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Abstract. We study two parameters in random integer partitions, namely the first gap
and the last repeated part, that have been introduced by Grabner and Knopfmacher in
a recent paper [Ramanujan J. 12/3, 439–454]. More generally, the first part that occurs
at most r times and the last part that occurs at least r times are considered. For both
parameters, we determine the limit distribution, which turn out to be the Rayleigh and
Gumbel distribution respectively. This also generalises the well-known result by Erdős and
Lehner on the distribution of the largest part in a random integer partition. Furthermore,
extensions to general Λ-partitions as well as results on related parameters such as the
length of the first gap are provided.

1. Introduction

The theory of partitions lies at the border between number theory and combinatorics
and combines algebraic and analytic aspects. The classic asymptotic formula for the parti-
tion function p(n) that was found by Hardy and Ramanujan [11] and further improved by
Rademacher [16] arguably belongs to the most beautiful theorems in 20th century mathe-
matics. Its main asymptotic term can be written as

(1) p(n) =
exp

(

π
√

2n
3

)

4
√

3n

(

1 + O(n−1/2)
)

.

See [1] and [2] for excellent expositions. This result has been generalised in various direc-
tions, most notably by Meinardus [14]: consider a nondecreasing sequence Λ1 ≤ Λ2 ≤ . . .
of positive integers with the property that Λk → ∞. A (unrestricted) Λ-partition can be
seen as a solution to the equation

∞
∑

k=1

akΛk = n,

where the coefficients ak have to be nonnegative integers; ak is the multiplicity of the part
Λk in a partition. Note that the case Λk = k corresponds to ordinary partitions. Assume
that the following conditions are satisfied:
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(1) The associated Dirichlet series D(s) =
∑∞

k=1 Λ−s
k has a simple pole at α > 0

with residue A and can otherwise be continued analytically to the strip σ ≥ −C0

(C0 > 0); here we write s = σ + it as usual.
(2) D(s) = O(|t|C1) for some fixed positive constant C1, uniformly in the region σ ≥

−C0, as t → ∞.
(3) The function

v(τ) =
∞
∑

k=1

e−Λkτ

satisfies

Re v(τ) − v(y) ≤ −C2y
−η

for τ = y + 2πix, | arg τ | > π
4
, |x| ≤ 1

2
and sufficiently small y, where η and C2 are

positive constants.

Then it can be shown that the number of Λ-partitions is asymptotically given by

(2) pΛ(n) = Cnκ exp

(

nα/(α+1)

(

1 +
1

α

)

(AΓ(α + 1)ζ(α + 1))1/(α+1)

)

(

1 + O(n−κ1)
)

,

where Γ and ζ denote the Gamma and zeta functions respectively, and C, κ, κ1 are constants
that depend on α and D; specifically,

C = eD′(0) (2π(1 + α))−1/2 (AΓ(α + 1)ζ(α + 1))(1−2D(0))/(2α+2) ,

κ =
D(0) − 1 − α

2

1 + α
,

κ1 =
α

α + 1
min

(

C0

α
− δ

4
,
1

2
− δ

)

.

See [1] for details. A similar result exists for restricted Λ-partitions (ak ≤ 1, i.e., parts may
not be repeated). In this case, the number of partitions, denoted qΛ(n), satisfies

(3) qΛ(n) = Bnλ exp

(

nα/(α+1)

(

1 +
1

α

)

(

AΓ(α + 1)ζ(α + 1)(1 − 2−α)
)1/(α+1)

)

(

1 + O(n−κ1)
)

,

where

B = 2D(0) (2π(1 + α))−1/2 (AΓ(α + 1)ζ(α + 1)(1 − 2−α)
)1/(2α+2)

,

λ = −1 + α
2

1 + α
.

An even stronger theorem holds for the bivariate generating function in which the second
variable marks the length, see [12]. In particular, for Λk = k, the following asymptotic
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formula for the number of partitions into unequal parts results:

q(n) =
exp

(

π
√

n
3

)

4 4
√

3n3/4

(

1 + O(n−1/2)
)

.

