST(H)
=

NST(X′)
NST(H ′)

.

3 Self-similar lattices and renormalization92

We consider finite approximationsX0,X1, . . . to self-similar lattices of the fol-93

lowing type: letZ be a template graph with a tuplez of θ distinguished vertices94

ands “holes” described by a tuple ofθ vertices for each hole. LetX0 be a graph95

andx0 be a tuple ofθ distinguished vertices. The graphX1 is obtained by fill-96

ing the holes ofZ with s copies ofX0, i. e., the vertices of a hole are identified97
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with the distinguished vertices of the associated copy ofX0. Furthermore, the ver-98

tices corresponding to those inz are used as tuplex1 of distinguished vertices99

for X1. We writeZ(X0) to denote the resultX1 of this construction (keeping dis-100

tinguished vertices in mind). Now this procedure is repeated in order to get the101

graphsX2 = Z(X1),X3 = Z(X2), . . . with distinguished verticesx2,x3, . . . A rigor-102

ous description of this copy-construction can be found in [34]. In order to illustrate103

the construction above let us give the following examples.104

Example 1The modified Koch curve is a simple but interesting variation of the105

classical Koch curve, see Figure 1 for an illustration of the template graphZ106

and the construction of the associated graph sequence (distinguished vertices are107

drawn bold). The spectrum of the Laplace operator on these graphs was studied in108

[21].

X0 X1

X2

1st
copy

2nd
copy

3rd
copy

4th
copy

5th
copy

Z

Fig. 1 Modified Koch graphsX0, X1, X2 and their template graphZ.

109

Example 2The construction of the Sierpiński graphsX0,X1,X2, . . . and the corre-110

sponding template graphZ is outlined in Figure 2. Notice that the template graph111

Z is edgeless. The number of spanning treesNST(Xk) in Xk and higher dimensional112

analogues are studied in [6]. Variants with a larger number of subdivisions on each113

side of the template graph are considered in [6] as well. This yields a family of114

lattices with two parameters: the dimensiond and the number of subdivisionsm.115

Notice that the number of distinguished vertices is given byθ = d + 1 and the116

number of copies is given bys=
(m+d−1

d

)

.

X0 X1 X2

first copy second copy

third copy
Z

Fig. 2 Sierpínski graphsX0, X1, X2 and their template graphZ.

117
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Example 3A slightly modified version of the Sierpiński graphs is given by the118

Towers of Hanoi graphs. The vertices of the graphXk in this sequence correspond119

to all possible configurations of the game “Towers of Hanoi” with k+1 disks and120

three rods, whereas the edges describe transitions between configurations, see for121

example [17]. We remark that these graphs are finite Schreier graphs ofthe Hanoi122

tower group, see [14]. Their construction is outlined in Figure 3.

X0 X1 X2

first copy second copy

third copy

Z

Fig. 3 The Towers of Hanoi graphsX0, X1, X2 and their template graphZ.

123

Example 4Another variation of the Sierpiński graphs (similar to the Towers of124

Hanoi graphs) is shown in Figure 4. The main point here is the existence of cycles125

in the template graphZ.

X0 X1 X2

first copy second copy

third copy

Z

Fig. 4 The first three graphsX0,X1,X2 constructed using the templateZ.

126

Example 5The sequence of graphs depicted in Figure 5 exhibits two phenomena,127

which have influence on the number of spanning trees. Firstly, the graphs in the128

sequence are less symmetric; secondly the template graphZ contains a cycle.

X0 X1 X2

first copy second copy

third copyfourth copy

Z

Fig. 5 The first three graphsX0,X1,X2 constructed using the templateZ.

129

Example 6The Lindstrøm snowflake is a well-known self-similar fractal, see [20].130

The approximating graphs and their template graph are shown in Figure 6.131
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X0 X1 X2

1st copy 2nd copy

3rd copy4th copy

5th copy

6th copy 7th copy

Z

Fig. 6 The snowflake graphsX0, X1, X2 and their template graphZ.

