
Matchings in graphs with a given number of cuts

Jinfeng Liu, Fei Huang∗

School of Mathematics and Statistics, Zhengzhou University

Zhengzhou, Henan 450001, People’s Republic of China

E-mail: ljf@zzu.edu.cn; hf@zzu.edu.cn.

Stephan Wagner

Department of Mathematical Sciences, Stellenbosch University

Private Bag X1, Matieland 7602, South Africa

E-mail: swagner@sun.ac.za.

Abstract

Let m(G, k) denote the number of matchings of cardinality k in a graph

G. A quasi-order � is defined by writing G � H whenever m(G, k) ≤
m(H, k) holds for all k. We consider the set G1(n, γ) of connected graphs

with n vertices and γ cut vertices as well as the set G2(n, γ) of connected

graphs with n vertices and γ cut edges. We determine the greatest

and least elements with respect to this quasi-order in G1(n, γ) and the

greatest element in G2(n, γ) for all values of n and γ. As corollaries, we

find that these graphs maximize (resp. minimize) the Hosoya index and

the matching energy within the respective sets.
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1 Introduction

There is a rich history of research on the number of matchings in graphs. The idea

of defining a quasi-order based on the number of matchings goes back to the work of
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Gutman [9, 10]. Let G be a graph (finite, undirected and simple, as all graphs in the

following) with n vertices, and let m(G, k) be the number of k-matchings in G, i.e., the

number of sets of k pairwise nonadjacent edges. In particular, m(G, 0) = 1 (the empty

matching), and m(G, 1) is the number of edges of G. We also clearly have m(G, k) = 0

if k < 0 or k > n
2
. A quasi-order � is defined as follows:

G � H ⇐⇒ m(G, k) ≤ m(H, k) for all k.

If at least one of the inequalities is strict, we write G ≺ H.

The Hosoya index [15], a classical graph invariant in chemical graph theory that

has been widely studied, is the total number of matchings in a graph G, i.e.,

Z(G) =
∑
k≥0

m(G, k).

Clearly, we have Z(G) ≤ Z(H) if G � H, and Z(G) < Z(H) if G ≺ H. Another

graph invariant whose analysis typically relies on the quasi-order � is the matching

energy ME(G), which was introduced much more recently [14]. It has two equivalent

definitions: it can either be defined as the sum of the absolute values of the zeros of

the matching polynomial [7, 8, 11]∑
k≥0

(−1)km(G, k)xn−2k, (1.1)

or equivalently by means of the so-called Coulson integral formula

ME(G) =
2

π

∫ ∞
0

1

x2
ln

[∑
k≥0

m(G, k)x2k

]
dx. (1.2)

From the second representation, it is clear that ME(G) is an increasing function of

each of the coefficients m(G, k), so G � H implies ME(G) ≤ ME(H), and G ≺ H

implies ME(G) < ME(H).

An important feature of the matching energy is that it coincides with the graph

energy, which is the sum of the absolute values of the eigenvalues (see [20] for a com-

prehensive treatise) if the graph is acyclic, i.e., a forest. This is due to the well-known

fact that the characteristic polynomial of a forest is precisely its matching polynomial.



There is a great amount of literature on finding the graphs in a given set for which

the Hosoya index attains its minimum or maximum value; see [21] for a recent survey.

The quasi-order � often plays a role in this context. The same applies to the matching

energy, which has been studied quite thoroughly over the past couple of years, with

many results on maximum and minimum values and the associated extremal graphs.

Results on trees and unicyclic graphs were already given in the first paper on the

matching energy [14]. Ji, Li and Shi [17] followed by characterizing the graphs with

the extremal matching energy among all bicyclic graphs. The graphs that maximize or

minimize the matching energy have also been determined among unicyclic and bicyclic

graphs with a given diameter [4], tricyclic graphs [6], graphs with given connectivity

or chromatic number [19], and many more [2, 3, 5, 16, 18, 22, 23]. See [12] for a survey

on the topic. The quasi-order � generally plays a very prominent role.

In this paper, we will be concerned with a new class: graphs for which the number of

cut vertices or the number of cut edges is prescribed along with the number of vertices.

Recall that a vertex is called a cut vertex of a graph if its removal increases the number

of components. In particular, if the graph is connected, then removing a cut vertex

renders the graph disconnected. Likewise, an edge is called a cut edge if its removal

increases the number of components.