Once that information about the number of partitions is available, it is natural to consider
parameters of partitions. The first important example of a distributional result is due to
Erdős and Lehner [5], who considered the length (number of parts) of a random partition.
Since the length of a partition is the largest part of its conjugate, the maximum follows
the same distribution law, which is an extreme value distribution (also known as Gumbel
distribution) after appropriate rescaling. This will also be a corollary of one of the main
results of this paper. Szekeres [17, 18] refined the result of Erdős and Lehner and also
studied the joint distribution of length and maximum [20] (it turns out that, around their
mean, the two are essentially independent of each other). The analogous problem for
partitions into unequal parts is considered in [19].

Further interesting contributions to the distributional theory of integer partitions in-
clude those by Erdős and Szalay [6] on the largest block size (the size of the block induced
by a number j in a partition is j times the multiplicity of j). This was further generalised
by Fristedt [8]; Corteel et al. [4] showed that a randomly selected part of a randomly
selected partition of n has multiplicity m with probability 1

m(m+1)
as n → ∞.

The number of distinct parts in a random partition (the number of parts with positive
multiplicity) was shown to follow a normal law by Goh and Schmutz [9]; the Gaussian limit
law also arises in the study of ascents in partitions [3]. The longest run (or largest ascent),
on the other hand, was found to have a rather unusual limit distribution by Mutafchiev
[15]; see also [21].

In an interesting recent paper by Grabner and Knopfmacher [10], several new partition
parameters were brought forward, among them the smallest gap (the first positive integer
that does not occur as a part) and the largest repeated part. The former was shown to be
on average of order n1/4 if random integer partitions of n are considered, while the latter is
of average order

√
n log n. Very precise asymptotic expansions for the mean can be found

in [10].

The present paper is devoted to the limit distributions of the aforementioned partition
statistics; indeed, we consider two slightly more general parameters. For a positive integer
r (which is fixed throughout the paper), we study the distribution of the smallest integer
whose multiplicity is less than r as well as that of the largest integer whose multiplicity is at
least r; in particular, for r = 1, we obtain the smallest gap and the maximum respectively;
r = 2 corresponds to the largest repeated part size in the latter case. Note that the first
parameter exists for any partition, while the latter does not necessarily exist (it is possible
that there is no repeated part). However, it turns out that a part that is repeated at least
r times exists with probability tending to 1 as n → ∞ in a random partition of n.
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We find that both parameters have a limit distribution for any fixed r that is a Rayleigh
distribution in the first and a Gumbel distribution in the second case. The two main
theorems read as follows:

Theorem 1. Let Gr,n be the smallest integer in a random partition of n that occurs less than
r times. Then the normalised random variable n−1/4Gr,n tends to a Rayleigh distribution

with mean
(

3
2

)1/4
r−1/2 and variance

√
6(4−π)
2πr

. The local limit theorem

P(Gr,n = hn1/4) ∼ πrh√
6n1/4

exp

(

−πrh2

2
√

6

)

holds.

Theorem 2. Let Rr,n be the largest integer in a random partition of n that occurs at
least r times (if such an integer exists; otherwise, define the value to be 0). Then the

normalised random variable n−1/2
(

Rr,n −
√

6n
2πr

log n
)

tends to a Gumbel distribution with

mean γ−log(πr/
√

6)

πr/
√

6
and variance 1

r2 , where γ is the Euler-Mascheroni constant. The local

limit theorem

P

(

Rr,n =

√
6n

2πr
log n + h

√
n

)

∼ 1√
n

exp

(

−πrh√
6
−

√
6

πr
exp

(

−πrh√
6

)

)

holds.

These two theorems are treated in Section 2 and 3 respectively; possible extensions
and generalisations are discussed as well as related problems.