In the following we describe the notion of (conductance/resistance) renormal-132

ization on self-similar lattices, see for instance [1,18,27]. Let X0 = Kθ be the133

complete graph withθ vertices, and fix a template graphZ and endow its edges134

with fixed conductancescZ. Let X1,X2, . . . be constructed as above. There are two135

natural operations for conductances onX0 andX1, respectively:136

– Replication: If we are given conductancesc0 on X0, thenX1 naturally inherits137

conductances fromX0 andZ. Let us denote these conductances onX1 by S(c0).138

– Traces: If we are given conductancesc1 on X1, consider the trace of the net-139

work X1 with respect to its distinguished verticesx1. The underlying graph of140

this trace is a complete graph withθ vertices, which can naturally be identified141

with the vertices ofX0. Hence the trace operation defines conductances onX0,142

which we denote byT(c1).143

The so-called renormalization mapR is the composition ofT andS, i. e.,144

R= T ◦S: R
(θ

2) → R
(θ

2).

Note here thatX0 = Kθ has
(θ

2

)

edges. Both the replication mapS and the trace145

mapT are rational in all coordinates, due to the representation (1) for the Laplace146

matrix of a trace. Thus,R is also rational in all coordinates. Moreover, if the147

template graphZ is edgeless, the renormalization mapR is homogeneous, i. e.,148

R(αc) = αR(c). Generally, the renormalization mapR is a rational function in149

the conductancesc on X0 = Kθ andcZ on Z. Writing R(c,cZ) to emphasise the150

dependence onc andcZ, we haveR(αc,αcZ) = αR(c,cZ).151

The basic question in renormalization is the dynamical behaviour of the iter-152

ated mapRn. Fix some conductancesc0 on X0 and setcn = Rn(c0) for n > 0. In153

well-behaved instances of the graph construction above (in particular in all our154

examples) it turns out that there exists a constantρ > 1, so that the sequence155

(ρncn)n≥0 is bounded from above and below by positive numbers. In this case we156

call ρ theresistance scaling factorof the self-similar lattice. Even more holds true157

for all examples above: There are conductancesc∞ > 0, so thatρncn = c∞ +o(1).158

Assume that the limit159

R∞(c) = lim
α→∞

R(c,αcZ)

exists and is continuous inc. Notice that this limit corresponds to the shortening160

(contraction) of all edges inZ. In this caseρncn = c∞ +o(1) implies161

c∞ = ρR∞(c∞), (2)

asρn+1cn+1 = ρR(ρncn,ρncZ). Henceρ andc∞ form a solution of the non-linear162

eigenvalue problem above. Notice that if the template graphZ is edgeless, then163

R(c) = R∞(c). Existence and uniqueness of solutions of this non-linear eigenvalue164
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problem, as well as contractivity ofRhave been studied for a variety of self-similar165

lattices, see for instance [20,22,23,25,28]. We remark that the use of symmetries166

of the sequenceX0,X1, . . . often reduces the complexity of effective computations167

significantly.168

Let us discuss renormalization and resistance scaling for the examples above:169

Example 1(continued from page 4) EndowX0 = K2 with conductancex, then the170

renormalization map is given by171

R: x→ 3
8x.

Thus the resistance scaling factor isρ = 8
3.172

Example 2(continued from page 4) First, let us consider the usual (i. e.,d = 2,

x3

x1x2
X0

x3

x1x2

x3

x1x2

x3

x1x2

X1

Fig. 7 Conductances onX0 and one way to specify conductances onX1 using replication.

