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1. Introduction

Let G be a graph. We write V G to denote the vertex (site) set of G and EG to denote

the edge (bond) set. All graphs are allowed to contain parallel edges and loops. A

subgraph H of G is spanning if V H = V G. A graph T is a tree, if T is connected and

does not contain cycles. A spanning tree of G is a spanning subgraph which is also a

tree. Further information concerning graphs can be found for instance in [1].

We assume that G is edge-weighted: if e is an edge, then denote by c(e) the edge

weight (conductance). We write NST (G) to denote the weighted number of spanning

trees:

NST (G) =
∑

T

∏

e∈ET

c(e),

where the sum is taken over all spanning trees T of G. We note that NST (G) is the

usual number of spanning trees, if unit conductances on G are used (i.e., c(e) = 1 for

all edges e). If no conductances are explicitly given, we will always endow graphs with

unit conductances. The enumeration of spanning trees has received much interest since

the fundamental work of Kirchhoff, see [2]. Two well-known methods for computing

NST (G) are as follows: NST (G) is equal to any cofactor of the Laplace matrix, see [1,

Theorem 20.15], and NST (G) is equal to a special value of the Tutte polynomial, see [1,

Section 21.7].

Due to their structure, lattices are of special interest. Especially the number of

spanning trees in a finite subgraph of a lattice was studied extensively, see for instance

[3, 4, 5, 6, 7]. Let L be a lattice and let G be a finite section. It turns out that NST (G)

has asymptotically exponential growth; one defines the quantity zL by

zL = lim
|V G|→∞

log NST (G)

|V G| .

This limit is known as bulk, or thermodynamical limit. Closed form expressions for zL
have been obtained for many lattices, see [3, 5, 6, 7].

In this paper we show how to use the theory of electrical networks for counting

spanning trees, and use this technique to provide relations between the values of zL for

several lattices.

2. Electrical networks

Let G be an edge-weighted graph. The Laplace matrix L = L(G) is defined by its entries

Lx,y = −
∑

e∈EG
e connects x,y

c(e) and Lx,x = −
∑

z∈V G
z 6=x

Lx,z

where x, y are vertices in V G, x 6= y. The well-known Matrix-Tree Theorem states that

any cofactor of L is equal to NST (G), see for instance [1, Theorem 20.15]. We say that

two edge-weighted graphs (electrical networks) G and H are electrically equivalent with

respect to B ⊆ V G∩V H, if they cannot be distinguished by applying voltages to B and
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measuring the resulting currents on B. By Kirchhoff’s current law this means that the

rows corresponding to B of LGHV G
B and LHHV H

B are equal, where HV G
B is the matrix

associated to harmonic extension, see for instance [8, 9].

The following theorem was proved in [10]. It states that if a subgraph of G is

replaced by an electrically equivalent graph, the number NST (G) only changes by a

factor which involves the subgraph to be replaced and the graph it is replaced by, but

not G itself.

Theorem 1. Suppose that an edge-weighted graph X can be decomposed into graphs G

and H, so that EG and EH are disjoint, EX = EG ∪ EH, and V X = V G ∪ V H.

We set B = V G ∩ V H. Let H ′ be an edge-weighted graph with EG ∩ EH ′ = ∅ and

V G ∩ V H ′ = B, such that H and H ′ are electrically equivalent with respect to B, and

assume that NST (H) 6= 0 and NST (H ′) 6= 0. Then

NST (X)

NST (H)
=

NST (X ′)

NST (H ′)
.

As a consequence of this theorem we may use simplification techniques for electrical

networks in order to compute the number of spanning trees. We write Kn for the

complete graph with n vertices and K1,n for the star, see [1]. In the following we list

some useful operations on electrical networks:

(i) Parallel edges: If two parallel edges with conductances a and b are merged into

a single edge with conductance a + b, the (weighted) number of spanning trees

remains the same.

(ii) Serial edges: If two serial edges with conductances a and b are merged into a single

edge with conductance ab
a+b

, then:

NST (X ′) =
1

a + b
· NST (X).

(iii) Wye-Delta transform: if a star with conductances a, b, c (see Figure 1) is changed

into an electrically equivalent triangle with conductances x = bc
a+b+c

, y = ac
a+b+c

,

and z = ab
a+b+c

, the weighted number of spanning trees changes as follows:

NST (X ′) =
1

a + b + c
· NST (X).

a

x

b
y

c

z

Figure 1: Wye-Delta transform.