2. Smallest gaps

In order to prove Theorem 1, we first need the generating function for the number of
those partitions for which k is the first integer that occurs with multiplicity less than r. It
is easy to see that this generating function is given by

k−1
∏

j=1

(

∞
∑

m=r

zjm

)

·
(

r−1
∑

m=1

zmk

)

·
∞
∏

j=k+1

(

∞
∑

m=1

zjm

)

=

(

k−1
∏

j=1

zjr

)

(1 − zkr)
∞
∏

j=1

(1 − zj)−1

= zk(k−1)r/2(1 − zkr)P (z),

where P (z) is the generating function for all partitions. Hence, if p(n) denotes the number
of partitions of n, then the coefficient of zn in the above generating function (and thus the
number of partitions of n for which k is the first integer that occurs less than r times) is

(4) [zn]zk(k−1)r/2(1 − zkr)P (z) = p(n − k(k − 1)r/2) − p(n − k(k + 1)r/2).
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Now we make use of the Hardy-Ramanujan-Rademacher formula for the partition function:
applying (1), we find for k = o(n3/8) that

p(n − k(k − 1)r/2) =

exp

(

π
√

2(n−k(k−1)r/2)
3

)

4
√

3(n − k(k − 1)r/2)

(

1 + O(n−1/2)
)

=
exp

(

π
√

2n
3

)

4
√

3n
exp

(

π

√

2n

3

(
√

1 − k(k − 1)r

2n
− 1

))

(

1 + O(k2n−1 + n−1/2)
)

= p(n) exp

(

π

√

2n

3

(

−k(k − 1)r

4n
+ O(k4n−2)

)

)

(

1 + O(k2n−1 + n−1/2)
)

= p(n) exp

(

−πk(k − 1)r

2
√

6n

)

(

1 + O(k4n−3/2 + k2n−1 + n−1/2)
)

.

Likewise,

p(n − k(k + 1)r/2) = p(n) exp

(

−πk(k + 1)r

2
√

6n

)

(

1 + O(k4n−3/2 + k2n−1 + n−1/2)
)

and thus

p(n − k(k − 1)r/2) − p(n − k(k + 1)r/2)

p(n)

= exp

(

− πk2r

2
√

6n

)

(

exp

(

πkr

2
√

6n

)

− exp

(

− πkr

2
√

6n

)

+ O(k4n−3/2 + k2n−1 + n−1/2)

)

=
πkr√

6n
exp

(

− πk2r

2
√

6n

)

(

1 + O(k3n−1 + kn−1/2 + k−1)
)

.

In particular, if we set k = hn1/4, we find

p(n − k(k − 1)r/2) − p(n − k(k + 1)r/2)

p(n)
=

πrh√
6n1/4

exp

(

−πrh2

2
√

6

)

(

1 + O(n−1/4)
)

,

uniformly in h on compact subsets of (0,∞). This readily proves our first main theorem. �

Remark. The probability decreases rapidly for larger values of k: one has

P(Gr,n ≥ k) =
p(n − k(k − 1)r/2)

p(n)
= O

(

exp

(

− πk2r

2
√

6n

))

.

Theorem 1 generalises to Meinardus’ scheme that was mentioned in the introduction:
however, the error term in (2) is not sufficient to apply the same method for the proof.
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Instead, we work directly with the generating function and apply the saddle point method
to obtain the following result:

Theorem 3. Let Gr,n be the first element of the sequence Λ that occurs less than r times
in a random Λ-partition of n; if the conditions of Meinardus’ scheme are satisfied, then the
normalised random variable n−1/(α+1)2Gr,n tends to a Weibull distribution whose density is
given by

f(x) = Krxα exp

(

− Kr

α + 1
xα+1

)

for x ≥ 0, where K = A (AΓ(α + 1)ζ(α + 1))1/(α+1). The local limit theorem

P(Gr,n = Λk) ∼
Kr

A
Λkn

−1/(α+1) exp

(

− Kr

α + 1
Λα+1

k n−1/(α+1)

)

holds uniformly if Λk is restricted by an1/(α+1)2 ≤ Λk ≤ bn1/(α+1)2, for any fixed a, b.

Of course, Theorem 1 is included as a corollary. However, it seemed sensible to present
the somewhat easier proof for Theorem 1 before the general case is treated.

Remark. There is some ambiguity in the formulation of the local limit theorem, since some
of the Λk may have the same value; in this case, think of several copies of the same number
that are coloured differently.

Proof. Making use of the same argument as before, we find the generating function for the
number of Λ-partitions with the property that Λk is the first element of the sequence Λ
that occurs less than r times:

F (z) =

(

k−1
∏

j=1

zΛjr

)

(

1 − zΛkr
)

∞
∏

j=1

(

1 − zΛj
)−1

.

