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Abstract. The number of matchings of a graph G is an important graph parameter

in various contexts, notably in statistical physics (dimer-monomer model). Following

recent research on graph parameters of this type in connection with self-similar,

fractal-like graphs, we study the asymptotic behavior of the number of matchings

in families of self-similar graphs that are constructed by a very general replacement

procedure. Under certain conditions on the geometry of the graphs, we are able to

prove that the number of matchings generally follows a doubly exponential growth.

The proof depends on an independence theorem for the number of matchings that has

been used earlier to treat the special case of Sierpiński graphs. We provide a variety

of examples and also discuss the situation when our conditions are not satisfied.

1. Introduction

The number of matchings (also known as independent edge subsets) of a (finite,

simple) graph G, henceforth denoted by m(G), is a parameter that is of relevance,

among others, in statistical physics (so-called dimer-monomer model, cf. [7, 10, 11] and

other references provided in [4]) and combinatorial chemistry (there, m(G) is known

as Hosoya-index of a graph, cf. [9, 13]). Therefore, the enumeration of matchings has

already been investigated for various classes of graphs, in particular trees, hexagonal

chains, grid graphs, and random graphs [2, 4, 14, 15, 16, 23].

Recently, the enumeration of matchings has been considered in the physical lit-

erature for Sierpiński graphs [4]. Since other models from statistical physics have
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already been treated extensively for fractals and self-similar graphs, it is quite natural

to study the dimer-monomer model for fractal-like graphs with scaling invariance (as

opposed to the translational invariance of a grid) as well. Other graph parameters

that are of interest in a physical context have also been investigated recently, we refer

to [5, 4, 3, 6]. A parameter that is of particular interest is the asymptotic growth

constant

lim
n→∞

logm(Xn)

|VX n|
for a growing sequence Xn of graphs. The approach used in [4] depends heavily on

the analysis of large systems of recurrences, which can be quite tedious. In this paper,

we aim to treat the problem in more generality and also exhibit how an independence

theorem for the number of matchings that was proved in [22] can be applied to shorten

the calculations. The specific case of two-dimensional Sierpiński graphs has already

been treated there as an example, but we will show that the same approach is actually

applicable to a fairly general family of self-similar graphs.

In the following section, we will describe the construction of the self-similar graphs

that are discussed in this paper. This construction leads to a system of recurrences,

whose asymptotics are studied in Section 4. In our final section, we provide a variety

of examples, some of which also exhibit the difficulties that arise if our technical

conditions are not satisfied any longer.

2. Construction

There are many different approaches to construct self-similar graphs. A construc-

tion that is specifically geared to be used in the context of enumeration was described

in [21], and we will also make use of it here (not in the most general possible setting

though, to keep the amount of notation reasonable). A sequence of self-similar graphs

is described by the following ingredients:

• An initial graph X0.

• A set of distinguished vertices onX0, given by a one-to-one map ϕ : {1, 2, . . . , θ} →

VX 0, where θ ≥ 1 is the number of distinguished vertices.
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• A model graph G.

• A one-to-one map ψ : {1, 2, . . . , θ} → VG , which defines θ distinguished ver-

tices on G.

• The number s ≥ 1 of substitutions associated to the model graph G as well as

one-to-one maps σi : {1, . . . , θ} → VG for i ∈ {1, . . . , s}, which describe each

substitution.

Let us also introduce some more notation: for convenience, we write Θ = {1, 2, . . . , θ}

and S = {1, . . . , s}.

With this data we inductively construct a sequence (Xn)n≥0 of graphs and maps

ϕn : Θ → VX n, which define distinguished vertices of the graph Xn: let n > 0. For

i ∈ S let Zn,i be an isomorphic copy of the graph Xn−1, where the isomorphism is

given by γn,i : Xn−1 → Zn,i. Additionally, we require that the vertex sets VG and

VZ n,1, . . . ,VZ n,s are mutually disjoint. Now let Yn be the disjoint union of the graphs

G and Zn,1, . . . , Zn,s and define the relation ∼ on the vertex set VY n to be the reflexive,

symmetric and transitive hull of

s
⋃

i=1

{

{σi(j), γn,i(ϕn−1(j))} : j ∈ Θ
}

⊆ VY n × VY n.

Then Xn = Yn/∼ and the map ϕn is defined by ϕn(j) = ψ(j) ∈ VX n. Furthermore,

we call the subgraph Pn,i = Zn,i of Xn (which is isomorphic to Xn−1) the i-th part of

Xn, and Fn = G the frame of Xn.

It is easy to deduce from the construction that

|VX n| = s|VX n−1|+ |VG | − sθ,

so that

(1) |VX n| = |VX 0|sn +
|VG | − sθ
s− 1

· (sn − 1).

2.1. Examples.
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Example 2.1. In [18] spectral properties of the modified Koch curve, which is a minor

but interesting variation of the fractal Koch curve, were studied. The first few graphs

in the associated graph sequence are depicted in Figure 1. The model graph G is

edgeless and has five vertices {1, . . . , 5}. In each step, we amalgamate five copies of

Xn—as indicated in the figure—to obtain Xn+1, where we take X0 = K2 as the initial

graph. Formally, if VX 0 = {v1, v2}, we set ϕ(i) = vi, and the maps ψ and σ1, . . . , σ5

are given by the following table:

j ψ(j) σ1(j) σ2(j) σ3(j) σ4(j) σ5(j)

1 1 1 2 3 2 3

2 4 2 3 4 5 5

1 2 3 4

5

σ1 σ2 σ3

σ4 σ5G

X0

X1

X2

X3

Figure 1. Model graph and finite modified Koch graphs X0, X1, X2,

and X3.