We define the set G1(n, γ) to be the set of all connected graphs with n vertices and

γ cut vertices. In Section 3.1, we will show that there are unique greatest and least

elements with respect to � in G1(n, γ) for every possible combination of n and γ, and

characterize the shape of these elements. As an immediate corollary, we find that these

graphs simultaneously maximize (minimize, respectively) the Hosoya index and the

matching energy.

The extremal graphs can be defined as follows. Denote, as usual, by Pn, Sn and

Kn the path, star and complete graph on n vertices, respectively. The graph KPn,γ

(sometimes called a “lollipop graph”) is obtained by attaching a path of γ vertices

to a vertex of the complete graph Kn−γ, see Figure 1.1. It will be shown that this

graph is the greatest element in G1(n, γ) with respect to � for all values of n and γ.



Likewise, the graph SPn,γ (which is called a “broom”) is obtained by attaching a path

of γ vertices to the center of a star Sn−γ, as shown in Figure 1.2. This graph turns out

to be the least element with respect to � in G1(n, γ).

Kn−γ

γ vertices

Figure 1.1. The graph KPn,γ

γ vertices

n− γ − 1

vertices

Figure 1.2. The graph SPn,γ

In Section 3.2, we obtain an analogous result for the set G2(n, γ) of connected graphs

with n vertices and γ cut edges. The unique greatest element with respect to �

turns out to be the same as in G1(n, γ) (namely KPn,γ), with the same immediate

consequences. However, there is generally no least element in this case.

2 Preliminaries

Let us first recall some important definitions and notation. For standard graph-

theoretical terminology, we refer the reader to [1]. We will need a number of auxiliary

results on matchings and the quasi-order �. First of all, the following standard lemma

provides us with a way to calculate the number of k-matchings in a graph recursively.

For a subset X of the vertex set of G, we let G − X be the subgraph of G obtained

by deleting the vertices of X together with their incident edges. For a subset Y of the

edge set of G, we denote by G−Y the subgraph of G obtained by deleting the edges of

Y . For the sake of brevity, we shall write G− v instead of G− {v}, and G− e instead

of G− {e}.



Lemma 2.1 ( [7, 11]) Let G be a graph. For every edge e = uv, we have the following

identity:

m(G, k) = m(G− uv, k) +m(G− u− v, k − 1). (2.1)

Moreover, if u is an arbitrary vertex of G, and v1, v2, . . . , vt its neighbors, then we have

m(G, k) = m(G− u, k) +
t∑
i=1

m(G− u− vi, k − 1). (2.2)

A vertex without neighbors is called an isolated vertex, while a vertex with precisely

one neighbor will be called a pendant vertex in the following. For an isolated vertex

u, we get m(G, k) = m(G − u, k) for every k, and for a pendant vertex u whose only

neighbor is v, we get

m(G, k) = m(G− u, k) +m(G− u− v, k − 1) (2.3)

as a special case of (2.2).

A graph H is called a subgraph of a graph G if the vertex set of H is a subset of

the vertex set of G, and the edge set of H is a subset of the edge set of G. If H is a

subgraph of G and H � G, we call H a proper subgraph of G. If H is a subgraph of G

and all the edges between two vertices of H that are present in G are also present in H,

then we call H an induced subgraph. If S is a set of edges, the edge-induced subgraph

G[S] is the subgraph of G whose edge set is S and whose vertex set consists of all ends

of edges of S. Our next lemma is immediate from the definition, noting that every

matching in a subgraph H of G is also a matching in G itself.

Lemma 2.2 ( [10]) Let G be a graph and H a subgraph of G. Then H � G. If the

edge set of H is a proper subset of the edge set of G, then we even have H ≺ G.

If we take the disjoint union G]H of two graphs G and H, every matching of G]H

decomposes uniquely into matchings of G and H, respectively. Thus we have

m(G ]H, k) =
k∑
j=0

m(G, j)m(H, k − j). (2.4)



In particular, if H is a single vertex or only consists of isolated vertices, then m(G ]

H, k) = m(G, k) for all k, since the empty matching is the only matching in H (compare

the remark after Lemma 2.1). The following well-known lemma is also an immediate

consequence of the identity (2.4).

Lemma 2.3 ( [13]) Let H1 and H2 be two graphs with H1 ≺ H2, and let G be an

arbitrary graph. Then we have H1 ]G ≺ H2 ]G.

The following lemmas characterize the greatest and least elements with respect to

the quasi-order � among trees.