Now set z = e−τ , F (z) = f(τ), and τ = y + 2πix and apply the residue theorem to obtain

(5) pΛ(n) · P(Gr,n = Λk) =

∫ 1/2

−1/2

f(y + 2πix)eny+2πinx dx

upon change of variables. Furthermore, take y to be the saddle point:

y = (AΓ(α + 1)ζ(α + 1))1/(α+1) n−1/(α+1) =
K

A
n−1/(α+1),

see Chapter 6 of [1], and set β = 1+ α
2

(

1 − δ
2

)

for some δ > 0. Only the part of the integral

for which |x| ≤ yβ holds is asymptotically relevant; the rest is negligible and only yields
an error term that is exponentially smaller than the main term. This is a consequence of
the following lemma:
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Lemma 4 ([1], Lemma 6.1). Let

g(τ) = G(z) =
∞
∏

j=1

(

1 − zΛj
)−1

be the ordinary generating function for Λ-partitions (where z = e−τ). Then there exist
positive constants C3, η1 such that

g(y + 2πix) = O
(

exp
(

AΓ(α)ζ(α + 1)y−α − C3y
−η1
))

holds uniformly in x with yβ ≤ |x| ≤ 1
2

as y → 0.

Estimating the additional factors in f(y + 2πix) in the trivial way, we now find that

∫ 1
2

yβ

f(y + 2πix)eny+2πinx dx = O
(

exp
(

ny + AΓ(α)ζ(α + 1)y−α − C3y
−η1
))

= O
(

pΛ(n) exp
(

−C4n
η1/(α+1)

))

.

Now assume that Λk = O
(

nmin(1+η1,β)/(α+1)2−ǫ
)

for some ǫ > 0. By Ikehara’s Tauberian

theorem [13],
k−1
∑

j=1

Λj ∼
A

α + 1
Λα+1

k .

It follows that for |x| ≤ yβ, one has

1 − exp ((y + 2πix)Λkr) = Λkry
(

1 + O
(

Λky + yβ−1
))

∼ Λkry

as well as

exp

(

2πi

k−1
∑

j=1

Λjrx

)

= 1 + O
(

n−ǫ
)

,

both uniformly in x. Therefore, the right hand side in (5) can be written as
(

∫ 1/2

−1/2

g(y + 2πix)eny+2πinx dx

)

· Λkry exp

(

−
k−1
∑

j=1

Λjry

)

(1 + o(1)) ,

so that

pΛ(n) · P(Gr,n = Λk) = pΛ(n) · Λkry · exp

(

−
k−1
∑

j=1

Λjry

)

(1 + o(1)) .

Note that
k−1
∑

j=1

Λjry ∼ Ar

α + 1
Λα+1

k y = O
(

nη1/(α+1)−ǫ(α+1)
)
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by our choice of Λk, which shows that the error term obtained from Lemma 4 is indeed
smaller than the main term. Hence we end up with

P(Gr,n = Λk) ∼ Λkry · exp

(

−
k−1
∑

j=1

Λjry

)

.

Finally, if an1/(α+1)2 ≤ Λk ≤ bn1/(α+1)2 for fixed a, b, then one has

Λkry =
Kr

A
Λkn

−1/(α+1)

and
k−1
∑

j=1

Λjry =
Ar

α + 1
Λα+1

k · K

A
n−1/(α+1) + o(1) =

Kr

α + 1
Λα+1

k n−1/(α+1) + o(1),

which completes the proof of the theorem. �

Example. If Λ is an arithmetic progression, then the limit law is still a Rayleigh distribution.
If Λk = km for some positive integer exponent m, then α = A = 1

m
(note that D(s) = ζ(ms)

in this case), and one obtains a Weibull distribution with exponent 1 + 1
m

. This can be
further generalised to arbitrary exponents m ≥ 1 by setting Λk = ⌊km⌋.

Unlike the second parameter that we treat in this paper (the largest repeated part), the
first gap also makes sense in the case of partitions into unequal parts. In this case, similar
reasoning shows that the generating function for partitions into unequal parts whose first
gap is k is given by

k−1
∏

j=1

zj ·
∞
∏

j=k+1

(1 + zj) = zk(k−1)/2

∞
∏

j=k+1

(1 + zj).