Example 2.2 (The loop-erased Schreier graph of the Fabrykowski-Gupta group). Let

X0 = K3, where VX 0 = {1, 2, 3}; furthermore, let θ = 3 and ϕ(i) = i for i ∈ {1, 2, 3},

define G by

VG = {x11, x12, x13, x21, x22, x23, x31, x32, x33},

EG =
{

{x11, x21}, {x21, x31}, {x31, x11}
}

,

and set ψ(i) = xi2 for i ∈ {1, 2, 3}. Finally we set s = 3 and σi(j) = xij. See Figure 2

for a visualization of the model graph G and X1, X2. This graph sequence already

served as an example in [21]; see [1] and [8] for a description of how these graphs arise

in the context of infinite groups.



MATCHINGS IN SELF-SIMILAR GRAPHS 5

x11 x21

x31

x13

x23

x33

x12

x22

x32

G

σ1 σ2

σ3

X1

X2

Figure 2. Model graph and X1, X2.

Example 2.3 (Sierpiński graphs, see [19]). The Sierpiński gasket and its higher-dimen-

sional generalizations certainly belong to the most popular examples of fractals, and

the graph-theoretical properties of its finite approximations have been thoroughly stud-

ied as well. The finite Sierpiński graphs can also be obtained by means of our con-

struction as follows: Fix some d > 1 and let s = θ = d+ 1. Define the edgeless graph

G by

VG =

{

x ∈ N
d+1
0 :

∑

i

xi = 2

}

and the map ψ : Θ → VG by ψ(i) = 2ei, where ei is the i-th canonical basis vector

of R
d+1. In addition, set σi(j) = ei + ej ∈ VG for i ∈ S and j ∈ Θ (note that

Θ = S = {1, . . . , d + 1}). Finally, we use X0 = Kd+1 as initial graph and define ϕ in

the obvious way (each of the vertices becomes a distinguished vertex ϕ(j) for some j).

See Figure 3 for the case d = 2.

G

ψ(1) ψ(2)

ψ(3)

σ1 σ2

σ3

X0

X1

X2

Figure 3. Model graph and finite Sierpiński graphs.

Example 2.4 (Pentagasket). A pentagonal analogue of the two-dimensional Sierpiński

gasket is known as the Pentagasket, see Figure 4; it is essentially constructed in the

same way, the figure shows the graphs X0, X1, X2 in the sequence. A slight difference
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to the Sierpiński graphs lies in the fact that it is less symmetric: while the symmetry

group with respect to the distinguished vertices of the Sierpiński graphs is the entire

symmetric group S3, the symmetry group is only the dihedral groupD5 in this example.

X0

X1

X2

Figure 4. The Pentagasket—a pentagonal analogue of the Sierpiński gasket.

Example 2.5 (Complete d-ary trees). Rooted d-ary trees play a role in many branches

of graph theory and combinatorics and mathematics in general. A complete d-ary tree

is a rooted tree with the property that each internal vertex has the same outdegree

d and all leaves have the same distance to the root. Complete rooted trees are easily

constructed by means of our procedure, as will be explained in the following: the initial

graph X0 = K1 is a graph with only a single vertex that is also the only distinguished

vertex ϕ(1). The model graph G is a star with d > 1 leaves, i.e.

VG = {0, 1, . . . , d}, EG =
{

{0, i} : i = 1, 2, . . . , d
}

,

and we set ψ(1) = 0 as well as σi(1) = i for i = 1, 2, . . . , d. See Figure 5 for the model

graph and the first three graphs in the sequence in the case d = 3.

0

1 2 3

σ1 σ2 σ3

G
X1

X2

X3

Figure 5. Complete ternary trees: model graph and X1, X2, X3.
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3. Matchings

Let m(G) denote the number of matchings of G. In order to determine the as-

ymptotic behavior of m(Xn), where the sequence Xn is constructed as outlined in the

previous section, we will first establish some recursive relations, as outlined in [21].

For a set A ⊆ Θ, letMn(A) be the set and an(A) the number of matchings of Xn with

the property that all vertices in ϕn(A) are covered, while all other vertices in ϕn(Θ)

are not. By means of the inclusion-exclusion principle, this could also be written as

(2) an(A) =
∑

B⊆A

(−1)|A|−|B|m(Xn \ ϕn(Θ \B)).

Next, we construct a new graph H as follows: the vertex set of H is given by

VH = VG ∪ {(i, j) : i ∈ S, j ∈ Θ},

the edge set is

EH = EG ∪ {(σi(j), (i, j)) : i ∈ S, j ∈ Θ}.

Note that a matching M ⊆ EX n on Xn induces matchings on all s parts of Xn as well

as on the frame Fn and consequently also on H—the corresponding matching M ′ on

H can be constructed as follows:

• Any edge connecting two vertices in Fn ≃ G is kept (i.e. the corresponding

edge in EH is included in M ′).

• If v ∈ Fn is covered by an edge in the i-th path EPn,i for some i ∈ S, then

v = σi(j) for some j ∈ Θ, and we include the edge (σi(j), (i, j)) in M ′.