Lemma 2.4 ( [9]) For every tree T with n vertices, we have T � Pn. If T is not a

path, we even have T ≺ Pn.

Lemma 2.5 ( [9]) For every tree T with n vertices that is not isomorphic to Sn or

SPn,2, we have Sn ≺ SPn,2 ≺ T .

Lemma 2.6 ( [24]) For every tree T with β pendant vertices and n vertices in total,

we have SPn,n−β � T . If T is not isomorphic to SPn,n−β, we even have SPn,n−β ≺ T .

Let us remark that while Lemma 2.6 is not stated in this way in [24], it is implicit

in the proofs. Finally, we recall an important lemma that describes the change in the

number of matchings under an operation that replaces an arbitrary tree by a star.

Lemma 2.7 ( [14]) Suppose that G is a connected graph and T an induced subgraph

of G such that T is a tree and T is connected to the rest of G only by a cut vertex v.

Let G′ be obtained from G by replacing T with a star of the same order, centered at v.

Then we have G′ ≺ G, unless G and G′ are isomorphic.



3 The extremal graphs in G1(n, γ) and G2(n, γ)

3.1 Fixed number of cut vertices

We first consider the set G1(n, γ) of graphs with n vertices, of which γ are cut vertices.

We will characterize the greatest and least elements with respect to the quasi-order �

for all values of n and γ.

A block of a simple graph G is a subgraph of G that is connected and has no cut

vertex, and is maximal with respect to this property (see [1]). The notion of terminal

blocks will be useful in the following. Recall that one can associate a block-cut tree

with every connected graph G: its vertices are the blocks and the cut vertices of G.

There is an edge in the block-cut tree between a block and a cut vertex if and only if

the cut vertex lies in the block, and there are no further edges. Suppose that v is a cut

vertex of G that is contained in a block B. If B contains no other cut vertices of G,

then we call B a terminal block. Terminal blocks correspond precisely to the leaves of

the block-cut tree.

Let us now formulate the first main theorem.

Theorem 3.1 Let n, γ be integers with 0 ≤ γ ≤ n− 2. For every graph G in G1(n, γ)

that is not isomorphic to KPn,γ, we have G ≺ KPn,γ. In particular, KPn,γ is the unique

graph in G1(n, γ) that attains the maximum Hosoya index, and the unique graph that

attains the maximum matching energy.

Proof. For γ = n − 2, the result follows trivially since G1(n, n − 2) = {Pn} and

Pn ∼= KPn,n−2, while for γ = 0 we trivially have G ≺ Kn unless G ∼= Kn. Hence, we

only need to consider the case that 1 ≤ γ ≤ n− 3.

We prove the statement of the theorem by induction on n. Before we get to the

actual induction proof, let us remark that we can assume without loss of generality

that all of the blocks of G are single edges or complete graphs. Otherwise, we can add

edges to all non-complete blocks to make them complete, which yields a graph G′ with

the same number of vertices and cut vertices for which G ≺ G′ by Lemma 2.2.



Moreover, we may assume that G does not contain an induced claw K1,3 (thus also

no larger induced star). If there was one, then its center would have to be a cut vertex

of G (since all blocks are complete), and its neighbors would lie in distinct blocks.

Adding an edge between any two of these neighbors would yield a new graph G′ with

the same number of vertices and cut vertices, but again G ≺ G′. Therefore, we can

rule out this possibility and assume in the following that every cut vertex belongs to

exactly two blocks of G.

Finally, it is useful to observe that

KPn,γ+1 ≺ KPn,γ, (3.1)

since the former can be seen as a proper subgraph of the latter.

Now we proceed with the induction. The statement is easily verified for small values

of n (n ≤ 4), so we suppose that the statement holds for graphs on less than n vertices.

Consider a graph G with n vertices and γ cut vertices that is not isomorphic to KPn,γ.

We consider the following cases based on the sizes of terminal blocks.

Case 1: There exists a pendant vertex v in G, or equivalently a terminal block of

two vertices. Let its unique neighbor be w, and note that G − v has n − 1 vertices

and γ − 1 cut vertices (w is no longer a cut vertex in G − v, since we were assuming

that no cut vertex belongs to more than two blocks). By the induction hypothesis,

G− v � KPn−1,γ−1.