Interestingly, it turns out that the limit distribution is discrete in this case:

Theorem 5. The first gap in a random partition of n into distinct summands asymptot-
ically follows a geometric distribution: the probability that the first gap equals k tends to
2−k.

Proof. Note that the product
∞
∏

j=k+1

(1 + zj)

can also be interpreted as the generating function for the number of partitions into distinct
parts > k. For our purposes, we need the coefficient of zn−k(k−1)/2. The Dirichlet generating
function D(s) =

∑∞
j=k+1 j−s = ζ(s) − ∑k

j=1 j−s satisfies the conditions of Meinardus’

scheme (generally, changing finitely many elements does not affect the validity), and the
pole at 1 (with residue 1) is the same as for ζ(s), since the difference is only a finite sum
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of terms that represents an analytic function. Furthermore, D(0) = −1
2
− k, so that (3)

yields

[zn]zk(k−1)/2

∞
∏

j=k+1

(1 + zj) = [zn−k(k−1)/2]
∞
∏

j=k+1

(1 + zj)

= 2−k ·
exp

(

π
√

n−k(k−1)/2
3

)

4 4
√

3(n − k(k − 1)/2)3/4

(

1 + O(n−1/2)
)

= 2−k ·
exp

(

π
√

n
3

)

4 4
√

3n3/4

(

1 + O(n−1/2)
)

= 2−kq(n)
(

1 + O(n−1/2)
)

for any fixed k, which proves the theorem. �

Remark. Intuitively, every fixed integer occurs with probability 1
2

in a random partition
of a large number into unequal parts; the geometric distribution of the first gap follows
naturally.

This theorem generalises to Meinardus’ scheme as well; the limit law is still geometric,
and the proof is completely analogous:

Theorem 6. If the conditions of Meinardus’ scheme are satisfied, then the first gap in a
restricted Λ-partition of n asymptotically follows a geometric distribution: the probability
that the first gap equals Λk tends to 2−k.

Let us finally look at the length of the first gap: if k is the first number that is left out
and k + ℓ is the first part larger than k that occurs in a certain partition, then we say that
the length of the gap is ℓ (if such an ℓ exists). The following theorem provides information
about the length of the first gap:

Theorem 7. In a random partition of n, the length of the first gap equals 1 with probability
1 + O(n−1/4). If partitions into unequal parts are considered, however, the length of the
first gap asymptotically follows the same geometric distribution as the first gap itself, that
is, the probability that the length of the first gap is ℓ tends to 2−ℓ as n → ∞.

The geometric distributions of the location of the first gap and its length are even
asymptotically independent in the unrestricted case. Once again, the theorem can be
generalised to Meinardus’ scheme.

Theorem 8. Suppose that the conditions of Meinardus’ scheme are satisfied. The length
of the first gap in a random unrestricted Λ-partition of n equals 1 with probability 1 +
O(n−1/(α+1)2+ǫ) for any ǫ > 0. For restricted Λ-partitions, the probability that the length of
the first gap is ℓ tends to 2−ℓ as n → ∞.
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Proof (Sketch). By an argument akin to the proof of Theorem 3, one finds that the prob-
ability for a gap of length at least two to occur at Λk (in other words, Λk is the first
element of the sequence Λ that is not part of the partition, and Λk+1 is not a part either)

is O
(

Λ2
kn

−2/(α+1)
)

. Since the probability that the first gap is greater than n1/(α+1)2+ǫ1 is
exponentially small for any fixed ǫ1 > 0 (by the same idea), it is sufficient to estimate the
sum

n−2/(α+1)
∑

Λk≤n1/(α+1)2+ǫ1

Λ2
k.

Applying Ikehara’s Tauberian Theorem again, we see that this sum is

O
(

n−2/(α+1) · n(1/(α+1)2+ǫ1)(2α+1)
)

= O
(

n−1/(α+1)2+ǫ
)

for sufficiently small ǫ1, which completes the proof of the first part.

For the second part, note that the generating function for restricted Λ-partitions whose
first gap occurs at Λk and has length ℓ (i.e., the elements Λk, Λk+1, . . . , Λk+ℓ−1 are missing,
but Λk+ℓ is not) is given by

k−1
∏

j=1

zΛj · zΛk+ℓ ·
∏

j=k+ℓ+1

(1 + zΛj).