This construction is essentially bijective: given a matching M ′ in H and appropriate

matchings in all parts Pn,i (“appropriate” meaning that if (σi(j), (i, j)) ∈M ′, there is

an edge that covers σi(j) in Pn,i), one can always combine them to form a matching

of Xn. Hence, if H(A) denotes the set of matchings of H with the property that all

vertices in ψ(A), but not those in ψ(Θ \A), are covered, and if ηi(M
′) is the set of all

j ∈ Θ such that (σi(j), (i, j)) ∈M ′, we have a bijection

Mn(A)←→
⋃

M ′∈H(A)

s
∏

i=1

Mn−1(ηi(M
′)),



8 ELMAR TEUFL AND STEPHAN WAGNER

which leads to the recursion

an(A) =
∑

M ′∈H(A)

s
∏

i=1

an−1(ηi(M
′)).

Our goal in the following section is to obtain the asymptotic behavior of an(A) (and

thus also m(Xn) =
∑

A⊆Θ an(A)) from these recursions. Under some technical as-

sumptions, this can be achieved by means of the following lemma (see [22]):

Theorem 1. Let G be a graph and B1, B2, . . . , Bθ be disjoint sets of vertices. Fur-

thermore, let

rG(B) =
m(G \B)

m(G)

denote the ratio of all matchings of G which cover no element of B. Then there

are positive constants C and D, D < 1, which depend only on the maximum degree

∆ = ∆(G) of G and the sizes of the Bi such that

(1 + C Dd−1)1−θ ≤ rG(
⋃θ

i=1Bi)
∏θ

i=1 rG(Bi)
≤ (1 + C Dd−1)θ−1

holds, where d = mini,j d(Bi, Bj) is the minimal distance between two sets from our

collection. The constants C and D can be taken as

C = (1 +∆)maxi|Bi| and D = 1− C−1.

Intuitively, this can be interpreted as follows: if the mutual distance d is large,

both the upper and lower bound are close to 1, which means that the influences of the

sets Bi on the number of matchings are approximately independent of each other.

4. Asymptotics

We will have to make some technical assumptions in order to obtain general results:

in the following, we always assume the following:

• Each distinguished vertex belongs to a unique part and is also not incident to

any edge of the model graph; formally, for every j ∈ {1, 2, . . . , θ}, ψ(j) is an

isolated vertex of the model graph, and there are unique ℓ = ℓ(j) and h = h(j)

such that σℓ(h) = ψ(j).
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• No part contains more than one distinguished vertex, i.e. ℓ(1), ℓ(2), . . . , ℓ(θ)

are pairwise different.

These conditions are also quite natural from a geometric point of view, specifically if

existence of a limiting structure is desired. In Section 5, we will also discuss specific

examples where the conditions are not satisfied. We note two immediate consequences

of our two conditions:

• The degrees of Xn stay bounded; this is due to the fact that only the degrees of

the distinguished vertices can actually change in further steps. However, our

first condition guarantees that the maximum degree of a distinguished vertex

does not increase at any step.

• The distances between distinguished vertices tend to∞ at an exponential rate:

indeed, if we add an edge between σi(a) and σi(b) for all i and all pairs 1 ≤

a, b ≤ θ to the model graph G, and let d be the minimum distance between

vertices in ψ(Θ) in the resulting graph (note that this is at least 2!), it is easy

to see that the minimum distance between vertices in ϕn(Θ) is at least dn.

Let ∆ = maxn∆(Xn) be the upper bound for the maximum degree of Xn, and let

Dn = min
j,k

d(ϕn(j), ϕn(k))

be the minimum distance between distinguished vertices in Xn. Furthermore, set

qn = ∆(Xn)

(

1− 1

1 +∆(Xn)

)Dn−1

≤ ∆

(

1− 1

1 +∆

)dn−1

= (1 +∆)

(

∆

1 +∆

)dn

,

which tends to 0 at a doubly exponential rate. This will enable us to make use

of Theorem 1 in the same way as in [22]. To this end, we define further auxiliary

parameters, namely

ρn(j) = rXn({ϕn(j)}) =
m(Xn \ {ϕn(j)})

m(Xn)
.

Then, Theorem 1 implies that

m(Xn \ ϕn(Θ \B)) = m(Xn)
∏

j∈Θ\B

ρn(j)(1 +O(qn)),
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and so (2) becomes

an(A) =
∑

B⊆A

(−1)|A|−|B|m(Xn)

(

∏

j∈Θ\B

ρn(j)

)

(1 +O(qn))

= m(Xn)

(

∏

j∈Θ\A

ρn(j)

)(

∏

j∈A

(1− ρn(j))

)

(1 +O(qn)).

Noticing that

ρn(j) =
m(Xn \ {ϕn(j)})

m(Xn)
=

∑

A⊆Θ, j 6∈A an(A)
∑

A⊆Θ an(A)
,

we find that the parameters ρn(j) satisfy the following property:

ρn(j) =

∑

A⊆Θ, j 6∈A an(A)
∑

A⊆Θ an(A)
=

∑

A⊆Θ, j 6∈A

∑

M ′∈H(A)

∏s
i=1 an−1(ηi(M

′))
∑

A⊆Θ

∑

M ′∈H(A)

∏s
i=1 an−1(ηi(M ′))

=

∑

A⊆Θ, j 6∈A

∑

M ′∈H(A)

∏s
i=1

(
∏

r∈Θ\ηi(M ′) ρn−1(r)
)(
∏

r∈ηi(M ′)(1− ρn−1(r))
)

(1 +O(qn−1))
∑

A⊆Θ

∑

M ′∈H(A)

∏s
i=1

(
∏

r∈Θ\ηi(M ′) ρn−1(r)
)(
∏

r∈ηi(M ′)(1− ρn−1(r))
)

(1 +O(qn−1))
.