Since w belongs to only two blocks by assumption, we know that G − v − w is

connected. Note also that G− v−w has n− 2 vertices and at least γ − 2 cut vertices:

all cut vertices of G remain cut vertices, except for w and potentially one more vertex

if the other block that w belongs to also only contains two vertices. It follows from the

induction hypothesis and (3.1) that G− v − w � KPn−2,γ−2.

So for every k, we have

m(G, k) = m(G− v, k) +m(G− v − w, k − 1)

≤ m(KPn−1,γ−1, k) +m(KPn−2,γ−2, k − 1)

= m(KPn,γ, k).



Strict inequality holds for at least one value of k unless G − v ∼= KPn−1,γ−1 and

G− v − w ∼= KPn−2,γ−2. However, it is easy to see that this would imply G ∼= KPn,γ.

Case 2: There is no pendant vertex, but a terminal block consisting of three vertices.

Let w be its cut vertex, and v1, v2 the two other vertices. Note that G− v1 has n− 1

vertices and γ cut vertices, so G− v1 � KPn−1,γ by the induction hypothesis. Second,

G − v1 − v2 has n − 2 vertices and γ − 1 cut vertices (all cut vertices of G, except

for w), so G − v1 − v2 � KPn−2,γ−1 by the induction hypothesis. Finally, G − v1 − w

consists of an isolated vertex and a graph with n − 3 vertices and at least γ − 2 cut

vertices (similar to the first case). Thus by the induction hypothesis and (3.1), we have

G− v1 − w � KPn−3,γ−2. We combine all inequalities to obtain

m(G, k) = m(G− v1, k) +m(G− v1 − v2, k − 1) +m(G− v1 − w, k − 1)

≤ m(KPn−1,γ, k) +m(KPn−2,γ−1, k − 1) +m(KPn−3,γ−2, k − 1)

for all k if γ ≥ 2, and

m(G, k) ≤ m(KPn−1,1, k) +m(KPn−2,0, k − 1) +m(KPn−3,0, k − 1)

if γ = 1.

We further note that n ≥ γ + 4: there must be at least two terminal blocks with at

least two non-cut vertices each, since we are assuming that there is no pendant vertex.

Combined with the γ cut vertices, this gives us at least γ + 4 vertices.

So in order to complete the proof in Case 2, we have to show that

m(KPn−1,γ, k) +m(KPn−2,γ−1, k − 1) +m(KPn−3,γ−2, k − 1) ≤ m(KPn,γ, k) (3.2)

for all values of n, γ, k such that γ ≥ 2 and n ≥ γ+4, with at least one strict inequality

for some k, and

m(KPn−1,1, k) +m(KPn−2,0, k − 1) +m(KPn−3,0, k − 1) ≤ m(KPn,1, k)

for all values of n, k such that n ≥ 5, with at least one strict inequality for some k.

Let us first consider the latter: applying (2.3) to the pendant vertices of KPn,1 and

KPn−1,1, we obtain

m(KPn,1, k)−
(
m(KPn−1,1, k) +m(KPn−2,0, k − 1) +m(KPn−3,0, k − 1)

)



= m(Kn−1, k) +m(Kn−2, k − 1)−m(Kn−2, k)

−m(Kn−3, k − 1)−m(Kn−2, k − 1)−m(Kn−3, k − 1)

= m(Kn−1, k)−m(Kn−2, k)− 2m(Kn−3, k − 1).

Applying (2.2) to any vertex of a complete graph yields the recursion m(Kn, k) =

m(Kn−1, k) + (n− 1)m(Kn−2, k − 1). Thus we get

m(KPn,1, k)−
(
m(KPn−1,1, k) +m(KPn−2,0, k − 1) +m(KPn−3,0, k − 1)

)
= (n− 4)m(Kn−3, k − 1),

which is indeed nonnegative for all k and strictly positive for some values of k (e.g.

k = 1).

Finally, we prove (3.2) by induction on γ, starting with γ = 2. Using similar

manipulations as in the case γ = 1, we find that

m(KPn,2, k)−
(
m(KPn−1,2, k) +m(KPn−2,1, k − 1) +m(KPn−3,0, k − 1)

)
= m(Kn−2, k) +m(Kn−2, k − 1) +m(Kn−3, k − 1)

−
(
m(Kn−3, k) + 3m(Kn−3, k − 1) +m(Kn−4, k − 1) +m(Kn−4, k − 2)

)
= (n− 5)m(Kn−4, k − 1) + (n− 4)

(
m(Kn−4, k − 2)−m(Kn−5, k − 2)

)
.