The same argument as in the proof of Theorem 5 (and Theorem 6) can be applied to show
that the probability for a gap of length ℓ to occur at Λk tends to 2−k−ℓ for fixed k and ℓ,
which proves the geometric distribution (and independence of position and length of the
first gap). �

Remark. The generating function for all partitions with the property that the first r-gap
(i.e., the first sequence consisting of parts occurring with multiplicity < r) has length at
least ℓ is given by

∞
∑

k=1

(1 − zkr)(1 − z(k+1)r) · · · (1 − z(k+ℓ−1)r)zk(k−1)r/2

∞
∏

j=1

(1 − zj)−1.

The sum can be simplified as follows: set zr = q and rewrite it as

∞
∑

k=0

k+ℓ
∏

j=k+1

(1 − qj)qk(k+1)/2 =
ℓ
∏

j=1

(1 − qj) ·
∞
∑

k=0

∏k+ℓ
j=ℓ+1(1 − qj)
∏k

j=1(1 − qj)
qk(k+1)/2.

This, however, is a special case of a well-known q-series (see [1, Corollary 2.7]); it is equal
to the product

ℓ
∏

j=1

(1 − qj)
∞
∏

m=1

(1 − q2m+ℓ)(1 + qm) =
∞
∏

m=1

1 − q2m

1 − q2m+ℓ−1
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after a couple of simplifications. Therefore, our generating function can be written as the
product

∞
∏

m=1

1 − z2mr

1 − z(2m+ℓ−1)r

∞
∏

j=1

(1 − zj)−1,

which can be interpreted as the generating function for a different kind of partitions. In
particular, let us mention the special case that r = 1 and ℓ is odd:

Proposition 9. The number of partitions of n whose first gap has length at least ℓ, where
ℓ is odd, is equal to the number of partitions of n that do not contain any of the parts
2, 4, . . . , ℓ − 1, as well as the number of partitions of n that contain each of the parts
1, 2, . . . , ℓ−1

2
at most once.

It would be interesting to see a combinatorial proof of this result. Furthermore, more
precise asymptotics can be obtained from the product representation of the generating
function:

Proposition 10. The probability that the length of the first r-gap in a random partition
of n is at least ℓ is asymptotically

Γ

(

ℓ + 1

2

)

(2r)(ℓ−1)/2ζ(2)(ℓ−1)/4n−(ℓ−1)/4.

Of course, “at least” can be replaced by “exactly” in the statement of this proposition.

3. Largest repeated parts

This problem is dual to the one that was considered in the previous section: How is
the largest repeated part size in a random distribution distributed? More generally, for a
fixed value of r, one may consider the distribution of the largest part whose multiplicity is
at least r. Note that the case r = 1 corresponds to the largest part in a partition, while
r = 2 is the original problem (largest repeated part). It should be noted that such a part
does not have to exist (in such a case, we might simply define it to be 0 for the sake of
convenience). However, it will turn out that this is almost surely not the case for fixed r
as n → ∞ (i.e., the probability of this event tends to 0). Furthermore, it is clear that this
problem does not make sense for partitions into unequal parts, as opposed to the problem
of the smallest gap.

The case r = 1 has already been mentioned in the introduction: it is known that the
largest part size follows a Gumbel (extreme value) distribution. The aim of this section is
to show that this is also the limit distribution in the case of arbitrary r; in particular, the
largest repeated part size asymptotically follows a Gumbel distribution.

More generally, we will prove the following theorem on Λ-partitions:
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Theorem 11. Let Rr,n be the largest part in a random Λ-partition of n that occurs at
least r times. Suppose that the conditions of Meinardus’ scheme are satisfied. Set M =

(AΓ(α + 1)ζ(α + 1))1/(α+1) and y = Mn−1/(α+1); furthermore, assume that

(

max(α
2
, α − η1) + ǫ

)

· 1

(α + 1)Mr
n1/(α+1) log n ≤ Λk ≤ n(1+α/2−ǫ)/(α+1)

holds for some ǫ > 0, where η1 is taken as in Lemma 4. Then the following asymptotic
formula for the probability P(Rr,n = Λk) holds:

P(Rr,n = Λk) ∼ e−ryΛk exp

(

−
∞
∑

j=k+1

e−ryΛj

)

.

