ON IDENTITIES BY LARCOMBE-FENNESSEY AND CASSINI

HELMUT PRODINGER ${ }^{\ddagger}$ AND STEPHAN WAGNER*

Abstract. A recent identity of Larcombe and Fennessey is derived via a weighted version of Cassini's identity for Fibonacci numbers.

1. The identities

Let $M=\left(\begin{array}{cc}V & U \\ W & 0\end{array}\right)$ and $\alpha_{n}=\left(\begin{array}{ll}1 & 0\end{array}\right) M^{n}\binom{1}{0}$.
In [2], the non-linear identity

$$
(-1)^{n} U^{n} W^{n}=\alpha_{n}^{2}-U W \alpha_{n-1}^{2}-V \alpha_{n} \alpha_{n-1}
$$

($n \geq 1$) was presented. Actually, in [2], V and W were replaced by $-V$ and $-W$, respectively, and the quantities U, V, W could depend on a parameter x.

Here, we want to link this identity to the classical Cassini identity

$$
F_{n+1}^{2}-F_{n} F_{n+2}=(-1)^{n}
$$

for Fibonacci numbers; we will deduce the Larcombe-Fennessey identity from the Cassini identity.

2. Interpretation as walks in a graph

Consider the following graph:

Then α_{n} may be interpreted as the sum over all walks of length n from state 1 to state 1 , where each walk is coded by the letter attached to the directed edge. For example,

$$
\alpha_{4}=V^{4}+U W V^{2}+U W U W+V U W V+V^{2} U W .
$$

Since a walk can start either with V or $U W$, we have the recursion formula

$$
\alpha_{n}=V \alpha_{n-1}+U W \alpha_{n-2} .
$$

This works for $n \geq 1$, provided we set $\alpha_{-1}=0$.
Consequently, we have

$$
\alpha_{n+1} \alpha_{n-1}=V \alpha_{n-1} \alpha_{n}+U W \alpha_{n-1}^{2} .
$$

Therefore, the Larcombe-Fennessey identity follows from the simpler identity

$$
\alpha_{n}^{2}-\alpha_{n+1} \alpha_{n-1}=(-1)^{n} U^{n} W^{n} .
$$

[^0]We will deduce this one from Cassini's identity.

3. Interpretation as tilings of an $n \times 1$ Rectangle

We want to tile an $n \times 1$ rectangle using 1×1 and 2×1 rectangles. Each such tiling is in obvious correspondence with a walk, where the edge V corresponds to a 1×1 rectangle, and the two consecutive edges $U W$ correspond to a 2×1 rectangle. For example, the walk $V U W U W V V V U W$ can be interpreted as

V	U	W	U	W	V	V	V	U	W

It is plain to see, compare [$1, \mathrm{p} .1]$ that the number of tilings of an $n \times 1$ rectangle is F_{n+1}, a Fibonacci number. We refer to the graphical proof of Cassini's identity in [1, p. 8] which we repeat here for the readers' convenience. Consider two such tilings, which we arrange in 2 rows, but the second one shifted one unit to the right. Their number is F_{n+1}^{2}; we call this a type 1 tiling. Here is an example:

V	U	W	U	W	V	V	V	U	W			
	V	U	W	V	U	W	U	W	U	$	$	
:---												

The rightmost vertical line that is common to both tilings is especially indicated. Now the part to the right of this line will be flipped: top and bottom are exchanged; the result we will call a type 2 tiling:

V	U	W	U	W	V	V	U	W	U	W
	V	U	W	V	U	W	V	U	W	

The number of Type 2 tilings is $F_{n+2} F_{n}$. Note that this operation is reversible, and this mapping is "almost" a bijection. There is a correction to be made, namely when a common vertical line does not exist. Let $n=2 m$ be even. Then there is a tiling of the first type, namely both rows are $(U W)^{m}$, which has no correspondence of the second type. On the other hand, if $n=2 m+1$ is odd, there is a tiling of the second type, namely $(U W)^{m+1}$ in the first row and $(U W)^{m}$ in the second row, which has no corresponding element of the first type. In [1, p. 8], this is only used for the numbers of tilings, but the operation is weight preserving. Putting things together, we have shown that

$$
\alpha_{n}^{2}-\alpha_{n-1} \alpha_{n+1}= \begin{cases}(U W)^{m}(U W)^{m} & \text { for } n=2 m \\ -(U W)^{m+1}(U W)^{m} & \text { for } n=2 m+1\end{cases}
$$

which is the identity that we needed to prove.

References

[1] A. T. Benjamin and J. J. Quinn, Proofs that really count, The Mathematical Association of America, Washington D. C., 2003.
[2] P. J. Larcombe and E. J. Fennessey, A non-linear identity for a particular class of polynomial families, The Fibonacci Quarterly 52 (2014), 75-79.

MSC2010: 11B37, 05A19
Department of Mathematics, University of Stellenbosch 7602, Stellenbosch, South Africa
E-mail address: hproding@sun.ac.za
Department of Mathematics, University of Stellenbosch 7602, Stellenbosch, South Africa
E-mail address: swagner@sun.ac.za

[^0]: \ddagger This author was supported by an incentive grant of the National Research Foundation of South Africa.

 * Supported financially by the National Research Foundation of South Africa under grant number 70560.