173

m= 2) Sierpínski graphsK3 = X0,X1, . . . equipped with conductances as indicated174

in Figure 7, i. e.,c0 = (x1,x2,x3). The renormalization map is then given by175

R:





x1
x2
x3



 7→











(x1x2+x2x3+x3x1)(3x1(x1+x2+x3)+x2x3)

6(x2
1(x2+x3)+x2

2(x1+x3)+x2
3(x1+x2))+14x1x2x3

(x1x2+x2x3+x3x1)(3x2(x1+x2+x3)+x1x3)

6(x2
1(x2+x3)+x2

2(x1+x3)+x2
3(x1+x2))+14x1x2x3

(x1x2+x2x3+x3x1)(3x3(x1+x2+x3)+x1x2)

6(x2
1(x2+x3)+x2

2(x1+x3)+x2
3(x1+x2))+14x1x2x3











Now, let us take symmetry into account: assume thatx = x1 = x2 = x3. Then the176

renormalization map reduces to177

R: x 7→ 3
5x,

whencec = (1,1,1) andρ = 5
3 is a solution of (2). For arbitrary dimensiond and178

number of subdivisionsm unit conductancesc = (1, . . . ,1) ∈ R
d+1 always yield179

an eigenvalue for someρ > 1, but no explicit formula forρ is known. However,180

in the special casem= 2, it is known thatρ = d+3
d+1.181

Example 3(continued from page 4) Let us fix constant conductancescZ = (z,z,z)182

on the template graphZ and equipX0 = K3 with constant conductancesc0 =183

(x,x,x). Then the renormalization mapR is given by184

R: x 7→ 3xz
3x+5z

.
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Note that the Sierpiński graphs are obtained by the limitz→ ∞. Although the185

renormalization map is slightly more complicated, one still obtains an explicit186

formula for the iteratesxn = Rn(x):187

xn =

(

3
5

)n

· xz
3
2

(

1− (3
5)

n)
x+z

,

as the reciprocal ofxn satisfies the linear recursion188

1
xn+1

=
1
z

+
5

3xn
.

In particular, the resistance scaling factor is given byρ = 5
3.189

Example 4(continued from page 5) As before we fixcZ = (z,z,z) and equipX0 =190

K3 with conductancesc0 = (x,x,x). Then the renormalization mapR is given by191

R: x 7→ xz(5x+2z)
3(x2 +3xz+z2)

.

In this and in the following example the iterates of the renormalization map cannot192

be given explicitly any longer. However, it is possible to derive information about193

the asymptotic behaviour. Since194

R(x) =
2x
3

(

1− x
2
· 2x+z
x2 +3xz+z2

)

it follows thatR(x) ≤ 2
3x for x,z> 0. Thusxn = Rn(x) satisfies195

xn =

(

2
3

)n

·
n−1

∏
j=0

(

1− x j

2
· 2x j +z

x2
j +3x jz+z2

)

.

The infinite product196

Cx,z =
∞

∏
j=0

(

1− x j

2
· 2x j +z

x2
j +3x jz+z2

)

converges since its factors tend to 1 at an exponential rate. Therefore the resistance197

scaling factor isρ = 3
2 andρnxn →Cx,z asn→ ∞.198

Example 5(continued from page 5) Assign conductancez to all edges in the tem-199

plate graph, conductancex to the “side” edges andy to the diagonal edges of the200

initial graphX0 = K4, see Figure 8. The renormalization map is given by201

R :

(

x
y

)

7→





z(2x2+2yx+2zx+yz)
x2+yx+6zx+4z2+yz

z2(9x4+19yx3+12zx3+11y2x2+4z2x2+24yzx2+y3x+8yz2x+12y2zx+2y2z2)
(x2+yx+6zx+4z2+yz)(2x3+4yx2+7zx2+2y2x+4z2x+8yzx+2yz2+y2z)



 .

For the sake of simplicity, we assumez = 1, which does not actually mean a202

loss of generality. We writeR1 andR2 to denote the first and second coordinate203
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x

x

x

x

yy

X0

x

x

x

x

yy

x

x

x

x

yy

x

x

x

x

yy

x

x

x

x

yy

z

z

z

z

z

z

z zX1

Fig. 8 Conductances onX0 = K4 andX1.

of R(x,y), respectively. Since the differenceR1(x,y)−R2(x,y) is a rational func-204

tion in x,y without negative coefficients,x,y≥ 0 impliesR1(x,y) ≥ R2(x,y) ≥ 0.205

Furthermore, ifx≥ y≥ 0, then206

R1(x,y) =
2x2 +2yx+2x+y

x2 +yx+6x+y+4
≤ x(4x+3)

x2 +6x+4

=
3x
4

(

1− x(3x+2)

3(x2 +6x+4)

)

≤ 3x
4

.