Clearly, this is nonnegative for all n ≥ 6 and all values of k, and strictly positive for

at least one value of k (e.g. k = 1).

Next, for γ = 3, we have

m(KPn,3, k)−
(
m(KPn−1,3, k) +m(KPn−2,2, k − 1) +m(KPn−3,1, k − 1)

)
= m(Kn−3, k) + 2m(Kn−3, k − 1) +m(Kn−4, k − 1) +m(Kn−4, k − 2)

−
(
m(Kn−4, k) + 4m(Kn−4, k − 1) +m(Kn−4, k − 2)

+m(Kn−5, k − 1) + 3m(Kn−5, k − 2)
)

= (n− 6)m(Kn−5, k − 1) + (2n− 11)m(Kn−5, k − 2)− (n− 5)m(Kn−6, k − 2).

Again, we easily see that the expression is nonnegative for all n ≥ 7 (note in particular

that 2n− 11 > n− 5), and strictly positive for at least one value of k (e.g. k = 1).



For the induction step, all we need is the identity

m(KPn,γ, k) = m(KPn−1,γ−1, k) +m(KPn−2,γ−2, k − 1),

which follows from (2.3). This allows us to write the difference of the two sides in (3.2)

as

m(KPn,γ, k)−
(
m(KPn−1,γ, k) +m(KPn−2,γ−1, k − 1) +m(KPn−3,γ−2, k − 1)

)
= m(KPn−1,γ−1, k) +m(KPn−2,γ−2, k − 1)

−
(
m(KPn−2,γ−1, k) +m(KPn−3,γ−2, k − 1) +m(KPn−4,γ−3, k − 1)

)
−
(
m(KPn−3,γ−2, k − 1) +m(KPn−4,γ−3, k − 2) +m(KPn−5,γ−4, k − 2)

)
and apply the induction hypothesis for n− 1, γ − 1 and n− 2, γ − 2 respectively. This

completes the proof of the auxiliary inequality (3.2) and thus the statement in Case 2.

Case 3: Every terminal block in G has more than three vertices. Pick a terminal

block B and let v be one of its vertices that is not a cut vertex. As explained earlier, we

can assume without loss of generality that this block is complete. Let b be the number

of vertices of B. If b ≥ n − γ, then there are at most γ vertices outside of B, γ − 1

of which have to be cut vertices. So a terminal block other than B cannot contain

more than one vertex that is not a cut vertex, which means that such a terminal block

cannot contain more than two vertices in total. This contradicts the assumption of

this case. Thus 3 < b < n− γ.

Now let w be the unique neighbor of v that is a cut vertex ofG, and let x1, x2, . . . , xb−2

be the other neighbors. Note that G − v has n − 1 vertices and γ cut vertices, so by

the induction hypothesis G− v � KPn−1,γ. The graphs G− v− xj (1 ≤ j ≤ b− 2) are

all isomorphic and have n − 2 vertices and γ cut vertices, so G − v − xj � KPn−2,γ.

Finally, since G − v − w is isomorphic to a proper subgraph of G − v − x1, we have

G− v − w ≺ G− v − x1. Hence for every k, we obtain

m(G, k) = m(G− v, k) + (b− 2)m(G− v − x1, k − 1) +m(G− v − w, k − 1)

≤ m(G− v, k) + (b− 1)m(G− v − x1, k − 1)

≤ m(KPn−1,γ, k) + (b− 1)m(KPn−2,γ, k − 1)



≤ m(KPn−1,γ, k) + (n− γ − 2)m(KPn−2,γ, k − 1)

≤ m(KPn−1,γ, k) + (n− γ − 2)m(KPn−2,γ, k − 1) +m(Kn−γ−2 ] Pγ, k − 1)

= m(KPn,γ, k).

Moreover, we have m(G − v − w, 1) < m(G − v − x1, 1) since G − v − w is a proper

subgraph of G−v−x1. Thus we get m(G, 2) < m(KPn,γ, 2), which finally implies that

G ≺ KPn,γ.

So in each of the cases, we obtain the desired statement G ≺ KPn,γ, completing the

induction.

We now turn our attention to the minimization problem for the set G1(n, γ). We

first need the following lemma involving a typical graph transformation.