Our first condition implies that there is exactly one neighbor of ψ(j) in H, namely

(ℓ(j), h(j)). There is an obvious bijection between those matchings of H that contain

the edge between the two and those which do not contain it. The former belong to

H(A) for some A with j ∈ A (and thus contribute a factor 1− ρn−1(h(j))), the latter

belong to H(A) for some A with j 6∈ A (and thus contribute a factor ρn−1(h(j))).

Hence, the above quotient simply reduces to

ρn(j) = ρn−1(h(j))(1 +O(qn−1)).

Let rn be the column vector with entries ρn(j), j = 1, . . . , θ. Then, the above equation

can be written as

rn = T · rn−1(1 +O(qn−1)),

where T is a matrix with entries

tj,k =















1 if k = h(j),

0 otherwise.

The matrix T encodes the map j 7→ h(j), and it has the obvious property that every

row contains exactly one entry 1, while the remaining entries are 0. All powers of T
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have the same property, and so there have to be positive integers a and b such that

T a+b = T a,

which implies that

rn+a+b = T a+brn(1 +O(qn)) = T arn(1 +O(qn)) = rn+a(1 +O(qn)).

Here, we made use of the fact that qn decreases at a doubly exponential rate, so that

(1 +O(qn))(1 +O(qn+1)) · · · (1 +O(qn+a+b−1)) = 1 +O(qn).

Hence, the subsequence rnb+c (n ≥ 0) converges for every 0 ≤ c < b. We denote the

limit by Rc. Then, there is a constant 0 < κ < 1 such that

rn = Rc +O
(

κdn)

whenever n ≡ c mod b, with d as in the definition of qn. Hence, if n ≡ c mod b, we

have

m(Xn+1) =
∑

A⊆Θ

an+1(A)

=
∑

A⊆Θ

∑

M ′∈H(A)

s
∏

i=1

an(ηi(M
′))

= m(Xn)s
∑

A⊆Θ

∑

M ′∈H(A)

s
∏

i=1

(

∏

j∈Θ\ηi(M ′)

ρn(j)

)(

∏

j∈ηi(M ′)

(1− ρn(j))

)

(1 +O(qn))

= m(Xn)s
∑

A⊆Θ

∑

M ′∈H(A)

s
∏

i=1

(

∏

j∈Θ\ηi(M ′)

Rc(j)

)(

∏

j∈ηi(M ′)

(1−Rc(j))

)

(

1 +O
(

κdn))

= m(Xn)s
(

Bc +O
(

κdn))

,

where Rc(j) denotes the j-th component of Rc and Bc a constant that depends only

on c. Now, it is easy to determine the asymptotics of m(Xn): we take the logarithm

to find

yn+1 = logm(Xn+1) = syn + logBc +O
(

κdn)

.
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Let εn denote the error term. Then, iterating the recursion gives us

yn = sny0 +
b−1
∑

c=0

n−1
∑

k=0
k≡c mod b

sn−k−1(logBc + εk)

= sn

(

y0 +
b−1
∑

c=0

∞
∑

k=0
k≡c mod b

s−k−1(logBc + εk)

)

−
b−1
∑

c=0

∞
∑

k=n
k≡c mod b

sn−k−1(logBc + εk)

= sn

(

y0 +
b−1
∑

c=0

∞
∑

k=0
k≡c mod b

s−k−1(logBc + εk)

)

−
b−1
∑

c=0

∞
∑

k=0
k+n≡c mod b

s−k−1 logBc

+O

(

∞
∑

k=n

sn−k−1κdk

)

= C1s
n + C2(n) +O

(

κdn)

,

where C1 is a constant C2 only depends on the residue class of n modulo b. Hence,

m(Xn) = α(n) · βsn(

1 +O
(

κdn))

,

where α(n) is periodic with period b. Let us state this as a theorem:

Theorem 2. Suppose that Xn is a sequence of graphs that is constructed as described

in Section 2, and that

• each distinguished vertex belongs to a unique part and is also not incident to

any edge of the model graph, and

• no part contains more than one distinguished vertex.

Then there are positive constants β > 1, κ < 1, and a periodic function α : N → R
+

such that

m(Xn) = α(n) · βsn(

1 +O
(

κdn))

.

It also follows immediately that the growth constant

lim
n→∞

logm(Xn)

|VX n|
=

log β

|VX 0|+ |VG|−sθ
s−1

always exists, since the number of vertices of Xn grows at an exponential rate of sn,

as can be seen from equation (1).
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5. Examples