As a consequence the iterates(xn,yn) = Rn(x,y) satisfy 0≤ yn ≤ xn ≤ (3
4)n−1x1207

for n≥ 1. Now consider the quotienttn = yn/xn: since208

R2(x,y)
R1(x,y)

=
9x4 +19x3y+12x3 +11x2y2 +24x2y+4x2 +12xy2 +xy3 +8xy+2y2

(2x2 +2xy+2x+y)(2x3 +4x2y+7x2 +2xy2 +8xy+4x+y2 +2y)

it follows that209

tn+1 =
2x2

n +4xnyn +y2
n

(2xn +yn)2 (1+O((3/4)n)) =
t2
n +4tn +2
(tn +2)2 (1+O((3/4)n)).

The function210

t 7→ t2 +4t +2
(t +2)2

is a contraction on[0,1] with Lipschitz constant12 and unique fixed point
√

3−1,211

which shows that212

tn =
√

3−1+O((3/4)n).

Thus we finally obtain213

xn+1 = 1
4(1+

√
3)xn (1+O((3/4)n)),

which implies that the resistance scaling factor in this example is214

ρ =
4√

3+1
= 2(

√
3−1).

Furthermore,ρn(xn,yn) →Cx,y(1,
√

3−1) for n→ ∞ and some constantCx,y.215
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Example 6(continued from page 5) As in the previous example, one needs several216

variables: we assign conductancex to the sides,y to the shorter diagonals andz217

to the main diagonals of a hexagon. The resulting renormalization map is rather218

complicated, the entries are rational functions whose numeratorsand denomina-219

tors are of degree 7 and 6 respectively. Some numerical details are given in [29]. It220

can be shown that the resistance scaling factorρ is an algebraic number of degree221

8 whose numerical value is 1.841467.222

4 Counting spanning trees in self-similar lattices223

In the following, we exhibit the relationship between spanningtree enumeration224

and the renormalization map. We fix a template graphZ and conductances on225

this template graph, and define a sequence of graphsX0,X1, . . . as shown in the226

preceding section. Then by the above considerations,Xn is electrically equivalent227

to a complete graphKθ with suitable conductancescn, which are given as iterates228

of the renormalization map:229

cn = R(cn−1).

Assuming the existence of a resistance scaling factor, we obtain the following very230

general theorem:231

Theorem 2 Suppose that the factorρ > 1 and the vector c∞ > 0 are such that232

limn→∞ ρncn = c∞. Then the number of spanning trees of Xn satisfies the asymp-233

totic formula234

NST(Xn) ∼ A·ρ−κn/(s−1) ·Bsn
(3)

for certain constants A and B, whereκ is defined as follows: fill the holes of the235

template graph with copies of Kθ to obtain the graph Z(Kθ ), and let r be the236

smallest possible number of edges in a spanning tree of Z(Kθ ) that are not edges237

of Z. Then238

κ = sθ −s− r.

Furthermore, the formula(3) is exact (i. e., it holds with= instead of∼) if cn =239

ρ−nc∞ for all n and the template graph Z does not contain any edges, or if κ = 0.240

