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Abstract

The average frequency of 1 occurring as the kth digit in the binary expansion of
squares, cubes, and generally the values of a polynomial is studied. In particular,
it turns out that the generating function of these frequencies is rational for the
important special cases of powers, linear and quadratic polynomials. For higher
degree polynomials, the behaviour seems to be much more chaotic in general, which
is exhibited by two examples of cubic polynomials.
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1 Introduction

If one writes down a list of the binary expansions of the first few integers, then
one observes the obvious pattern 01010 . . . in the last column, 00110011 . . . in
the penultimate, and so on; in this case, it is clear that the “average frequency”
of ones, say, is 1

2
for each of the columns and therefore also in total. If one
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sums all the digits (equivalently, counts all the ones) of the first integers (from
0 to N − 1, say), then there is a celebrated theorem due to Delange [1] that
expresses this sum explicitly as

N

2
log2 N + NF (log2 N),

where F (x) is a periodic function of period 1. The regularity of the pattern
for individual digits would only be enough to obtain the main term of order
N log N .

Following Delange, a vast literature has developed, dealing with problems of
the sum-of-digits function in various contexts. One recent contribution is due
to Drmota and Rivat [2] who consider the distribution of the sum of digits
of squares, which is inspired by a problem of Gelfond [4]; even more recently,
their results were improved by Mauduit and Rivat [6]. It is also a natural
question to look for patterns in the sequence of kth digits (from the right) in
the sequence of squares, cubes, etc. Clearly, a periodic pattern can always be
observed if the values of a polynomial are considered, but the frequency of 1
as the kth digit is not necessarily always 1

2
. One observes for instance that the

penultimate digit of a square is always 0. However, if an denotes the average
frequency of 1 as the nth digit from the right in the sequence of squares, one
finds, first empirically, that the generating function of the an’s is rational ;
this phenomenon persists if one considers the sequence of cubes, or generally
arbitrary powers.

This paper is devoted to the study of the generating function of the digit
frequencies, which we simply call the digit generating function. Indeed, an
explicit form of this generating function can be given for arbitrary powers.

Now it is tempting to study—instead of just powers—general polynomials.
And for linear and quadratic polynomials, we will show that the generating
functions of the frequencies of digits are still rational. In the case of linear
polynomials, this is still pretty trivial, but quadratic polynomials already show
more interesting behaviour. However, for polynomials of higher degree the
behaviour appears to be more “chaotic.” We found an example of a cubic
polynomial whose digit generating function is (most probably) not rational;
if it was, the degree of the denominator polynomial would be in the range of
105 at least.

We will first present some preliminaries, then prove explicit formulas for linear
and quadratic polynomials as well as powers, and consider cubic polynomials,
with the aforementioned example. Furthermore, we show that the “main term”
of the digit generating function is the same for all non-constant polynomials.
A list of questions and possible extensions finishes the paper.
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A key ingredient of our analysis is Hensel’s Lemma [3,8], a classical result
which is (in a sense) an analogue of Newton’s method to solve equations.

2 Preliminaries

Definition 1. Let p(x) ∈ Z[x] be a polynomial. For positive integers n, we
define

f(p(x), n) =
|{0 ≤ x < 2n : p(x) ≡ y mod 2n for some 2n−1 ≤ y < 2n}|

2n

to be the relative frequency of values x for which the n-th digit (from the
right) in the binary representation of p(x) is 1 (assuming that the value of
p(x) is positive). Then the digit generating function of p(x) is given by

D(p(x), z) =
∑

n≥1

f(p(x), n)zn−1.

Remark 2. Let us remark that f(p(x), n) can also be defined as the limit

f(p(x), n) = lim
N→∞

|{0 ≤ x < N : p(x) ≡ y mod 2n for some 2n−1 ≤ y < 2n}|

N
.

Furthermore, it is clear that shifts do not alter the digit generating function,
i.e.,

D(p(x + c), z) = D(p(x), z)

holds for an arbitrary integer constant c.

Next, we are going to state some elementary properties of the digit generating
function.