5.1. Graph families that satisfy our conditions.

Example 5.1. The Koch graphs have the nice property that we actually get an explicit

formula for the number of matchings. Note that due to symmetry, we have an({1}) =

an({2}) and ρn(1) = ρn(2) for all n, which reduces our system of recurrences to three

equations, namely

(an+1(∅), an+1({1}), an+1({1, 2})) = P (an(∅), an({1}), an({1, 2})),

where

P :











x

y

z











7→













x5 + 8x4y + 18x3y2 + 10x2y3 + 3x4z + 8x3yz

x4y + 7x3y2 + 13x2y3 + 5xy4 + x4z + 8x3yz + 12x2y2z + x3z2

x3y2 + 6x2y3 + 9xy4 + 2y5 + 2x3yz + 11x2y2z + 12xy3z + x3z2 + 4x2yz2













Then, an easy induction shows that

ρn(1) = ρn(2) = 2
3

and even more precisely

an(∅) = 2an({1}) = 2an({2}) = 4an({1, 2})

for all n ≥ 1. This reduces the system to the simple equation

m(Xn+1) = an+1(∅) + 2an+1({1}) + an+1({1, 2}) =
27 52m(Xn)5

38
,

with the explicit solution

m(Xn) = 9 · 2 7
4
(5n−1−1) · 5 1

2
(5n−1−1) = α · β5n

,

where α = 9 · 2−7/4 · 5−1/2 and β = 27/20 · 51/10.

Example 5.2. The graphs described in Example 2.2 were also used as an example in

the authors’ paper [21], where it was shown, among other results, that the number of

matchings in Xn is given by

m(Xn) =
2√
7
· (2
√

7)3n

.
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Again, we have an explicit formula that exhibits the usual doubly exponential growth.

Example 5.3. Sierpiński graphs were discussed in the aforementioned paper [4], and

the two-dimensioqnal case was also treated as an example in [22]. However, our general

theorem is applicable to higher dimensions as well. In the two-dimensional case, the

growth constants were found to be

m(Xn) ∼ 1.4277123849 · 2.67631635703n

in [22]. In the three- and four-dimensional case, we obtain

m(Xn) ∼ 1.8506206904 · 4.76979312924n

and

m(Xn) ∼ 2.4910066647 · 8.95264041645n

,

respectively. The asymptotic growth constants, without the precise asymptotics, were

also given in [4].

Example 5.4. Note that the model graph G is allowed to contain edges, as long as

they are not incident with distinguished vertices. Example 5.2 is of this type, and we

would like to describe another one that is closely related to the Sierpiński graphs. The

only modification is that we connect the parts by edges instead of amalgamating them

at their (distinguished) corner vertices. This gives us the sequence of graphs shown

in Figure 6. The analysis is essentially the same as in the previous example, and it

is also possible to make use of symmetries. We end up with the following asymptotic

behavior:

m(Xn) ∼ 0.6971213284 · 5.63723053463n

.

Example 5.5. For the analysis of the Pentagasket (see Example 2.4), it is also possible

to make use of symmetry properties. For instance, it is easy to see that

an({1, 2}) = an({2, 3}) = an({3, 4}) = an({4, 5}) = an({5, 1}).
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G

ψ(1) ψ(2)

ψ(3)

σ1 σ2

σ3

X0

X1

X2

Figure 6. Sierpiński graphs with additional edges

Note, however, that an({1, 2}) 6= an({1, 3}). The system of recurrences can thus

be reduced to a system that involves only 8 variables (rather than 32!). Since all

conditions are satisfied, the asymptotics are of the form given in Theorem 2; we have

m(Xn) ∼ 1.6806194435 · 7.20813544565n

.

Example 5.6. Our final example in this subsection deals with a sequence of trees that

is constructed from the model graph depicted in Figure 7; to be precise, we start with

X0 = K2 (ϕ(i) = vi if VX 0 = {v1, v2}) and define ψ and σi for 1 ≤ i ≤ 4 as follows:

j ψ(j) σ1(j) σ2(j) σ3(j) σ4(j)

1 1 2 3 4 5

2 4 1 2 3 2

Note that there is no symmetry, so the orientation of each part plays a role. In this

particular case, note that we have h(1) = 2 and h(2) = 1 in the notation of Section 4.

This yields a periodic function α (with nontrivial period 2) in Theorem 2, i.e. we have

m(Xn) ∼















1.1705265656 · 1.56133283364n
if n is even,

1.1505965967 · 1.56133283364n
if n is odd.

5.2. Model graphs with edges incident to distinguished vertices.

Example 5.7. Complete d-ary trees (see Example 2.5) are a very important example—

the asymptotic behavior of the number of matchings in these trees was also discussed

in the recent paper [12]. Since there is only one distinguished vertex, independence
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1

5

4
2 3

G

σ1 σ2 σ3

σ4

X0

X1 X2

X3

Figure 7. Model graph and first three steps in Example 5.6.

is not a question in this example, but the parameter ρn(1) shows some interesting

dynamical behavior again.

First of all, we obtain the simple recurrences

an+1(∅) = m(Xn)d and an+1({1}) = dm(Xn)d−1an(∅),

from which it follows that

ρn+1(1) =
an+1(∅)
m(Xn+1)

=
m(Xn)d

m(Xn)d + dm(Xn)d−1an(∅) =
1

1 + dρn(1)
,

which means that the values ρn(1) are now the iterates of a rational function, so it is

not immediate that the sequence ρn(1) converges. However, straightforward induction

(note also that ρ0(1) = 1) shows that

ρn(1) =

(

1
2

(

1 +
√

1 + 4d
))n+1 −

(

1
2

(

1−
√

1 + 4d
))n+1

(

1
2

(

1 +
√

1 + 4d
))n+2 −

(

1
2

(

1−
√

1 + 4d
))n+2

=
2

1 +
√

1 + 4d

(

1 +O

(
√

1 + 4d− 1√
1 + 4d+ 1

)n)

.