Remark 1The parameterr can also be defined as follows: contract all edges in241

Z(Kθ ) that already belong toZ. Then r is the number of edges in a spanning242

tree of the resulting graph. Clearly, the order of the contracted graph is at most243

sθ − (s−1) (for otherwise the contracted graph could not be connected), and thus244

r ≤ sθ − (s−1)−1 = sθ −s, so thatκ ≥ 0.245

Proof Let Yn be a complete graph onθ vertices endowed with conductancescn,246

so thatYn is electrically equivalent toXn. Note thatXn+1 comprises of the template247

graphZ ands copies ofXn, each of which is now replaced by a copy ofYn. The248

resulting graph is denoted byRn+1 = Z(Yn) (keeping conductances in mind). By249

Theorem 1, we have250

NST(Xn+1) = NST(Rn+1) ·
(

NST(Xn)

NST(Yn)

)s

. (4)
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By our assumptions,cn → 0 holds componentwise asn → ∞. Note that both251

NST(Rn+1) = P(cn) andNST(Yn) = Q(cn) are polynomials incn. Thus the quotient252

NST(Rn+1)/NST(Yn)
s is a rational function. Furthermore,NST(Yn) is even homo-253

geneous of degreeθ −1, so that254

NST(Yn) = Q(cn) = ρ−(θ−1)nQ(ρncn).

On the other hand, the smallest total degree of a monomial inP is r (by definition255

of r), and so we have256

NST(Rn+1) = P(cn) = ρ−rnP(r)(ρncn)(1+O(ρ−n)),

whereP(r) is the polynomial that consists of all monomials of total degreer in P,257

which correspond to all spanning trees in the graphRn+1 (or, if conductances are258

neglected,Z(Kθ )) that haver edges not belonging toZ. Hence we obtain259

NST(Xn+1) = ρ(sθ−s−r)n ·NST(Xn)
s ·

P(r)(ρncn)

Q(ρncn)s · (1+O(ρ−n))

= ρκn ·NST(Xn)
s ·

P(r)(c∞)

Q(c∞)s · (1+δn),

whereδn tends to 0. Setun = logNST(Xn), a= logP(r)(c∞)−slogQ(c∞), andεn =260

log(1+δn) to obtain261

un+1 = κnlogρ +sun +a+ εn.

Iteration yields262

un = snu0 +
n−1

∑
j=0

sn−1− j(κ j logρ +a+ ε j)

= snu0 +
a(sn−1)

s−1
+

κ(sn−ns+n−1) logρ
(s−1)2 +sn

∞

∑
j=0

s− j−1ε j −
∞

∑
j=n

sn−1− jε j .

The sum∑∞
j=0s− j−1ε j converges sinceε j → 0, and the sum∑∞

j=nsn−1− jε j tends263

to 0 for the same reason. Thus we end up with264

un = logA− κnlogρ
s−1

+sn logB+o(1)

with265

A = ρ−κ/(s−1)2 ·
(

Q(c∞)s

P(r)(c∞)

)1/(s−1)

,

B =
NST(X0)

A
·exp

( ∞

∑
j=0

s− j−1ε j

)

,

which proves the asymptotic result. It remains to show that the formula is exact266

in the two cases mentioned in the statement of the theorem. If the template graph267

does not contain any edges, thenP is homogeneous as well, and the condition268
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ρncn = c∞ implies thatδn = εn = 0 in the above argument. It follows that the269

formula is exact.270

On the other hand, ifκ = 0, then every spanning tree ofRn+1 contains at least271

r = sθ − s = s(θ − 1) edges in thes copies ofYn. This is also an upper bound,272

since each of these copies hasθ vertices, so that more edges would necessarily273

result in a cycle. Hence every spanning tree ofRn+1 is composed of some edges274

in Z that connect thes parts and spanning trees in thes copies ofYn. This implies275

that276

NST(Rn+1) = C ·NST(Yn)
s

for some constantC that only depends onZ, and thus277

NST(Xn+1) = C ·NST(Xn)
s,

from which an exact formula follows immediately. ⊓⊔

Remark 2It is possible that the formula (3) is exact even if none of the two stated278

conditions holds. An example is given below by the Towers of Hanoi graphs.279

In the caseκ = 0, the structure of the resulting sequence of graphs is “tree-280

like”, and a spanning tree inXn+1 induces spanning trees on each of the copies of281