Lemma 3. For an arbitrary polynomial p(x), we have

D(p(x), z) =
1

2

(

D(p(2x), z) + D(p(2x + 1), z)
)

,

D(2p(x), z) = zD(p(x), z),

and

D(2p(x) + 1, z) = 1 + zD(p(x), z).
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Proof. For the first identity, simply note that

f(p(x), n) =
|{0 ≤ x < 2n : p(x) ≡ y mod 2n for some 2n−1 ≤ y < 2n}|

2n

=
|{0 ≤ x < 2n−1 : p(2x) ≡ y mod 2n for some 2n−1 ≤ y < 2n}|

2n

+
|{0 ≤ x < 2n−1 : p(2x + 1) ≡ y mod 2n for some 2n−1 ≤ y < 2n}|

2n

=
|{0 ≤ x < 2n : p(2x) ≡ y mod 2n for some 2n−1 ≤ y < 2n}|

2n+1

+
|{0 ≤ x < 2n : p(2x + 1) ≡ y mod 2n for some 2n−1 ≤ y < 2n}|

2n+1

=
1

2

(

f(p(2x), n) + f(p(2x + 1), n)
)

.

For the second and third statement, all we need is the identity

f(2p(x), n) =
|{0 ≤ x < 2n : 2p(x) ≡ y mod 2n for some 2n−1 ≤ y < 2n}|

2n

=
|{0 ≤ x < 2n : p(x) ≡ y mod 2n−1 for some 2n−2 ≤ y < 2n−1}|

2n

= f(p(x), n − 1)

for n > 1 (and the analogous identity for f(2p(x) + 1, n)). Furthermore, it is
obvious that f(2p(x), 1) = 0 and f(2p(x) + 1, 1) = 1.

The final ingredient we will need is based on Hensel’s Lemma: recall that
p′(0) ≡ 1 mod 2 implies that the congruence p(0) ≡ a mod 2 can be “lifted”
to higher powers of 2: i.e., for every a′ ≡ a ≡ p(0) mod 2, we can find x ≡ 0
mod 2 such that

p(x) ≡ a′ mod 2n,

and x is unique modulo 2n. An analogous statement holds if p′(1) ≡ 1 mod 2.
Therefore, if p′(0) ≡ 1 mod 2, one has

f(p(2x), n) =
1

2

for all n > 1 and f(p(2x), 1) = [p(0) ≡ 1 mod 2] (here, we use Iverson’s
notation, i.e., [P ] = 1 if P is true and [P ] = 0 otherwise). Likewise, if p′(1) ≡ 1
mod 2, one has

f(p(2x + 1), n) =
1

2

for all n > 1 and f(p(2x+1), 1) = [p(1) ≡ 1 mod 2]. Let us summarise this in
the following lemma, which restates the above formulas in terms of the digit
generating functions:
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Lemma 4. If p′(0) ≡ 1 mod 2, then

D(p(2x), z) = [p(0) ≡ 1 mod 2] +
z

2(1 − z)
.

Analogously, if p′(1) ≡ 1 mod 2, then

D(p(2x + 1), z) = [p(1) ≡ 1 mod 2] +
z

2(1 − z)
.

Example 5. Let us use these lemmas to compute the digit generating function
in the special case that p(x) = x3 + 2x2 + 3x + 4: note that p′(0) is odd, and
that p(2x + 1) = 8x3 + 20x2 + 20x + 10. This gives us

D(x3 + 2x2 + 3x + 4, z) =
1

2

(

z

2(1 − z)
+ D(8x3 + 20x2 + 20x + 10, z)

)

=
1

2

(

z

2(1 − z)
+ z · D(4x3 + 10x2 + 10x + 5, z)

)

=
1

2

(

z

2(1 − z)
+ z

(

1 + z · D(2x3 + 5x2 + 5x + 2, z)
)

)

=
z

4(1 − z)
+

z

2
+

z2

2
D(2x3 + 5x2 + 5x + 2, z)

=
z

4(1 − z)
+

z

2
+

z2

2
·

z

2(1 − z)

=
z(3 − 2z + z2)

4(1 − z)
=

1

2(1 − z)
−

1

2
+

z

4
−

z2

4
.

It is not very surprising to see that this is essentially 1
2(1−z)

, and looking at this
example, it is also tempting to conjecture that the digit generating function is
always rational. We will find that this is (probably) not always the case, but
we can prove explicit formulas in certain special cases.

3 Explicit formulas

In this section we will provide general results for linear and quadratic poly-
nomials as well as for powers. Let us start with the explicit formula for linear
polynomials whose trivial proof is left to the reader.