From this, we obtain

m(Xn+1) =
an+1(∅)
ρn+1(1)

= m(Xn)d · 1 +
√

1 + 4d

2

(

1 +O

(
√

1 + 4d− 1√
1 + 4d+ 1

)n)

,

and the usual method of taking logarithms yields

logm(Xn+1) = d logm(Xn) + log
1 +
√

1 + 4d

2
+O

(
√

1 + 4d− 1√
1 + 4d+ 1

)n

.
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Iterating this recurrence gives us

logm(Xn) = dn logm(X0) +
n−1
∑

i=0

dn−i−1 log
1 +
√

1 + 4d

2
+

n−1
∑

i=0

dn−i−1εi,

where εi is the error term in the i-th step. This can be rewritten as

logm(Xn) =
dn − 1

d− 1
log

1 +
√

1 + 4d

2
+ dn

∞
∑

i=0

d−i−1εi −
∞
∑

i=n

dn−i−1εi

=
dn − 1

d− 1
log

1 +
√

1 + 4d

2
+ C(d)dn +O

(
√

1 + 4d− 1√
1 + 4d+ 1

)n

.

Finally, this yields the asymptotics for the number of matchings:

m(Xn) ∼
(

1 +
√

1 + 4d

2

)−1/(d−1)

· β(d)dn

for some constant β(d).

G

ψ(1) ψ(2)

ψ(3)

σ1 σ2

σ3

X0

X1

X2

Figure 8. A “coronated” version of the Sierpiński graphs.

Example 5.8. Consider the following slight modification of the Sierpiński graphs: in

the model graph, we add a single edge incident with the top vertex ψ(3). This means

that one edge is added to the three parts in each step, and the number of pendant edges

incident with a vertex v in the resulting graph depends on the largest complete triangle

of which v is the top. Note that we can still make use of our independence theorem

(Theorem 1): the maximum degree ∆ only grows linearly with n (i.e. ∆(Xn) = O(n)),

while the distance between distinguished vertices grows exponentially with n (it is

equal to 2n), which shows that the auxiliary parameter qn that was introduced in

Section 4 still tends to 0 at a doubly exponential rate. To be precise, we have

qn = O
(

C
(2−ε)n

1

)
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for arbitrary ε > 0 and a constant C1 < 1 that only depends on ε. Hence, the only

part of the argument that does not hold any longer is the result that ρn(j) converges

for all j. We have

ρn+1(1) = ρn(1) +O(qn),

by the same argument as in the proof of Theorem 2, which shows that ρn(1) = ρn(2)

converges to a value R1 = 0.5599790429 as in Section 4, i.e. with a doubly exponential

error term:

(3) ρn(1) = R1 +O
(

C
(2−ε)n

2

)

.

On the other hand, ρn(3) shows a different asymptotic behavior: we have

(4) ρn+1(3) =
ρn(3)

1 + ρn(3)
(1 +O(qn)),

from which it can be easily deduced that ρn(3) behaves like

ρn(3) =
1

n+R3

+O
(

C
(2−ε)n

2

)

for a constant R3 = 2.6460653132, again with a very small error term. The recurrence

for ρn(3) can be explained as follows: Consider matchings in Xn+1 that do not contain

the new edge added to the three parts. Of these, approximately ρn(3) do not cover

ϕn+1(3) by the same argument that was also used to prove (3). Additionally, there are

matchings that do not contain the new edge, and there is an obvious bijection between

these matchings and those that do not cover ϕn+1(3), which shows why (4) holds.

The main asymptotics remain the same in this example, but the error term becomes

much weaker now: we get

m(Xn+1) =
R1(2−R1)(n+ 1 +R3)(1 +R1(n+R3 − 1))2

(n+R3)3
m(Xn)3

(

1 +O
(

C
(2−ε)n

2

))

from the system of recurrences that is satisfied by the quantities an(A) and therefore

m(Xn) = α · β3n
(

1 +
γ

n
+O(n−2)

)

,

where α = 1.9886480689, β = 4.1803026218, γ = −1.2857811157 can be determined

by the same technique as in Section 4 (i.e. taking logarithms and iterating). It is even

possible to compute further terms in the asymptotic expansion in this way.
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5.3. At least one distinguished vertex belongs to more than one part. In this

case, the maximum degree usually tends to ∞. This has two consequences:

• Theorem 1 might not be applicable any longer (however, if the distance between

distinguished vertices tends faster to ∞ than the maximum degree, it can still

be used—see Examples 5.8 and 5.9), and

• as in the previous subsection, the quotients ρn(j) show a more complicated

dynamical behavior.

In the following example, we will show the effect of these facts. It is chosen in such a

way that very explicit results can be given, so as to simplify the asymptotic discussion.

1 2 4

3

σ1

σ2

σ3

σ4G

X0

X1

X2

X3

Figure 9. Model graph and resulting Austria graphs X0, X1, X2, X3.