Special cases (in particular, the case of ordinary unrestricted partitions, Theorem 2)
will be discussed at the end of this section.

Proof. The approach is very similar to the one that was used in the proof of Theorem 3,
and also follows essentially the lines of Szekeres [17, 18, 20]. As in the previous section,
we start with the generating function. If we want to count partitions with the property
that Λk is the largest part that occurs at least r times, then the corresponding generating
function is given by

H(z) =
k−1
∏

j=1

(1 − zΛj)−1 · zrΛk

1 − zΛk
·

∞
∏

j=k+1

1 − zrΛj

1 − zΛj
= zrΛk

∞
∏

j=k+1

(1 − zrΛj) · G(z),

where G(z) is the ordinary generating function for Λ-partitions. Now substitute z =
e−τ , h(τ) = H(z), g(τ) = G(z), and apply the residue theorem to obtain the integral
representation

(6) pΛ(n) · P(Rr,n = Λk) =

∫ 1/2

−1/2

h(y + 2πix)eny+2πinx dx

upon change of variables; y is taken as in the statement of the theorem (as in the proof of
Theorem 3, this choice is based on the fact that y is a saddle point). We want to prove
again that only the central part of the integral is asymptotically relevant. To this end, we
need the following estimate:

Lemma 12. Let u > 0 be a real number and k an integer; furthermore, we assume that
uΛk ≥ C5 for some constant C5 > 0. Then there exists a constant C6 depending on C5

such that the estimate
∞
∑

j=k+1

e−uΛj ≤ C6Λ
α
ke−uΛk

holds.
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To prove this lemma, note that the number of elements of the sequence Λ inside the
interval [ℓΛk, (ℓ + 1)Λk] is O((ℓΛk)

α) (making use of Ikehara’s Tauberian theorem once
again). Therefore, we have

∞
∑

j=k+1

e−uΛj ≪ Λα
k

∞
∑

ℓ=1

ℓαe−ℓuΛk ≪ Λα
ke−uΛk ,

proving the lemma. Now we can proceed with the proof of the main theorem. Set β =
1 + α

2

(

1 − δ
2

)

, where 0 < δ < 4ǫ/α. By the lemma, we have

∣

∣

∣

∣

∣

e−τrΛk

∞
∏

j=k+1

(1 − e−τrΛj)

∣

∣

∣

∣

∣

≤
∞
∏

j=k+1

(1 + e−yrΛj) ≤ exp

(

∞
∑

j=k+1

e−yrΛj

)

≤ exp
(

C6Λ
α
ke−yrΛk

)

.

Note that yΛk → ∞ by our assumptions, so that the lemma applies for sufficiently large
n. Furthermore,

Λα
ke−yrΛk ≪ nα/(α+1)(log n)α exp

(

−α − η1 + ǫ

(α + 1)
log n

)

≪ (log n)αn(η1−ǫ)/(α+1) ≪ (log n)αy−(η1−ǫ)

by our assumptions on Λk. If we combine this with Lemma 4, we find that

∫ 1
2

yβ

h(y + 2πix)eny+2πinx dx = O
(

exp
(

ny + AΓ(α)ζ(α + 1)y−α − C7y
−η1
))

= O
(

pΛ(n) exp
(

−C8n
η1/(α+1)

))

,

showing once again that the outer parts of the integral are negligible, so that we can focus
on the integral between −yβ and yβ. For |x| ≤ yβ, one has

e−τrΛk = e−yrΛk
(

1 + O(Λky
β)
)

= e−yrΛk
(

1 + O
(

n(δα/4−ǫ)/(α+1)
))

by our assumptions on Λk. Since we chose δ to be less than 4ǫ/α, the exponent in the
error term is indeed negative. The second factor in the generating function is estimated as
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follows:
∞
∑

j=k+1

log
(

1 − e−τrΛj
)

= −
∞
∑

m=1

1

m

∞
∑

j=k+1

e−mτrΛj

= −
∞
∑

j=k+1

e−τrΛj + O

(

∞
∑

m=2

∞
∑

j=k+1

e−myrΛj

)