Theorem 6. Let p(x) = ax + b be a linear polynomial, let ℓ = ν2(a) (i.e., 2ℓ

is the largest power of 2 that divides a), and let

b =
∑

j≥0

βj2
j
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be the base-2 expansion of b (only finitely many βj are nonzero). Then

D(p(x), z) =
zℓ

2(1 − z)
+

ℓ−1
∑

j=0

βjz
j.

Remark 7. Note also that the digit generating function of a constant is
exactly

D(b, z) =
∑

j≥0

βjz
j,

where the βj’s are chosen as in the above theorem. Constant polynomials are
the only instances for which the digit generating function is a polynomial.
Generally, it is also obvious that if the coefficients of a sequence pk of poly-
nomials converge to those of a polynomial p in the 2-adic sense, D(pk(x), z)
tends to D(p(x), z) as well.

For quadratic polynomials, the situation is already more intricate; we have
the following theorem:

Theorem 8. Let p(x) = ax2 + bx + c be a quadratic polynomial. If ν2(a) ≥
ν2(b), then there is a polynomial r(z) such that

D(p(x), z) =
1

2(1 − z)
+ r(z).

If on the other hand ν2(a) < ν2(b), then there are a positive integer ℓ and
polynomials q(z) and r(z) such that

D(p(x), z) = zν2(a)

(

1

2(1 − z)(2 − z2)
+

q(z)

1 − (z2/2)ℓ

)

+ r(z).

The integer ℓ satisfies 2ℓ − 1 ≡ 0 mod a
gcd(a,b)

.

Proof. If ν2(a) ≥ ν2(b) = ν, then apply Lemma 3 repeatedly to find that

D(p(x), z) = zνD
(

2−νax2 + 2−νbx + ⌊2−νc⌋, z
)

+ r1(z)

for some polynomial r1(z). Now, 2−νb is odd, implying that the derivative of
the polynomial 2−νax2 + 2−νbx + ⌊2−νc⌋ is always odd. Therefore,

D(p(x), z) = zν

(

z

2(1 − z)
+ r2

)

+ r1(z),

where r2 is a constant (either 0, 1, or 1
2
). Noticing that

zν+1

2(1 − z)
=

1

2(1 − z)
−

1

2
(1 + z + . . . + zν) ,
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the theorem follows immediately in this case.

Now we consider the case ν = ν2(a) < ν2(b). Since we can apply the same
initial step as in our first case, we may assume without loss of generality that
a is odd. Then we have

D(ax2 + bx + c, z)

=
1

2

(

D(4ax2 + 2bx + c, z) + D(4ax2 + (2b + 4a)x + (a + b + c), z)
)

=
z2

2

(

D
(

ax2 + b
2
x + ⌊ c

4
⌋, z

)

+ D
(

ax2 + b+2a
2

x + ⌊a+b+c
4

⌋, z
))

+ r(z)

for a certain linear polynomial r(z) (that depends on a, b, c). Now note that
one of b

2
and b+2a

2
is even, while the other is odd. Therefore, we have

D(ax2 + bx + c, z) =
1

4(1 − z)
+ r′(z) +

z2

2
D(ax2 + b′x + c′, z),

where

b′ =







b
2

b
2

even,
b
2

+ a b
2

odd,
and c′ =







⌊ c
4
⌋ b

2
even,

⌊a+b+c
4

⌋ b
2

odd,

and r′(z) is a quadratic polynomial. Now set b0 = b, c0 = c and

bk+1 =







bk

2
bk

2
even,

bk

2
+ a bk

2
odd,

and ck+1 =







⌊ ck

4
⌋ bk

2
even,

⌊a+bk+ck

4
⌋ bk

2
odd,

and let rk(z) be the polynomial for which

D(ax2 + bkx + ck, z) =
1

4(1 − z)
+ rk(z) +

z2

2
D(ax2 + bk+1x + ck+1, z).

Furthermore, we write pk(x) = ax2 + bkx + ck as an abbreviation. Then a
simple induction shows that

D(p0(x), z) =
1

4(1 − z)

ℓ−1
∑

i=0

z2i

2i
+

ℓ−1
∑

i=0

z2i

2i
ri(z) +

z2ℓ

2ℓ
D(pℓ(x), z)

and more generally

D(pk(x), z) =
1

4(1 − z)

ℓ−1
∑

i=0

z2i

2i
+

ℓ−1
∑

i=0

z2i

2i
rk+i(z) +

z2ℓ

2ℓ
D(pk+ℓ(x), z).