Xn it comprises of.282

If Z is edgeless and the automorphism group ofXn acts with full symmetry (or283

at least 2-homogeneously) on the set of distinguished vertices, then the condition284

cn = ρ−nc∞ is always satisfied, sinceXn is electrically equivalent to a complete285

graph with constant conductances in this case, and the renormalization map re-286

duces to a one-dimensional linear map.287

Remark 3If (3) only holds asymptotically, then the constantsA andB can gener-288

ally only be determined numerically.289

Let us now determine the number of spanning trees in our examples.290

Example 1(continued from page 7) In this case Theorem 2 yields an exact re-291

sult, sinceRn(x) = ρ−nx with ρ = 8
3, and since the template graph is edgeless.292

Obviouslys= 5, θ = 2, κ = 1. Furthermore,Q(c) = x andP(c) = 3x4, so that293

NST(Xn) =

(

8
3

)−n/4

·63(5n−1)/16.

Example 2(continued from page 7) For the sequence of Sierpiński graphs, the294

formula is exact for the same reason as before. Indeed, we have295

NST(Xn) =
4

√

3
20

·
(

5
3

)−n/2

·
( 4
√

540
)3n

, (5)

which was obtained in different ways in [6,33,35]. It is clear thatTheorem 2 also296

applies more generally to Sierpiński graphs in higher dimension with an arbitrary297

number of subdivisions. For arbitrary dimensiond ≥ 2 and the simplest case of298

only two subdivisions, one obtains299

NST(Xn) =
(

2d((d+1)n−1) (d+1)(d+1)n+1+dn+d−1(d+3)(d+1)n−dn−1
) d−1

2d
, (6)
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which was conjectured in [6] and proven by means of a different method that de-300

pends on the high degree of symmetry in [35]. In order to derive it from Theorem 2301

and its proof, one needs to determine the resistance scaling factor and the polyno-302

mialsP(c) andQ(c) (s= θ = d+1, κ = 1
2d(d−1), andNST(X0) = NST(Kd+1) =303

(d+1)d−1 are easy to obtain).304

(a)

x

xx

x

xx

x

xx

(b)

3x 3x

3x

3x 3x

3x

3x 3x

3x

(c)

3x 3x

3x

3x
2

3x
2

3x
2

(d)

3x 3x

3x

9x
2

9x
2

9x
2

(e)

9x
5

9x
5

9x
5

(f)

3x
5

3x
5

3x
5

Fig. 9 Starting graph (a) and all steps (b)–(f) in the simplification for two-dimensional
Sierpínski graphs (θ = 3).

As mentioned in the preceding section, the resistance scalingfactor is d+3
d+1,305

which can be seen as follows (see Figure 9): letc = (x,x, . . . ,x) be constant con-306

ductances onX0 = Kθ ; we substitutes= d+1 copies ofX0 into the template graph307

(which is edgeless). Each of these copies is now replaced by an electrically equiv-308

alent star with conductancesθx. The centers of these stars form a complete graph309

with subdivided edges of conductancesθx. These can be reduced to single edges310

of conductanceθx/2. The resulting complete graph can now be transformed to a311

star with conductancesθ 2x/2. The new graph is a star whose edges are all sub-312

divided into two parts whose conductances areθx andθ 2x/2. These are reduced313

to single edges of conductanceθ 2x/(θ +2). Finally, the star is transformed back314

to a complete graph with conductancesθx/(θ +2). This shows that the renormal-315

ization map is given by316

x 7→ θ
θ +2

·x =
d+1
d+3

·x,

so thatρ = d+3
d+1 must be the resistance scaling factor.317

It remains to determine the polynomialsP andQ. Let againc= (x,x, . . . ,x) be318

the conductances. ThenQ is easily found to be319

Q(c) = xθ−1NST(Kθ ) = xθ−1θ θ−2 = xd(d+1)d−1,

andP can be determined by means of the same transformations that were used to320

determine the resistance scaling factor together with Theorem1: the subdivided321
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star with conductancesθx andθ 2x/2 has only one spanning tree whose weight322

