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Abstract. LULU operators provide a simple yet effective nonlinear algorithm, with
many desired attributes, to decompose a sequence into unit pulses at ascending resolution
levels. This decomposition is however linear on the cone generated by the constituent
pulses, with important consequences for image analysis. It is therefore a natural problem
to study the number of possible cones that can arise for sequences of a given length. We
provide an answer to this combinatorial question, proving that the number of different

cones associated with sequences of length n is the central binomial coefficient
(

2(n−2)
n−2

)

.

1. Introduction

There is adequate evidence that, whereas linear filters form smoothing and linear Mul-
tiresolution Analysis is appropriate and sufficient for the processing of auditory signals, this
is not the case for image smoothing. Consensus is that Nonlinear Multiresolution Analysis,
for instance with Median Smoothers, is better on images even than the, originally promis-
ing, Wavelet based decompositions. Edge preservation is no problem, and the introduction
of artificial artefacts associated with linear decompositions seems absent. Lack of theory
is a long observed problem of Nonlinear Smoothers.

The so-called LULU -theory, based on a specific, selected class of Morphological Filters,
has provided an alternative in Nonlinear Multiresolution Analysis (see [3] and the references
therein). Not only can this be related to Median Decomposition and shown to be at least
as good, but the theory proves and explains most of the important advantages observed.
Computational complexity is vastly improved, and allows extensive parallelisation. There
even is a Parseval-type identity that proportionally divides the total variation T (x) of a
given sequence x to its resolution levels yi(x), so that T (x) = ΣT (yi(x)). All this occurs
with a clear, strong theory allowing creative design of smoothers for specific purposes.

The LULU operators, acting on sequences x1, x2, . . . , xn, are defined as follows:

(Lwx)j = max
j−w≤i≤j

min
i≤k≤i+w

xk,

(Uwx)j = min
j≤i≤j+w

max
i−w≤k≤i

xk,

where the sequence x is extended by defining xk = x1 if k < 1 and xk = xn if k > n.
The effect of the LULU operator Lw on a sequence x is that all “bumps” of width at
most w are removed; such a bump is defined as a subsequence xj, xj+1, . . . , xj+w−1 with
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the property that xj−1, xj+w < xj, xj+1, . . . , xj+w−1. Likewise, the operator Uw removes
“pits” (defined analogously) of width at most w. If the LULU operators L1, U1, L2, U2,
. . . are applied to a sequence x in this order, the bumps and pits are gradually removed
until a monotone sequence is obtained. This procedure also results in a decomposition
that is known as the discrete pulse transform: set Cn = LnUnCn−1 and C0 = I, and define
yi(x) = Ci−1(x) − Ci(x). Then one has

x = x′ +
∑

i

yi(x), (1)

where x′ is a monotone sequence. One of the most important results is that the LULU -
decompositions act linearly in the cone generated by the vectors yi(x). The linearity
on the cone generated by individual resolution layers yi(x) can be stated as an equality
yi(z) = αiy

i(x) when z =
∑

i αiy
i(x), for arbitrary non-negative constants αi.

This result was expanded to the larger cone generated by the vectors yi
+(x) and yi

−(x),
which are the positive and negative parts of yi(x). It was even observed to be expandable
to the cone generated by the vectors defined by individual pulses in yi

+(x) and yi
−(x). This

was stated as the Highlight Conjecture [5], and has subsequently been proved [2, 4], and
been used in practice in highlighting an individual, newly arrived golf-ball in a television
image on a green from others already there without distorting the rest of the image in any
way.

The total number of pulses in all the resolution levels of a LULU -decomposition can
easily be argued to be not more than the number of elements of x, or the dimension of the
vector space from which x comes: Starting with the original n values of the sequence x,
every pulse results from subtraction of one nearby value from a particular value, and the
elimination of the latter value. This leaves one less of the original n values. Clearly the
cone generated by the individual pulses of a particular LULU -decomposition lies inside this
vector space, but depends on the original choice of x. This raises a natural combinatorial
problem: how many different cones can arise from such a Multiresolution Analysis?

Clearly, any such cone is characterised by the set of pulses in all resolution levels; we
can write the elements of the cone as

∑

i

αip
i,

where pi is a unit pulse, given by pi
k = 1 if j ≤ k < j + w for some j and w (or pi

k = −1
if j ≤ k < j + w), and pi

k = 0 otherwise. We call the set of all pi a pulse basis ; counting
cones is thus equivalent to counting pulse bases. We assume x1 = xn = 0 (resulting in a
constant sequence x′ = 0 at the end of the process), since we are only interested in the
second summand in the decomposition (1). Assuming that the elements of the sequence x

are otherwise all distinct, it can be shown easily that the resulting pulse basis must consist
of n − 2 pulses. This assumption will be made throughout the rest of the paper. In [2],
the following properties of pulse bases are stated:

• No two pulses overlap partially. Either the support of the smaller pulse is contained
in the support of the larger pulse, or the pulses have disjoint support.
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• Any two positive pulses of width ≥ w are separated by ranges of width ≥ w

containing only negative pulses and shorter positive pulses.
• Any two negative pulses of width ≥ w are separated by ranges of width > w

containing only positive pulses and shorter negative pulses.