Both bk and ck are bounded (one has |bk| ≤ max(|b|, 2|a|) and |ck| ≤ max(|a|, |b|, |c|),
as can easily be seen by induction), and so there will be some k and ℓ such
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that pk(x) = pk+ℓ(x). This implies

D(pk(x), z) =
1

2(1 − z)(2 − z2)
+

s1(z)

1 − (z2/2)ℓ
,

where s1(z) is used as an abbreviation for the sum

ℓ−1
∑

i=0

z2i

2i
rk+i(z).

Now we use

D(p0(x), z) =
1

4(1 − z)

k−1
∑

i=0

z2i

2i
+

k−1
∑

i=0

z2i

2i
ri(z) +

z2k

2k
D(pk(x), z)

and find that

D(p0(x), z) =
1

2(1 − z)(2 − z2)
+

z2k

2k
·

s1(z)

1 − (z2/2)ℓ
+ s2(z),

where

s2(z) =
k−1
∑

i=0

z2i

2i
ri(z).

This proves the second part of the theorem.

In the following section, we will see that the behaviour for cubic polynomials
can be quite unpredictable; before that, we state a general formula for powers:

Theorem 9. The digit generating function of a power p(x) = xk is given by

D(xk, z) =



















2 − z

2(1 − z)(2 − zk)
k odd,

2 − 2z + zℓ+2

2(1 − z)(2 − zk)
k even,

where in the latter case ℓ = ν2(k).

Proof. If k is odd, then p′(1) ≡ 1 mod 2, and we obtain

D(xk, z) =
1

2

(

D((2x)k, z) + D((2x + 1)k, z)
)

=
1

2

(

zkD(xk, z) + 1 +
z

2(1 − z)

)

.

Solving for D(xk, z) yields the desired result. If on the other hand k is even, we
consider (2x+1)k. Note that all coefficients of (2x+1)2 = 4x2 +4x+1, except
for the constant one, are divisible by 4, and it is just an easy induction to show
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that all coefficients of (2x + 1)2ℓ

, except for the constant one, are divisible by
2ℓ+1. The same statement follows immediately for (2x+1)k whenever 2ℓ divides
k. Therefore, the polynomial

qk(x) =
(2x + 1)k − 1

2ℓ+1

is an integer polynomial, and its derivative

q′k(x) =
k

2ℓ
(2x + 1)k−1

is odd for every integer x, so that we can make use of Hensel’s Lemma (note
also that qk(0) = qk(−1) = 0, so that qk(x) is always even). Now we may
progress as in the first case to obtain

D(xk, z) =
1

2

(

D((2x)k, z) + D((2x + 1)k, z)
)

=
1

2

(

D((2x)k, z) + 1 + zℓ+1D(qk(x), z)
)

=
1

2

(

zkD(xk, z) + 1 +
zℓ+2

2(1 − z)

)

,

proving our theorem in the case that k is even.

4 Cubic polynomials

Let us consider cubic polynomials now; our initial example was an instance
of a cubic polynomial with a very simple rational digit generating function.
However, it seems that generally the digit generating function can be much
more complicated and also difficult to predict. We will exhibit this by con-
sidering the two seemingly similar polynomials p(x) = 4x3 + 7x2 + 4x and
p(x) = 4x3+5x2+4x. Generally, for a polynomial of the form 2kx3+ax2+bx+c,
where k ≥ 2, a is odd and b is even, we have

D(2kx3 + ax2 + bx + c, z)

=
1

2

(

D
(

2k+3x3 + (4a + 3 · 2k+2)x2 + (4a + 2b + 3 · 2k+1)x + (a + b + c + 2k), z
)

+ D
(

2k+3x3 + 4ax2 + 2bx + c, z
)

)

=
z2

2

(

D
(

2k+1x3 + (a + 3 · 2k)x2 +
(

b
2

+ a + 3 · 2k−1
)

x + 2k−2 + ⌊a+b+c
4

⌋, z
)

+ D
(

2k+1x3 + ax2 + b
2
x + ⌊ c

4
⌋, z

)

)

+ r(c, z) + r(a + b + c, z),
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where r(m, z) is defined by

r(m, z) =



























0 m ≡ 0 mod 4,

1 m ≡ 1 mod 4,

z m ≡ 2 mod 4,

1 + z m ≡ 3 mod 4.