is (θ 3x2/2)θ . The first replacement step yields a factor(1/(xθ 2))θ from Theo-323

rem 1, the serial replacements(2θx)θ(θ−1)/2, and the final transformation from a324

complete graph to a star a factor of 2/(θ 3x). Therefore, we have325

P(c) =

(

1
xθ 2

)θ
· (2θx)θ(θ−1)/2 · 2

θ 3x
· (θ 3x2/2)θ

= 2(θ−1)(θ−2)/2θ (θ+3)(θ−2)/2x(θ−1)(θ+2)/2

= 2d(d−1)/2(d+1)(d+4)(d−1)/2xd(d+3)/2.

Putting everything together, one obtains formula (6).326

Example 3(continued from page 7) In this example, the two polynomialsP and327

Q are given by328

P(c) = 27x5z2(2z+3x) and Q(c) = 3x2

if c = (x,x,x). Write cn = (xn,xn,xn) = Rn(c) for the iterates. Then329

P(cn)

Q(cn)3 = z2
(

2z
xn

+3

)

=
z2(3x+2z)

x
·
(

5
3

)n

.

The recursion forNST(Xn) thus reduces to330

NST(Xn+1) = z2
(

2z
xn

+3

)

=
z2(3x+2z)

x
·
(

5
3

)n

NST(Xn)
3.

In view of the cancellations, the formula we obtain in this example is exact even331

though the conditions for an exact formula given in Theorem 2 are not satisfied,332

which shows that these conditions are sufficient, but not necessary:333

NST(Xn) =
4

√

3
5

√

x
z2(3x+2z)

·
(

5
3

)−n/2

·
(

4
√

135
√

x3z2(3x+2z)
)3n

.

In particular,x = z= 1 yields a formula for “ordinary” Towers of Hanoi graphs:334

NST(Xn) =
4

√

3
125

·
(

5
3

)−n/2

·
( 4
√

3375
)3n

.

The limit335

lim
z→∞

z−3/2(3n−1)NST(Xn)

gives the number of spanning trees inXn which contain all edges of weightz.336

This corresponds exactly to spanning trees in the associated Sierpiński graphs that337

result from contracting these edges, so that we obtain the formula of the previous338

example as a special case.339
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Example 4(continued from page 8) Here one easily findsκ = 3, and the constants340

A andB can be determined numerically:341

NST(Xn) ∼ A·
(

3
2

)−3n/2

·B3n

with A≈ 0.071944 andB≈ 54.521061.342

Example 5(continued from page 8) LetcZ be unit conductances andc0 = (1,0)343

be fixed. Then all requirements of Theorem 2 are satisfied, and we obtain344

NST(Xn) ∼ A·ρ−4n/3 ·B4n

with A≈ 0.105066 andB≈ 35.126433.345

Example 6(continued from page 10) We take the initial graph to be the cycleC6,346

as shown in Figure 6 (i. e., the initial conductances are(1,0,0)). As mentioned347

before, the resistance scaling factorρ has numerical value 1.841467, and one348

obtains349

NST(Xn) ∼ A·ρ−n ·B7n

with A≈ 0.257362 andB≈ 16.887511.350

5 A final remark351

(a)

X2

X3

(b)

X2 X3

Fig. 10 Two ways to construct the Sierpiński graphX3: (a)X3 is obtained by glueing three copies
of X2, (b) X3 is obtained by replacing each upright triangle (copy ofX0) by X1.