(iv) If a star K1,n with conductances a is changed into an electrically equivalent complete

graph Kn with conductances a
n
, then:

NST (X ′) =
1

an
· NST (X).
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Notice that the last operation is a generalization of Wye-Delta (in the case of equal

conductances). Of course there are converses to all four operations. It is known that

parallel and serial reductions hold in the more general setting of the q-Potts model

(multivariate Tutte polynomial), see [11].

For later use we need the following simple result that estimates the change in

NST (G) if conductances are modified. In order to emphasize the edge weights c, we

write NST (G, c) instead of NST (G).

Theorem 2. Let c and c̃ be two sets of conductances on a graph G. Assume that there

is a subset F ⊆ EG, such that c(e) = c̃(e) for e ∈ EG \ F and 0 < c̃(e)/c(e) < ∞ for

e ∈ F . Set

m = min
{ c̃(e)

c(e)
: e ∈ EG

}

and M = max
{ c̃(e)

c(e)
: e ∈ EG

}

.

Then

min{m, 1}kNST (G, c) ≤ NST (G, c̃) ≤ max{M, 1}kNST (G, c),

where k = min{|F |, |V G| − 1}.

3. Lattices

(a) triangular

lattice Ltri

(b) honeycomb

lattice Lhc (dual of

Ltri)

(c) kagomé lattice

Lkag

(d) diced lattice

Ldic (dual of Lkag)

Figure 2: Archimedean lattices and their duals with symmetry of order 3.

(a) 3 · 12 · 12 lattice

L3·12·12

(b) triakis lattice

Ltriak (dual of

L3·12·12)

(c) lattice with

nonagons and

triangles Lnine

(d) lattice L∗
nine

(dual of Lnine)

Figure 3: More lattice with a symmetry of order 3.
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In this section we compute relations between the bulk limits zL of different lattices L
using the connection between electrical network theory and the combinatorial problem

of counting spanning trees outlined in the previous section. First some lattices with

symmetry of order 3 are considered: the triangular lattice Ltri , the honeycomb lattice

Lhc, the kagomé lattice Lkag , the diced lattice Ldic (see Figure 2), the 3 · 12 · 12 lattice

L3·12·12, the triakis lattice Ltriak , a lattice consisting of nonagons and triangles and its

dual (Lnine and L∗
nine), see Figure 3. Furthermore, relations between the square lattice

Lsq and modifications of the square lattice and of the bathroom lattice (Lmsq and Lmbr),

see Figure 4, are established. As can be seen from the detailed calculation for the triakis

lattice below, this method will always give relations of the form

zL′ = azL + b log c

for some rational numbers a, b, c.

(a) square lattice

Lsq

(b) modified square

lattices Lmsq

(c) modified

bathroom lattice

Lmbr

Figure 4: Some lattices with a symmetry of order 4.

Let us remark that planar duality yields another method in order to obtain such

relations, see [5]. Let L be a two-dimensional lattice and L∗ its planar dual, then

zL∗ = zL/νL.

The constant νL is defined by the bulk limit

νL = lim
|V G|→∞

|V G∗|
|V G| ,

where G is a finite section of L and G∗ is its planar dual (note that νLνL∗ = 1). Short

calculations yield

νhc = 1
2
, νdic = 1, ν3·12·12 = 1

2
, νnine = 1

2
.

In order to demonstrate the use of electrical network theory we discuss the triakis

lattice Ltriak in detail, see Figure 3b. Consider a triangular section G of Ltriak with k

edges on each side of the boundary (see Figure 5a) and apply the Wye-Delta transform,

see Figure 5b. Finally, parallel edges are replaced by single edges, see Figure 5c. Simple

calculations yield

|V G| = 3
2
k2 + 3

2
k + 1 and |V G′′| = 1

2
(k + 1)(k + 2).
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G
1

(a) A section of

Ltriak

G′

1

1/3

(b) Wye-Delta

simplification

G′′

4/3

5/3

(c) Parallel edge

simplification

Figure 5: Electrical transformations proving a relation between ztriak and ztri .

Conductances on edges are indicated to the right.

Notice that we have applied k2 Wye-Delta transforms, thus

NST (G′′, c′′) = (1
3
)k2

NST (G).

Using Theorem 2 we get

(4
5
)3kNST (G′′, 5

3
) ≤ NST (G′′, c′′) ≤ NST (G′′, 5

3
),

where NST (G′′, 5
3
) denotes the weighted number of spanning trees with respect to

constant conductance equal to 5
3
. Obviously,

NST (G′′, 5
3
) = (5

3
)|V G′′|−1NST (G′′).