Lemma 3.2 Suppose that the connected graph H1 can be decomposed into a graph G0

and a graph H0 sharing only a cut vertex u, as in Figure 3.3. Moreover, let H2 be a

graph consisting of G0 and |H0|−1 pendant vertices attached to u (see again Figure 3.3).

Then we have H2 ≺ H1, unless H1 and H2 are isomorphic.

H0 G0

u

G0
u

|H0| − 1

vertices

H1 H2

Figure 3.3. Lemma 3.2: H1 to H2

Proof. Let H̃ be a graph obtained from H1 by replacing H0 with a spanning tree of

H0. Clearly, H̃ is a subgraph of H1. So by Lemma 2.2, we have H̃ � H1. Moreover,

in view of Lemma 2.7, we have H2 � H̃. So we can conclude that H2 ≺ H1, unless

H1
∼= H̃ ∼= H2.

Next, we can use Lemma 2.5 (due to Gutman) to settle the cases γ = 1 and γ = 2,

which will serve as the base of an induction.



Lemma 3.3 1. Let n > 2 be an integer. For every graph G ∈ G1(n, 1) that is not

isomorphic to the star Sn, we have Sn ≺ G.

2. Let n > 3 be an integer. For every graph G ∈ G1(n, 2) that is not isomorphic to

SPn,2, we have SPn,2 ≺ G.

Proof. The first statement holds for arbitrary connected graphs: let T be any spanning

tree of G. By Lemma 2.2 and Lemma 2.5, we have Sn � T � G, and Sn ≺ G holds

unless Sn ∼= T ∼= G.

The second statement is obtained in a similar fashion, and is even true for every

connected graph G other than the star Sn. Since G is not isomorphic to a star or the

complete graph K3, there are two non-adjacent edges. These two edges can be extended

to a spanning tree T that cannot be a star. Therefore, we have SPn,2 � T � G by

Lemma 2.2 and Lemma 2.5, and again we have SPn,2 ≺ G unless SPn,2 ∼= T ∼= G.

We need one more auxiliary result before we can get to the proof of the main

minimization theorem.

Lemma 3.4 Let n, γ be integers with 1 ≤ γ ≤ n− 3. We have SPn,γ ≺ SPn,γ+1.

Proof. In SPn,γ+1, let u be the vertex that is adjacent to precisely one pendant vertex

v (at the right end in Figure 1.2). In SPn,γ, let x be the vertex of degree n − γ, and

let y be one of the pendant vertices adjacent to it (at the left end in Figure 1.2). We

observe that SPn,γ+1−v and SPn,γ−y are isomorphic. Moreover, SPn,γ−x−y consists

of n− γ − 2 isolated vertices and a path Pγ, which is easily seen to be isomorphic to a

proper subgraph of SPn,γ+1 − u− v. By Lemma 2.2, SPn,γ − x− y ≺ SPn,γ+1 − u− v.

So for every k, we have

m(SPn,γ, k) = m(SPn,γ − y, k) +m(SPn,γ − x− y, k − 1)

≤ m(SPn,γ+1 − v, k) +m(SPn,γ+1 − u− v, k − 1)

= m(SPn,γ+1, k).

Strict inequality holds for at least one value of k, since SPn,γ−x−y ≺ SPn,γ+1−u−v.

Hence, we have SPn,γ ≺ SPn,γ+1.



Theorem 3.5 Let n, γ be integers with 1 ≤ γ ≤ n− 2. For every graph G in G1(n, γ)

that is not isomorphic to SPn,γ, we have SPn,γ ≺ G. In particular, SPn,γ is the unique

graph in G1(n, γ) that attains the minimum Hosoya index, and the unique graph that

attains the minimum matching energy.

Proof. We prove by induction on n that for every connected graph G with n vertices

and γ cut vertices, we have SPn,γ ≺ G unless G ∼= SPn,γ.

Before we get to the actual induction proof, let us remark that we can assume with-

out loss of generality that all of the terminal blocks of G are single edges. Otherwise,

we can apply the operation of Lemma 3.2 to obtain a graph G′ with the same number

of vertices and cut vertices for which G′ ≺ G.

We have already proven the statement for γ = 1 and γ = 2 in Lemma 3.3. For

γ = n− 2, we must have G ∼= Pn ∼= SPn,n−2, since there are no other graphs with n− 2

cut vertices. Also, the statement clearly holds for small values of n (n ≤ 3) since there

are no possible graphs except for SPn,γ.