For example, the following six pulse bases are possible for n = 4:

j 2 3
p1

j 1 0
p2

j 1 1

j 2 3
p1

j 0 1
p2

j 1 1

j 2 3
p1

j 1 0
p2

j 0 −1

j 2 3
p1

j 0 1
p2

j −1 0

j 2 3
p1

j −1 0
p2

j −1 −1

j 2 3
p1

j 0 −1
p2

j −1 −1

The apparent symmetry with respect to signs is misleading and does not persist for
larger values of n. For instance,

j 2 3 4
p1

j 1 0 0
p2

j 0 0 1
p3

j 1 1 1

is a valid pulse basis for n = 5, while

j 2 3 4
p1

j −1 0 0
p2

j 0 0 −1
p3

j −1 −1 −1

is not (since p1 and p2 are not separated by a large enough range). The aim of this paper

is to show that there are in general exactly
(

2(n−2)
n−2

)

different pulse bases (and thus cones
generated) for sequences of length n. The following section exhibits an approach known
as the roadmaker’s algorithm that turns out to be equivalent to the described LULU

smoothing process. This restatement will actually allow us to prove a more general result,
from which the stated formula for the number of cones will follow as a simple corollary.
Our main results can be stated as follows:

Theorem 1. The number of cones that are generated by sequences x1, x2, . . . , xn with
x1 = xn and precisely h ascents (i.e., indices j for which xj > xj−1) is

(

n−1
h

)(

n−3
h−1

)

.

Theorem 2. The total number of cones is the central binomial coefficient
(

2(n−2)
n−2

)

.
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2. The roadmaker’s algorithm: restatement of the problem

Instead of applying the LULU operators, it is possible to use slightly modified operators,
as explained in [2]: the roadmaker’s algorithm makes use of the bump-razing operator Bw

and the pit-filling operator Aw that are defined by

(Bwx)k = max(xj−1, xj+w)

if xj = xj+1 = . . . = xj+w−1 > max(xj−1, xj+w), and (Bwx)k = xk otherwise, and analo-
gously

(Awx)k = min(xj−1, xj+w)

if xj = xj+1 = . . . = xj+w−1 < min(xj−1, xj+w), and (Awx)k = xk otherwise.
Application of the LULU operators L1, U1, L2, U2, . . . to a sequence in this order is in

fact equivalent to applying B1, A1, B2, A2, . . .: whereas the LULU operator Lw removes
bumps of all widths ≤ w, the bump-razing operator only affects those of width exactly w.
However, in the algorithm both operators are only applied once all bumps of width < w

have been removed, so that the two have the same effect.
In order to treat our combinatorial problem, it is useful to introduce an encoding for

sequences as follows: a sequence x = x1, x2, . . . , xn is uniquely defined by a sequence
v1, v2, . . . , vk of values and a sequence q1, q2, . . . , qk of associated multiplicities. For instance,
the sequence

x = (5, 3, 1, 1, 1, 2, 2, 5, 5, 4, 2, 3, 1, 1, 1, 1)

is represented by v = (5, 3, 1, 2, 5, 4, 2, 3, 1) and q = (1, 1, 3, 2, 2, 1, 1, 1, 4). If the road-
maker’s algorithm is applied to a sequence x = x0 to yield a sequence x1, x2, . . . of se-
quences, where x2k−1 = Bkx

2k−2 and x2k = Akx
2k−1, then the associated sequences vm and

qm change as follows:

• If m = 2l − 1 is odd, vm−1
j > max(vm−1

j−1 , vm−1
j+1 ) and qm−1

j = l, then vm−1
j and qm−1

j

are removed; further, if vm−1
j−1 > vm−1

j+1 , then qm−1
j is added to qm−1

j−1 . Otherwise, qm−1
j

is added to qm−1
j+1 . If, on the other hand, vm−1

j < max(vm−1
j−1 , vm−1

j+1 ), vm−1
j and qm−1

j

remain as they are.
• If m = 2l is even, vm−1

j < min(vm−1
j−1 , vm−1

j+1 ) and qm−1
j = l, then vm−1

j and qm−1
j are

removed; all other changes are analogous to the previous case.