Example 5.9. The so-called “Austria graphs” (their shape resembles a map of Austria)

were introduced in [17]. Its model graph (shown in Figure 9) is edgeless, in each step

four copies of Xn are amalgamated to form Xn+1. The initial graph is X0 = K2, with

the usual definition for the function ϕ that describes the distinguished vertices on the

initial graph. In view of the missing symmetry, it makes an important difference how

the two distinguished vertices of each part are identified with the vertices in the model

graph. We show three different possibilities, each of which yields to a quite different

behavior for the number of matchings. First, let ψ and σ1, . . . , σ4 defined by

j ψ(j) σ1(j) σ2(j) σ3(j) σ4(j)

1 1 1 2 4 4

2 4 2 3 2 3
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The first three graphs in the resulting sequence are depicted in Figure 9. We obtain

the following system of recurrences:

(an+1(∅), an+1({1}), an+1({2}), an+1({1, 2})) = P (an(∅), an({1}), an({2}), an({1, 2})),

where

P :



















w

x

y

z



















7→





















w4 + w3x+ 4w3y + w2xy + 4w2y2 + w3z

w3x+ w2x2 + 3w2xy + wx2y + 2wxy2 + w3z + w2xz + 2w2yz

2w3x+ 2w2x2 + 6w2xy + wx2y + 4wxy2 + 2w3z + 3w2xz + 4w2yz

2w2x2 + 2wx3 + 4wx2y + x3y + x2y2 + 4w2xz + 3wx2z + 6wxyz + w2z2





















Note that the maximum degree is still bounded while the distance between distin-

guished vertices tends to ∞; hence, we can expect the two distinguished vertices to

be asymptotically independent. Indeed, it is easy to prove by means of induction that

an even stronger result holds: we have

an(∅) = 2an({1}) = an({2}) = 2an({1, 2})

for n ≥ 1 (implying ρn({1}) = 2
3

and ρn({2}) = 1
2
), and it follows immediately that

m(Xn+1) =
7

18
m(Xn)4

for n ≥ 1 and thus

m(Xn) = 3 · 2 4n+2
6 · 21

4n−1
−1

3 = α · β4n

with α =
(

18
7

)1/3
and β = 841/12.

Things change immediately if we slightly modify the construction by reversing one

of the parts: we set σ1(1) = 2 and σ1(2) = 1 now to obtain a new sequence of graphs

(see Figure 10).

This changes the asymptotic behavior of the number of matchings dramatically:

making use of the same argument as in the proof of Theorem 2, we should have

ρn+1(1) ≈ ρn(2), with only a small error term. As in Example 5.6, this leads to
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X0

X1

X2 X3

Figure 10. Modified Austria graphs X0, X1, X2, X3.

periodic behavior. The polynomial P is now given by



















w

x

y

z



















7→





























w4 + 2w3x+ 3w3y + 3w2xy + 2w2y2 + w3z

w3y + w2xy + 3w2y2 + wxy2 + 2wy3 + w3z + 3w2yz

2w3x+ 4w2x2 + 4w2xy + 4wx2y + wxy2 + 2w3z + 4w2xz + 3w2yz

2w2xy + 2wx2y + 4wxy2 + x2y2 + xy3 + 2w2xz + 2w2yz + 6wxyz

+3wy2z + w2z2





























and an inductive argument shows that for n ≥ 1,

an(∅) =















21−n/2an({1}) = 21−n/2an({2}) = 22−nan({1, 2}) if n is even,

2(3−n)/2an({1}) = 2(1−n)/2an({2}) = 22−nan({1, 2}) if n is odd.

It follows that

m(Xx+1) =















(1+2n/2)2(1+3·2n/2−1)

(1+2n/2−1)7
m(Xn)4 if n is even,

(1+2(n+1)/2)2

(1+2(n−1)/2)2(1+2(n−3)/2)4
m(Xn)4 if n is odd.

These recurrences lead to the following explicit formulæ: for even n, we have

m(Xn) = (1 + 2n/2−1)2(1 + 2n/2)2 · 24n−1 ·
n/2−1
∏

k=1

(1 + 2k)9·4n−1−2k

(1 + 3 · 2k−1)4n−1−2k

.

Rewriting this as

m(Xn) = (1 + 2n/2−1)2(1 + 2n/2)2 · 24n−1 · 2
∑n/2−1

k=1 (10k−1)4n−1−2k · 3
∑n/2−1

k=1 4n−1−2k

×
n/2−1
∏

k=1

(

(1 + 2−k)9
(

1 + 2
3
· 2−k

)

)4n−1−2k

,
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we find the asymptotics

m(Xn) ∼ 2−86/45 3−4/15 · 22n/3 · β4n

(1 +O(2−n/2)),

where

β = 237/90 31/60 ·
∞
∏

k=1

(

(1 + 2−k)9
(

1 + 2
3
2−k
)

)4−1−2k

= 1.4433516328.

Likewise, the following formula holds for odd n:

m(Xn) = (1 + 2(n−1)/2)(1 + 2(n−3)/2) · 24n−1 ·
(n−1)/2
∏

k=1

(1 + 2k)9·4n−1−2k

(1 + 3 · 2k−1)4n−1−2k

,

yielding the asymptotics

m(Xn) ∼ 2−104/453−1/15 · 22n/3 · β4n

(1 +O(2−n/2))

with the same β as before. Hence, we see two important effects of the slight modifi-

cation on the asymptotic behavior—we observe an additional exponential factor that

does not occur in Theorem 2 and also not in the first version of the Austria graphs

as well as periodicity (with period 2), which was to be expected (since the two distin-

guished vertices are essentially interchanged at each step).

X0

X1

X2 X3

Figure 11. Another modification of the Austria graphs.