Consider a graph G with n vertices and γ cut vertices (3 ≤ γ ≤ n − 2) that is not

isomorphic to SPn,γ. Let B(G) be the block-cut tree of G. Choose an arbitrary vertex

r of B(G), and a cut vertex w of G whose distance from r in B(G) is greatest. In view

of this choice of w, we know that w is contained in at least one terminal block of G

and exactly one non-terminal block of G. As explained earlier, we can assume without

loss of generality that the terminal blocks of G are single edges. Hence the terminal

blocks containing w in G are single edges. Let v be a pendant vertex that is adjacent

to w. We distinguish two cases.

Case 1: There exists only one pendant vertex, say v, adjacent to w in G. Then

G−v is a connected graph with n−1 vertices and γ−1 cut vertices (w is no longer a cut

vertex in G− v, since w belongs to exactly one non-terminal block). By the induction

hypothesis, SPn−1,γ−1 � G− v. Moreover, G− v − w is a connected graph with n− 2

vertices and at least γ−2 cut vertices: all cut vertices of G remain cut vertices, except

for w and potentially one more vertex if the non-terminal block that w belongs to

only contains two vertices. Thus by the induction hypothesis and Lemma 3.4, we have



SPn−2,γ−2 � G− v − w.

So for every k, we have

m(G, k) = m(G− v, k) +m(G− v − w, k − 1)

≥ m(SPn−1,γ−1, k) +m(SPn−2,γ−2, k − 1)

= m(SPn,γ, k).

Strict inequality holds for at least one value of k unless G − v ∼= SPn−1,γ−1 and

G− v − w ∼= SPn−2,γ−2. However, it is easy to see that this would imply G ∼= SPn,γ.

Case 2: There are t pendant vertices adjacent to w inG, where t > 1. If t ≥ n−γ−1,

then there are only n−t ≤ γ+1 vertices left, γ of which have to be cut vertices in G. It

is easy to see that this implies G ∼= SPn,γ. Thus we can assume that 1 < t < n−γ− 1.

Let v be a pendant vertex that is adjacent to w. Then G− v is a connected graph

with n−1 vertices and γ cut vertices (all cut vertices of G remain cut vertices). Thus by

the induction hypothesis, SPn−1,γ � G−v. Moreover, G−v−w consists of t−1 isolated

vertices and a connected graph with n− t−1 vertices and at least γ−2 cut vertices (as

in Case 1). Thus by the induction hypothesis and Lemma 3.4, SPn−t−1,γ−2 � G−v−w.

Since t < n−γ−1, we must have γ < n− t−1. Consequently, Pγ is a proper subgraph

of SPn−t−1,γ−2, which shows that Pγ ≺ SPn−t−1,γ−2 � G− v − w by Lemma 2.2.

Again, we get

m(G, k) = m(G− v, k) +m(G− v − w, k − 1)

≥ m(SPn−1,γ, k) +m(Pγ, k − 1)

= m(SPn,γ, k)

for every k.

Since Pγ ≺ G− v − w, we have strict inequality for at least one value of k.

In each of the two cases, we obtain the desired statement G ≺ SPn,γ, completing

the induction.

We remark that the situation is different for γ = 0. Note that G1(n, 0) is precisely



the set of 2-connected graphs on n vertices. In this case, there is generally no graph G0

such that G0 � G for all G ∈ G1(n, 0). For example, there are three minimal elements

with respect to � in G1(7, 0), which are pairwise incomparable. They are shown in

Figure 3.4. We have

m(G1, 0) = 1, m(G1, 1) = 7, m(G1, 2) = 14, m(G1, 3) = 7,

m(G2, 0) = 1, m(G2, 1) = 9, m(G2, 2) = 19, m(G2, 3) = 6,

m(G3, 0) = 1, m(G3, 1) = 10, m(G3, 2) = 20, m(G3, 3) = 0,

and none of the three graphs has a matching of cardinality greater than 3. The mini-

mum Hosoya index in this case is Z(G1) = 29, while the minimum matching energy is

ME(G3) = 2
√

10 + 4
√

5.

G1 G2 G3

Figure 3.4. The three minimal graphs for n = 7, γ = 0.

3.2 Fixed number of cut edges

Now we turn our attention to graphs with a given number of cut edges. Recall that

G2(n, γ) is the set of graphs with n vertices and γ cut edges. It is worth pointing out

the elementary facts that a graph with n vertices is a tree if and only if it has n − 1

cut edges, and that there are no graphs with n vertices and n− 2 or more than n− 1

cut edges for any n.