Now note that either b
2

or b
2
+a+3 ·2k−1 is even again, while the other is odd,

which also leads to an odd derivative. As in the case of quadratic polynomials,
this gives rise to a sequence of polynomials pk(x) = 2kx3 + akx

2 + bkx + ck

that is defined by

ak+1 =







ak
bk

2
even,

ak + 3 · 2k bk

2
odd,

bk+1 =







bk

2
bk

2
even,

bk

2
+ ak + 3 · 2k−1 bk

2
odd,

and

ck+1 =







⌊ ck

4
⌋ bk

2
even,

⌊ak+bk+ck

4
⌋ + 2k−2 bk

2
odd.

With these definitions, we can write our recursion as

D(pk(x), z) =
z2

2
D(pk+1(x), z)+

z3

4(1 − z)
+

1

2

(

r(ck, z)+r(ak+bk+ck, z)
)

+
skz

2

2
,

where

sk =



























0 bk

2
even and ⌊ak+bk+ck

4
⌋ + 2k−2 even,

1 bk

2
even and ⌊ak+bk+ck

4
⌋ + 2k−2 odd,

0 bk

2
odd and ⌊ ck

4
⌋ even,

1 bk

2
odd and ⌊ ck

4
⌋ odd.

Iterating the recursion yields, as in the case of quadratic polynomials,

D(pk(x), z) =
z3

4(1 − z)

ℓ−1
∑

i=0

z2i

2i
+

ℓ−1
∑

i=0

z2i

2i
qk+i(z) +

z2ℓ

2ℓ
D(pk+ℓ(x), z),

where

qk(z) =
r(ck, z) + r(ak + bk + ck, z) + skz

2

2
.

This time, it is not guaranteed that pk = pk+ℓ will ever occur. However, we
can take the formal limit ℓ → ∞ in this formula to find

D(pk(x), z) =
z3

2(1 − z)(2 − z2)
+

∞
∑

i=0

z2i

2i
qk+i(z).
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This is a rational function if and only if the sequence qi(z) is periodic. This is
sometimes the case, but apparently not always, as our examples show. Con-
sider the case of the polynomial p(x) = p2(x) = 4x3 + 7x2 + 4x first, i.e.,
a2 = 7, b2 = 4 and c2 = 0. An easy induction shows that

ak =







2k+1 − 1 k even,

2k − 1 k odd,
bk =







4
3
(2k − 1) k even,

2
3
(2k−1 − 1) k odd,

and

ck =







⌊

4
27

(2k+1 − 3)
⌋

k even,
⌊

1
27

(2k − 3)
⌋

k odd.

The periodicity of the qi follows immediately, even though the period is long:
one has qi+18 = qi for all i > 2 (which is proved by straightforward modular
arithmetic). Finally, we get

D(4x3 + 7x2 + 4x, z) =
1

2(1 − z)
+

z2

2(z2 − 2)(z4 + 2z2 + 4)(z12 + 8z6 + 64)

×
(

z18 + z16 + 2z14 − 4z13 − 4z12 − 8z11 − 8z10 + 16z9

− 16z8 + 32z6 − 64z4 + 128z2 + 256z − 256
)

.

The situation is totally different in the case of the polynomial p(x) = p2(x) =
4x3+5x2+4x, i.e., a2 = 5, b2 = 4 and c2 = 0. We were not able to prove that the
sequence qi is not periodic in this case, but computational evidence suggests
that this is the case. In the following two graphs, we show the cumulative
sums of the linear and quadratic coefficient of qi respectively (it is easy to see
that the constant coefficient is always 1

2
), reduced by the linear drift, i.e. the

plots show

N+1
∑

i=2

[z1]qi(z) −
N

2

and

N+1
∑

i=2

[z2]qi(z) −
N

4
,

respectively. The resulting graphs are reminiscent of the typical shape of a
random walk. This seemingly erratic behaviour makes it unlikely that the
digit generating function is rational in this example. Judging from computer
experiments, we also conjecture that it is not even algebraic or D-finite.
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5 The main term

From the results obtained so far, it is tempting to conjecture that

f(p(x), n) =
1

2
+ o(1)

for every non-constant polynomial p. Indeed, this can be proved by means of
exponential sums. Note first that

f(p(x), n) =
|{0 ≤ x < 2n : p(x) ≡ y mod 2n for some 2n−1 ≤ y < 2n}|

2n

= 2−n

∣

∣

∣

∣

{

0 ≤ x < 2n :
{

2−np(x)
}

≥
1

2

}∣

∣

∣

∣

,

where {u} is the fractional part of u, and recall that the discrepancy of a set
X = {x1, x2, . . . , xN} ⊆ [0, 1) is defined by