This is exhibited in the following example:

k xk

0 (0, 1, 4, 9, 6,−2, 5,−3, 2, 0)
1 (0, 1, 4, 6, 6,−2,−2,−3, 0, 0)
2 (0, 1, 4, 6, 6,−2,−2,−2, 0, 0)
3 (0, 1, 4, 4, 4,−2,−2,−2, 0, 0)
4 (0, 1, 4, 4, 4,−2,−2,−2, 0, 0)
5 (0, 1, 1, 1, 1,−2,−2,−2, 0, 0)
6 (0, 1, 1, 1, 1, 0, 0, 0, 0, 0)
7 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

The associated sequences vk and qk are given by
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k vk

0 (0, 1, 4, 9, 6,−2, 5,−3, 2, 0)
1 (0, 1, 4, 6,−2,−3, 0)
2 (0, 1, 4, 6,−2, 0)
3 (0, 1, 4,−2, 0)
4 (0, 1, 4,−2, 0)
5 (0, 1,−2, 0)
6 (0, 1, 0)
7 (0)

and

k qk

0 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
1 (1, 1, 1, 2, 2, 1, 2)
2 (1, 1, 1, 2, 3, 2)
3 (1, 1, 3, 3, 2)
4 (1, 1, 3, 3, 2)
5 (1, 4, 3, 2)
6 (1, 4, 5)
7 (10)

and the pulse basis associated with this example would be

j 2 3 4 5 6 7 8 9
p1

j 0 0 1 0 0 0 0 0
p2

j 0 0 0 0 0 1 0 0
p3

j 0 0 0 0 0 0 0 1
p4

j 0 0 0 0 0 0 −1 0
p5

j 0 0 1 1 0 0 0 0
p6

j 0 1 1 1 0 0 0 0
p7

j 0 0 0 0 −1 −1 −1 0
p8

j 1 1 1 1 0 0 0 0

We introduce yet another sequence of auxiliary sequences, denoted rk; it is defined by
rk
j = sgn(vk

j+1 − vk
j ). This describes the “rough” shape, the ups and downs of xk. Note

that rk and qk alone are sufficient to locate all bumps and pits (a bump occurs wherever
rk
j > max(rk

j−1, r
k
j+1), and qk

j gives the width). Therefore, the pulse basis can be uniquely

determined from the sequences rk and qk (k ≥ 0).
How do rk and qk change through the course of the algorithm? The changes can be

described as follows:

(1) At the beginning, r0 is a sequence of length n − 1 whose elements are ±1; further-
more, the assumption that x1 = xn = 0 implies that r0 is not constant (since x can
not be strictly monotone); likewise, rk is a nonconstant sequence of ±1 for any k.

(2) q0 = (1, 1, . . . , 1), and the length of q0 is n.
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(3) (a) If k = 2l−1 is odd, rk and qk are obtained from rk−1 and qk−1 in the following
manner: for each j with rk

j−1 = 1, rk
j = −1 and qk

j = l, we remove qk
j and

either rk
j−1 (this occurs if xk

j−1 > xk
j+1) or rk

j (otherwise), and add qk
j to qk

j−1 in

the former case and to qk
j+1 in the latter.

(b) If k = 2l is even, rk and qk are obtained from rk−1 and qk−1 in the following
manner: for each j with rk

j−1 = −1, rk
j = 1 and qk

j = l, we remove qk
j and

either rk
j−1 (this occurs if xk

j−1 < xk
j+1) or rk

j (otherwise), and add qk
j to qk

j−1 in

the former case and to qk
j+1 in the latter.

(4) Before the last step of the algorithm, one has rk = (−1, 1) or rk = (1,−1).

It turns out that knowing all sequences rk is enough to characterise the entire set of
pulses, which is a consequence of the following simple lemma:

Lemma 3. If rk−1, qk−1 and rk are known, then qk is uniquely determined.

Proof. Knowing rk−1 and qk−1, one can determine which bumps/pits will be removed in the
following (kth) step. Looking at rk, one can determine for each of these bumps/pits which
of the two possibilities in part (3a) (or (3b)) of the construction applies. This suffices to
construct qk as well. �

It follows inductively that knowledge of all sequences rk is enough to reconstruct all
sequences qk and thus the positions of all pulses. Hence it is sufficient to count all possible
sequences rk (or, equivalently, all pairs of sequences rk, qk) that can arise. We call a pair
of sequences (rk, qk) admissible if it can be obtained from the above steps, that is,

(1) r0, r1, . . . are nonconstant sequences with elements ±1, and the length of r0 is n−1.
(2) q0 = (1, 1, . . . , 1), and the length of q0 is n.
(3) (a) If k = 2l − 1 is odd, then for each j with rk

j−1 = 1, rk
j = −1 and qk

j = l, qk
j

and either rk
j−1 or rk

j are removed; qk
j is added to qk

j−1 in the former case and

to qk
j+1 in the latter.

(b) If k = 2l is even, then for each j with rk
j−1 = −1, rk

j = 1 and qk
j = l, qk

j and

either rk
j−1 or rk

j are removed; qk
j is added to qk

j−1 in the former case and to

qk
j+1 in the latter.