The main result of this section is very similar to Theorem 3.1.

Theorem 3.6 Let n and γ be integers with 0 ≤ γ ≤ n−1, γ 6= n−2. For every graph

G in G2(n, γ) that is not isomorphic to KPn,γ, we have G ≺ KPn,γ. In particular,

KPn,γ is the unique graph in G2(n, γ) that attains the maximum Hosoya index, and the

unique graph that attains the maximum matching energy.



Proof. If γ = n− 1, then the graph G must be a tree, so the statement is equivalent to

Lemma 2.4. For γ = 0 we trivially have G ≺ Kn unless G ∼= Kn. Thus we can assume

that 1 ≤ γ ≤ n− 3. We prove the statement of the theorem by induction on n.

For a graph G ∈ G2(n, γ), let B be the set of cut-edges of G. Let C denote the

set of connected components of G′ = G − B. There are two types of elements in C,

singletons and connected bridgeless subgraphs of G. Let S ⊆ C denote the singletons

and let D = C \ S. Each element of S is, therefore, a vertex, and each element of D

is a connected bridgeless subgraph of G. Similar to the proof of Theorem 3.1, we can

assume without loss of generality that all the elements in D are complete.

We then proceed with the induction. The statement we aim to prove is easily

verified for small values of n (n ≤ 4). We suppose that the statement holds for graphs

on less than n vertices. Consider a graph G with n vertices and γ cut edges that is not

isomorphic to KPn,γ. We distinguish two cases.

Case 1: There exists a pendant vertex in G. Let v be such a pendant vertex, let

its unique neighbor be w, and note that G− v has n− 1 vertices and γ − 1 cut edges.

By the induction hypothesis, G− v � KPn−1,γ−1.

Suppose that G − v − w has t connected components (possibly t = 1). For each

of these components, there is at most one cut edge in G connecting it to w (if there

are several edges connecting such a component to w, they cannot be cut edges). Thus

G − v − w still has at least γ − t − 1 cut edges left. Add t − 1 edges between the

components of G − v − w so that the resulting graph G′ is connected. Then G′ is a

connected graph with n − 2 vertices and at least γ − 2 cut edges. It follows from the

induction hypothesis and (3.1) that G− v − w � G′ � KPn−2,γ−2.

So for every k, we have

m(G, k) = m(G− v, k) +m(G− v − w, k − 1)

≤ m(KPn−1,γ−1, k) +m(KPn−2,γ−2, k − 1)

= m(KPn,γ, k).

Strict inequality holds for at least one value of k unless G − v ∼= KPn−1,γ−1 and



G− v − w ∼= KPn−2,γ−2. However, it is easy to see that this would imply G ∼= KPn,γ.

Case 2: There exists no pendant vertex in G. Let S be the set of cut edges of G.

Then the edge-induced subgraph G[S] is a forest with γ edges, which implies that G[S]

has γ + c(G[S]) vertices, where c(G[S]) is the number of components of G[S].

Since all the cut edges of G are not pendant edges, all vertices of G[S] are cut

vertices of G. Thus we obtain that G has γ + c(G[S]) cut vertices. From Theorem 3.1

and Eq. (3.1), we know that G � KPn,γ+c(G[S]) � KPn,γ+1 ≺ KPn,γ.

In each of the two cases, we obtain the desired statement that G ≺ KPn,γ, complet-

ing the induction.

Let us finally remark that the situation is much more involved for the analogous

minimizing problem in G2(n, γ) in that there is generally no least element with respect

to the quasi-order �. For example, when n = 6 and γ = 1, then there are three different

minimal elements that are mutually incomparable. They are shown in Figure 3.5. We

have

m(G1, 0) = 1, m(G1, 1) = 6, m(G1, 2) = 8, m(G1, 3) = 1,

m(G2, 0) = 1, m(G2, 1) = 7, m(G2, 2) = 7, m(G2, 3) = 1,

m(G3, 0) = 1, m(G3, 1) = 7, m(G3, 2) = 9, m(G3, 3) = 0,

and none of the three graphs has a matching of cardinality greater than 3. The mini-

mum Hosoya index in this case is Z(G1) = Z(G2) = 16, while the minimum matching

energy is ME(G3) = 2
√

13.

G1 G2 G3

Figure 3.5. The three minimal graphs for n = 6, γ = 1.
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