D(x1, x2, . . . , xN) = sup
I

∣

∣

∣

∣

∣

|X ∩ I|

N
− λ(I)

∣

∣

∣

∣

∣

,
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where the supremum is taken over all subintervals of [0, 1), |X ∩ I| is the
number of elements of X that fall into I, and λ(I) is the Lebesgue measure of
I. From this definition, it follows immediately that

∣

∣

∣

∣

f(p(x), n) −
1

2

∣

∣

∣

∣

≤ D
(

2−np(0), 2−np(1), . . . , 2−np(2n − 1)
)

.

Now we apply the Erdős-Turán inequality (see [5]): there is an absolute con-
stant C such that for any integer m,

D(x1, x2, . . . , xN) ≤ C





1

m
+

m
∑

h=1

1

h

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

e2πihxj

∣

∣

∣

∣

∣

∣



 .

In our case, N = 2n, and xj = 2−np(j − 1) = p(j − 1)/N . Therefore,

D(x1, x2, . . . , xN) ≤ C





1

m
+

m
∑

h=1

1

h

∣

∣

∣

∣

∣

∣

1

N

N−1
∑

j=0

e2πihp(j)/N

∣

∣

∣

∣

∣

∣



 . (1)

The exponential sum can be estimated by means of Weyl’s inequality ([9], see
also [7] for instance): assume that k = deg p > 1 (the case k = 1 is trivial in
view of Theorem 6); if g(x) = αxk + . . . is an arbitrary polynomial of degree
k such that |α − a

q
| ≤ 1

q2 for coprime integers a and q, then

N−1
∑

n=0

e2πig(n) ≪ N1+ǫ(N−1 + q−1 + N−kq)1/K

for K = 2k−1 and arbitrary ǫ > 0, where the implied constant only depends
on ǫ and k. We apply Weyl’s inequality with g(x) = hp(x)/N . If b is the
leading coefficient of p(x), then α = hb

N
= a

q
for certain integers a and q, and

N/h ≪ q ≪ N . Now we use this in (1) to obtain

D(x1, x2, . . . , xN) ≪
1

m
+

m
∑

h=1

1

h

∣

∣

∣

∣

∣

∣

1

N

N−1
∑

j=0

e2πihp(j)/N

∣

∣

∣

∣

∣

∣

≪
1

m
+

m
∑

h=1

1

h
N ǫ(N−1 + hN−1 + N1−k)1/K

≪
1

m
+

m
∑

h=1

1

h
N ǫ(hN−1)1/K

≪
1

m
+ N ǫ−1/K

m
∑

h=1

h1/K−1

≪
1

m
+ N ǫ−1/Km1/K .

Choosing m ∼ N1/(K+1) finally yields

D(x1, x2, . . . , xN) ≪ N ǫ−1/(K+1).
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Putting everything together, we arrive at the following theorem:

Theorem 10. If p(x) is a polynomial of degree k > 1, then

f(p(x), n) =
1

2
+ O

(

2−n(1/(2k−1+1)−ǫ)
)

for any ǫ > 0. This implies that

D(p(x), z) −
1

2(1 − z)

has radius of convergence ≥ 21/(2k−1+1).

The exponent in this bound is probably not best possible. In view of our
general theorem for power functions (Theorem 9), the best error term one can
hope for is

f(p(x), n) =
1

2
+ O

(

2−n/k
)

,

and for k = 2 this estimate holds indeed in view of Theorem 8, but generally
there is a substantial gap between 1

k
and 1

2k−1+1
. It might be a challenging

problem to determine the best possible error term for general k.

6 Conclusion

Several open problems remain, and of course our considerations can be gener-
alised in many directions. For instance, it would be interesting to characterise
all polynomials with a rational digit generating function (or those with an
algebraic/D-finite digit generating function, . . . ).

Instead of binary expansions, one could also consider arbitrary bases, Gray
code representations, or “exotic” number systems such as linear recursive num-
ber systems (the Zeckendorf expansion is a well-known example of this type).
If other digits than 0 and 1 are allowed, one can define several digit generat-
ing functions, one for each possible digit (in the binary case, the generating
functions for the frequencies of 0 and 1 are connected by an obvious relation).
Finally, it might also be interesting to consider blocks of digits rather than
single digits only (Theorem 10 can be generalised immediately, for instance).
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