= −
∞
∑

j=k+1

e−yrΛj + O

(

yβΛk

∞
∑

j=k+1

e−yrΛj +
∞
∑

j=k+1

e−2yrΛj

)

= −
∞
∑

j=k+1

e−yrΛj + O
(

yβΛα+1
k e−yrΛk + Λα

ke−2yrΛk
)

= −
∞
∑

j=k+1

e−yrΛj + O
(

n−β/(α+1)+1(log n)α+1 exp
(

−α/2+ǫ
α+1

log n
)

+ nα/(α+1)(log n)α exp
(

−α+2ǫ
α+1

log n
)

)

= −
∞
∑

j=k+1

e−yrΛj + O
(

n(δα/4−ǫ)/(α+1)(log n)α+1 + n−2ǫ/(α+1)(log n)α
)

,

making use of Lemma 12 again. Therefore, we finally have

∞
∏

j=1

(

1 − e−τrΛj
)

= exp

(

−
∞
∑

j=k+1

e−yrΛj

)

(

1 + O
(

n(δα/4−ǫ)/(α+1)(log n)α+1
))

.

The final step is analogous to Theorem 3 again:

pΛ(n) · P(Rr,n = Λk) =

(

∫ 1/2

−1/2

g(y + 2πix)eny+2πinx dx

)

· e−ryΛk

· exp

(

−
∞
∑

j=k+1

e−yrΛj

)

(1 + o(1)) ,

and thus

pΛ(n) · P(Rr,n = Λk) = pΛ(n) · e−ryΛk exp

(

−
∞
∑

j=k+1

e−yrΛj

)

(1 + o(1)) ,

which proves the theorem. �

Example. In the case of ordinary unrestricted integer partitions (Λk = k), we have y = π√
6n

and
∞
∑

j=k+1

e−ryj =
1

ry
e−rky(1 + O(y)).
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Hence, if we set k =
√

6n
2rπ

log n + h
√

n = 1
2ry

log n + h
√

n, then we find that

e−ryk = n−1/2 exp

(

−πrh√
6

)

and finally

P(Gr,n = k) ∼ 1√
n

exp

(

−πrh√
6
−

√
6

πr
exp

(

−πrh√
6

)

)

,

proving Theorem 2. Similar calculations show that for Λk = ak + b (a, b coprime), one has

P(Gr,n = Λk) ∼
1√
n

exp

(

− πrh√
6a

−
√

6

πr
√

a
exp

(

− πrh√
6a

)

)

if Λk =
√

6an
2rπ

log n + h
√

n. For Λk = km, things are slightly more complicated: one has to
use the asymptotic formula

∞
∑

j=k+1

e−ryjm ∼ 1

mrykm−1
e−rykm

.

Further, one finds that M =
(

1
m

Γ
(

1 + 1
m

)

ζ
(

1 + 1
m

))m/(m+1)
in this case. If now

Λk =
1

(m + 1)Mr
nm/(m+1) log n − m − 1

mMr
nm/(m+1) log log n + hnm/(m+1),

then the following limit law holds:

P(Gr,n = Λk) ∼
(log n)(m−1)/m

n1/(m+1)
exp

(

−rMh − (m + 1)(m−1)/m

m(Mr)1/m
exp(−rMh)

)

.

The occurrence of a log log n term in the last formula (that is not present in the case m = 1)
is quite surprising.

Remark. It is interesting to note that the limit distributions that arise in the birthday
problem and the coupon collector problem, which are somewhat similar to the problems
considered in this paper and also duals of each other in a certain sense, are also the Rayleigh
and the Gumbel distribution, respectively (see [7]).

Remark. The length of the smallest gap is mapped to the multiplicity of the largest repeated
part (minus 1) upon conjugation of the Ferrers diagram. Therefore, Proposition 10 also
implies that the probability for the multiplicity of the largest repeated part in an ordinary
integer partition of n to be ℓ is asymptotically equal to

Γ

(

ℓ

2

)

(2r)(ℓ−2)/2ζ(2)(ℓ−2)/4n−(ℓ−2)/4.
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