The self-similarity of a sequence of graphs as defined in Section 3may be352

used in two ways: first by using the copy-construction directly; second by insert-353

ing “microstructure” at the right places, see Figure 10 for an illustration in the354

case of Sierpínski graphs. Both variants were used to study several problems (spin355

models, random walks, spectral theory, etc.). In order to illustrate these two per-356

spectives we quote two different descriptions of the partition function of the Ising357

modell on the sequence of Sierpiński graphs. Consider the Ising modell with near-358

est neighbour interactions only and constant interaction strength J. Let β be the359

“inverse” temperature and writeZn(βJ) for the partition function. Then using the360

“high temperature expansion” and the first construction method,it was shown in361

[9] that362

Zn(βJ) = 23(3n+1)/2cosh(βJ)3n+1
Γn(tanh(βJ)),



16

whereΓn(z) is defined by the recursion363

(

Γ0(z)
ϒ0(z)

)

=

(

1+z3

z+z2

)

and

(

Γn+1(z)
ϒn+1(z)

)

=

(

Γn(z)3 +ϒn(z)3

ϒn(z)2Γn(z)+ϒn(z)3

)

.

On the other hand, using the second construction it was shown in [3] that, for364

y = eβJ, the quite different recurrence equation365

Zn+1(y) = (c(y))3n−1
Zn( f (y))

with366

f (y) =

(

y8−y4 +4
y4 +3

)1/4

and c(y) =
y4 +1

y3 ·
(

(y4 +3)(y8−y4 +4)
)1/4

holds. In this note we have studied the number of spanning treesusing the copy-367

construction. Of course, one can also use the second one. In either cases we obtain368

a recurrence equation forNST(Xn). Let us write down this equation for the case of369

two-dimensional Sierpiński graphs. Equation (4) implies370

NST(Xn+1) =
NST(X1,

(

3
5)n)

NST(X0,(
3
5)n)3

·NST(Xn)
3 = 2(5

3)nNST(Xn)
3,

sinceYn is nothing else butX0 with constant conductances(3
5)n andRn+1 is X1371

with constant conductances(3
5)n. On the other hand, we obtain372

NST(Xn+1) =

(

NST(X1)

NST(X0,
3
5)

)3n

·NST(Xn,
3
5) = (3

5)1/25403n/2NST(Xn)

by 3n substitutionsX1 → (X0,
3
5) in Xn+1. Again note the difference between these373

two recurrence equations. Furthermore, equating these equationsdirectly yields374

Formula (5).375
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72(4), 497–508 (1847). Gesammelte Abhandlungen, Leipzig, 1882424

20. Lindstrøm, T.: Brownian motion on nested fractals. Mem.Amer. Math. Soc.83(420),425

iv+128 (1990)426

21. Malozemov, L.A.: The difference Laplacian∆ on the modified Koch curve. Russian J.427

Math. Phys.1(4), 495–509 (1993)428

22. Malozemov, L.A., Teplyaev, A.: Self-similarity, operators and dynamics. Math. Phys. Anal.429

Geom.6(3), 201–218 (2003)430

23. Metz, V.: Renormalization contracts on nested fractals. J. Reine Angew.431

Math. 480, 161–175 (1996). DOI 10.1515/crll.1996.480.161. URL432

http://dx.doi.org/10.1515/crll.1996.480.161433

24. Metz, V.: Shorted operators: an application in potential theory. Linear Alge-434

bra Appl. 264, 439–455 (1997). DOI 10.1016/S0024-3795(96)00303-5. URL435

http://dx.doi.org/10.1016/S0024-3795(96)00303-5436

25. Metz, V.: “Laplacians” on finitely ramified, graph directed fractals. Math.437

Ann. 330(4), 809–828 (2004). DOI 10.1007/s00208-004-0571-9. URL438

http://dx.doi.org/10.1007/s00208-004-0571-9439

26. Moon, J.W.: Counting labelled trees,From lectures delivered to the Twelfth Biennial Semi-440

nar of the Canadian Mathematical Congress (Vancouver, vol. 1969. Canadian Mathemati-441

cal Congress, Montreal, Que. (1970)442

27. Rammal, R.: Random walk statistics on fractal structures. J. Statist. Phys.36(5-6), 547–560443

(1984)444

28. Sabot, C.: Existence and uniqueness of diffusions on finitely ramified self-similar fractals.445
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