(4) The last element of the sequence r0, r1, . . . is of the form rK = (−1, 1) or rK =
(1,−1).

A priori, it is not clear that every admissible sequence corresponds to a possible choice
of x0 and thus to a valid pulse basis. The following lemma shows, however, that this is the
case:

Lemma 4. If the sequences rk, qk are admissible, then there is a corresponding sequence
x0 so that one obtains rk, qk by applying the roadmaker’s algorithm to x0.

Proof. Suppose that rK , qK are the last elements of our admissible sequence. We construct
xK , xK−1, . . . , x0 iteratively to prove the lemma. It suffices to construct the associated
sequences vK , vK−1, . . . , v0 that contain the elements without multiplicity, the multiplicities
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being given by qK , qK−1, . . . , q0. If rK = (−1, 1), we set vK = (0,−1, 0), and analogously
vK = (0, 1, 0) if rK = (1,−1). It is obvious that rK

j = sgn(vK
j+1 − vK

j ), as it should be.

Now suppose that vk+1 has already been constructed; let us consider the case of even
k = 2l − 2, the other case being analogous. Knowing rk and qk, one can determine all
positions j for which rk

j−1 = 1, rk
j = −1 and qk

j = l (bumps that are removed in step k). If
J is the set of these positions, choose |J | distinct real numbers that are larger than any of
the elements of vk+1. These are now inserted in vk+1 in such a way that they become the
elements vk

j , j ∈ J . Let us exhibit this idea for a simple example; if rk and qk are given by

k qk rk

3 (5, 2, 2) (−1, 1)
2 (3, 2, 2, 2) (1,−1, 1)
1 (2, 1, 2, 1, 1, 2) (−1, 1,−1, 1, 1)
0 (1, 1, 1, 1, 1, 1, 1, 1, 1) (1,−1, 1, 1,−1, 1, 1,−1)

then vk evolves as follows:

k vk

3 (0,−1, 0)
2 (0,1,−1, 0)
1 (0,−2, 1,−3,−1, 0)
0 (0,2,−2, 1,3,−3,−1,4, 0)

It is clear that the condition vk
j = sgn(rk

j+1 − rk
j ) remains true. At the end of this process,

one obtains a sequence x0 = v0 that satisfies the required condition. �

Now we are finally ready to solve our main problem, the enumeration of cones (equiva-
lently, pulse bases), which is now reduced to counting admissible sequences.

3. The combinatorial result

Theorems 1 and 2 are simple consequences of the following lemma:

Lemma 5. If the elements r0, r1, . . . , rk and q0, q1, . . . , qk of an admissible sequence are

given, then there are
(

ℓ(rk)−2
h(rk)−1

)

possible ways to complete the sequence, where ℓ(rk) is the

length of rk and h(rk) the number of ones in rk.

Proof. By backwards induction. At the end of the procedure, one must have ℓ(rk) = 2
and h(rk) = 1, and there is only one possibility, in accordance with the lemma. Now
assume that the algorithm is not yet at its end. The only part of the definition of an
admissible sequence that involves a choice is (3). Suppose that the number of bumps or
peaks to be removed in step k + 1 is m (this number can be determined from rk and qk).
For each of these bumps/peaks, we choose independently whether a 1 or a −1 should be
removed. Therefore, there are

(

m

j

)

possibilities to remove precisely j of the ones. The

number of possibilities to complete the admissible sequence after that step is
(

ℓ(rk)−m−2
h(rk)−j−1

)

by the induction hypothesis. Note that this potentially includes the cases h(rk)−j = 0 and
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h(rk)− j = ℓ(rk)−m, which are both forbidden in the definition of an admissible sequence
(rk+1 would be constant in these two cases); however, the binomial coefficient evaluates
to zero in both cases. Therefore, the total number of ways to complete the admissible
sequence is

h(rk)
∑

j=0

(

m

j

)(

ℓ(rk) − m − 2

h(rk) − j − 1

)

=

(

ℓ(rk) − 2

h(rk) − 1

)

by the Vandermonde identity [1], which completes the induction. �

Since admissible sequences are equivalent to pulse bases and thus in turn cones, Theo-
rem 1 now follows from the observation that there are

(

n−1
h

)

possible initial values for r0

(the length of r0 must be n − 1, and the number of ascents is exactly the number of ones
in r0). Finally, Theorem 2 is obtained by summing over all possible values of h, making
use of the Vandermonde identity once again:

n−2
∑

h=1

(

n − 1

h

)(

n − 3

h − 1

)

=
n−2
∑

h=1

(

n − 1

h

)(

n − 3

n − h − 2

)

=

(

2(n − 2)

n − 2

)

,

which completes the proof of our main result.
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