Collecting the pieces yields

ztriak = lim
|V G|→∞

log NST (G)

|V G|

= lim
|V G|→∞

log NST (G′′) + k2 log 3 + (|V G′′| − 1) log 5
3

+ O(k)

|V G|

= lim
|V G|→∞

|V G′′|
|V G|

( log NST (G′′)

|V G′′| +
k2 log 3 + (|V G′′| − 1) log 5

3

|V G′′|
)

= 1
3
(ztri + log 15).

Using similar calculations we obtain expressions for zhc, zkag , zdic, ztriak , z3·12·12,

znine , z∗nine in terms of ztri . Let us summarize these relations:

zhc = 1
2
ztri ,

zkag = zdic = 1
3
(ztri + log 6),

ztriak = 2z3·12·12 = 1
3
(ztri + log 15),

z∗nine = 2znine = 1
2
ztri + log 2.

The first equation in each line can also be obtained by means of planar duality. The

actual value of ztri is determined in [5, 7]:

ztri =
3
√

3

π

(

1 − 1

52
+

1

72
− 1

112
+

1

132
∓ · · ·

)

= 1.615329 . . .
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Likewise, using the substitution K1,4 ↔ K4, we get

zmsq = 1
2
zsq + 3

2
log 2, zmbr = 1

4
(zsq + log 24).

Note that in this case the thermodynamic limits involved in left and right hand side of

the above equations are based on different shapes of the sections. When using square

sections in the limit on the one side, the limit of the other side is defined by diamond

sections. The value of zsq is determined in [5, 6, 7]:

zsq =
4C

π
=

4

π

(

1 − 1

32
+

1

52
− 1

72
± · · ·

)

= 1.166243 . . . ,

where C is the Catalan constant.

In these calculations, it is advantageous to have a few general considerations at

hand. It is easy to see that scaling by a factor c is equivalent to adding log c to the bulk

limit: if L(c) denotes the lattice resulting from L by multiplying all conductances by c,

one has

zL(c) = zL + log c.

Another useful observation is the following:

Theorem 3. Suppose that the lattice L′ is obtained from a lattice L by subdividing each

edge into s edges. Write λL for the bulk limit

λL = lim
|V G|→∞

|EG|
|V G| ,

where G is a finite section of L. Then one has

zL′(1 + (s − 1)λL) = zL + (λL − 1) log s.

A common construction that covers various examples is the following: start with

an r-regular lattice. Replace each vertex by a complete graph Kr; each of the r new

vertices corresponds to one of the incident edges. Furthermore, each edge of the original

lattice is replaced by s ≥ 0 serial edges connecting the two vertices in the new lattice

corresponding to the edge. For example, the kagomé lattice Lkag and the 3 · 12 · 12

lattice L3·12·12 are obtained from the honeycomb lattice in this way (with s = 0 and

s = 1 respectively), and the modified square and modified bathroom lattices Lmsq and

Lmbr are obtained from the square lattice (again, with s = 0 and s = 1 respectively).

The following general connection holds:

Theorem 4. If the lattice L′ results from an r-regular lattice L by the above

construction, then the relation

zL′ =
2

r(s + 1)
zL +

1 − 2/r

s + 1
log(r(2 + rs))

holds.

It should also be noted that s = 0 yields exactly the line graph (so that the

theorem follows from general results on line graphs of regular graphs—see for instance

[12, Lemma 8.2.5]—in this special case), and that s = 1 corresponds to truncation of
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lattices (in particular in the case r = 3; for instance, the 3 · 12 · 12 lattice is a truncated

honeycomb lattice).

Last but not least, let us mention four more nice lattices allowing simple relations

(see Figure 6). Note that the lattice Lkite results from Ltetra by splitting all edges into

two parallel edges and applying the Delta-Wye transform to all triangles afterwards.

Hence

zbr = 2ztetra and zkite = zabr = 1
3
(ztetra + log 6)

using planar duality twice (νbr = 1
2
, νabr = 1). We note that the value of zbr is

determined in [3]:

zbr =
C

π
+

1

2
log(

√
2 − 1) +

1

π

∫ 3+2
√

2

0

arctan t

t
dt = 0.786684 . . . ,

where C is the Catalan constant.

(a) bathroom

lattice Lbr

(b) tetrakis lattice

Ltetra (dual of Lbr )

(c) Lkite : a lattice

composed of kites

(d) another

bathroom lattice

Labr (dual of Lkite)

Figure 6: Another set of lattices with a symmetry of order 4 allowing simple relations.

These are just but a few representative examples and the list could be extended

infinitely, not only to relations between two-dimensional lattices but also in higher

dimensions.
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