Now, let us modify the construction in another way. This time, we reverse parts

3 and 4, i.e. the substitutions are defined by the following table:

j ψ(j) σ1(j) σ2(j) σ3(j) σ4(j)

1 1 1 2 2 3

2 4 2 3 4 4
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This yields the sequence of graphs that is depicted in Figure 11. The corresponding

system of recurrences is given by



















w

x

y

z



















7→



































w4 + 3w3x+ 2w2x2 + 2w3y + 2w2xy + w2y2 + w3z

w3x+ 3w2x2 + 2wx3 + w2xy + wx2y + w3z + 2w2xz + w2yz

2w3y + 4w2xy + wx2y + 4w2y2 + 2wxy2 + 2wy3 + 2w3z + 3w2xz

+4w2yz

2w2xy + 4wx2y + x3y + 2wxy2 + x2y2 + 2w2xz + 3wx2z + 2w2yz

+4wxyz + 2wy2z + w2z2



































Note that Theorem 1 is actually not applicable in this example, since the maximum

degree and the distance between the two distinguished vertices are both equal to 2n

at step n, so that the sequence qn that was defined in Section 4 does not tend to 0 any

longer. However, we still obtain independence, and even explicit values for ρn(1) and

ρn(2) again: we have

an(∅) = 2an({1}) = 21−nan({2}) = 22−nan({1, 2}),

and in a similar manner as in the previous example, we obtain

m(Xn) = 3 · 24n−1−1 · (2n−1 + 1) ·
n−1
∏

k=1

(

(2k−2 + 1)(2k + 3)
)4n−k−1

,

which is asymptotically

m(Xn) ∼ 3 · 2−14/9 · 2n/3 · β4n

,

where

β = 211/36

∞
∏

k=1

(

(1 + 22−k)(1 + 3 · 2−k)
)4−k−1

= 1.4341501552.

It is quite remarkable that slight changes can result in entirely different asymptotic

behavior, especially if this is compared to the fact that was noted in [20]: the number

of spanning trees is independent of the orientations of the four parts, i.e. the number

of spanning trees is the same for all three sequences. Note also that, even though the

conditions of Theorem 1 were not satisfied, we obtained

an(∅)an({1, 2})
an({1})an({2}) = 1
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(even with identity, not only asymptotically). Indeed, it is quite possible that a

stronger version of Theorem 1 (that does not involve the maximum degree) can be

proved. However, we will see in our final example that we cannot expect such an

independence of distinguished vertices if their distance remains bounded.

5.4. A part contains more than one distinguished vertex. In this case, the

distance between distinguished vertices does not necessarily tend to ∞ any longer,

and so we cannot expect (asymptotic) independence. The following sequence of graphs

exhibits the consequences—the recurrence can be simplified by means of certain ad

hoc arguments and solved explicitly, which greatly simplifies the analysis.

G

ψ(1) ψ(2)

ψ(3)

σ2 σ3

σ1

σ4

X0

X1

X2

Figure 12. Model graph and Rocket graphs X0, X1, X2.

Example 5.10. We slightly modify the model graph for the Sierpiński graphs by adding

one more part and changing the choice of distinguished vertices (see Figure 12). Apart

from not being completely symmetric any longer, the graph has the property that two

of its distinguished vertices belong to the same part, and it is easy to see that their

distance remains 1 throughout the whole sequence. In view of their shape, we will

henceforth refer to this sequence as “Rocket graphs”.

Note that the distinguished vertices v1,n = ϕn(1) and v2,n = ϕn(2) have a unique

common neighbor wn at any stage. There is an obvious bijection between all match-

ings that contain the edge between v1,n and v2,n and those which do not contain any

edge incident with v1,n or v2,n at all. Furthermore, there is also a bijection between
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matchings that contain the edge between v1,n and wn and those that contain the edge

between v2,n and wn. These are independent of the third distinguished vertex ϕn(3),

and so we have

an(∅) = an({1, 2}), an({3}) = an({1, 2, 3}),

an({1}) = an({2}), an({1, 3}) = an({2, 3}).

This simplifies the recurrences quite a lot, and so we obtain a simplified system with

only 4 auxiliary sequences, namely

(an+1(∅), an+1({1}), an+1({3}), an+1({1, 3})) = P (an(∅), an({1}), an({3}), an({1, 3})),

where

P :



















w

x

y

z



















7→



































(3w + y)(2w3 + 6w2x+ 6wx2 + 2x3 + 2w2y + 4wxy + 2x2y + wy2

+2w2z + 4wxz + 2x2z + 2wyz + wz2)

(3x+ z)(2w3 + 6w2x+ 6wx2 + 2x3 + 2w2y + 4wxy + 2x2y + wy2

+2w2z + 4wxz + 2x2z + 2wyz + wz2)

(3w + y)(y + z)(2w2 + 4wx+ 2x2 + 2wy + 2xy + y2 + 2wz + 2xz + yz)

(3x+ z)(y + z)(2w2 + 4wx+ 2x2 + 2wy + 2xy + y2 + 2wz + 2xz + yz)



































Now it can be proved by induction that

4an(∅) = 12an({1}) = 5an({3}) = 15an({1, 3})

for all n ≥ 1, which reduces the recurrence to a very simple one:

m(Xn+1) =
323

972
m(Xn)4

with the explicit solution

m(Xn) = 72 · 124032
4n−1

−1
3 = α · β4n

,

where α =
(

972
323

)1/3
and β = 1240321/12. Note, however, that

an(∅) · an({1, 2}) and an({1}) · an({2})
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are not even asymptotically equal, which they would have to be if the conditions

of Theorem 1 were satisfied. Thus, we cannot expect independence of distinguished

vertices if the distance remains bounded.
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