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Abstract. We show that a number of graph invariants are, even
combined, insufficient to distinguish between nonisomorphic trees
or general graphs. Among these are: the set of eigenvalues (equiv-
alently, the characteristic polynomial), the number of independent
sets of all sizes or the number of connected subgraphs of all sizes.
We therefore extend the classical theorem of Schwenk that almost
every tree has a cospectral mate, and we provide an answer to a
question of Jamison on average subtree orders of trees. The sim-
ple construction that we apply for this purpose is based on finding
graphs with two distinguished vertices (called pseudo-twins) that
do not belong to the same orbit but whose removal yields isomor-
phic graphs.

1. Introduction

A number of graph-theoretical problems deal with the reconstruction
of a graph from certain given information. By a graph invariant, we
mean a map whose domain is the set of all graphs, and that is invariant
under isomorphism. Examples include:

• The (ordered) degree sequence,
• The characteristic polynomial and the spectrum,
• The chromatic number, the independence number, and the match-

ing number,

to name but a few. In all these instances, knowledge of the specific
graph invariant is generally not sufficient to uniquely determine the
underlying graph. It is a classical result of Schwenk [13], for instance,
that a random tree almost surely (with probability tending to 1) has
a cospectral mate, i.e., a non-isomorphic tree with the same spectrum.
There are, however, many graphs that are uniquely determined by the
spectrum.

On the other hand, the famous reconstruction conjecture [6] states
that every graph of order at least three can be reconstructed from its
deck, i.e., the multiset of its vertex-deleted subgraphs. It has been
verified for various classes of graphs, among them trees.
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The question whether a graph invariant can be used to distinguish
between non-isomorphic graphs also arises outside of mathematics. In
chemistry, a number of graph invariants are used as molecular structure-
descriptors [14] (and sometimes called topological indices in this con-
text). The question how well such an invariant discriminates between
non-isomorphic graphs has therefore been raised in the chemical liter-
ature as well (see for instance [10, 12]). The typical measure in this
context is the ratio between the number of possible values and the
number of non-isomorphic graphs in a certain class (e.g., trees of fixed
order n). A popular example of a graph invariant in chemistry is the
Wiener index [4], which is defined as the sum of all distances between
vertices:

W (G) =
∑

{v,w}⊆V (G)

d(v, w).

Equivalently, one can consider the average distance, which isW (G)/
(|G|

2

)
.

Let us have a closer look at graph invariants that are polynomials.
One of the best-known examples is the Tutte polynomial (see for in-
stance [1, Section 9.1]), of which the chromatic polynomial is a special
case. Other special values of the Tutte polynomial include the number
of spanning trees, the number of forests and the number of connected
spanning subgraphs. It can be defined via the rank polynomial or by
a deletion-contraction process:

• If G has no edges, then T (G, x, y) = 1).
• If e is a bridge, then T (G, x, y) = xT (G \ e, x, y). If e is a loop,

then T (G, x, y) = yT (G \ e, x, y).
• If e is neither a bridge nor a loop, then T (G, x, y) = T (G \
e, x, y) + T (G/e, x, y). Here, G/e means the graph resulting
from contracting e (i.e., identifying its ends).

The characteristic polynomial of a tree is intimately tied to the number
of matchings – indeed, it is a well-known result that the characteristic
polynomial of a tree T of order n is given by

φ(T, x) =
∑
k≥0

(−1)km(T, k)xn−2k,

where m(T, k) is the number of matchings of order k in T . This polyno-
mial is also called the matching polynomial (see for instance [3, Chap-
ter 4]) for general graphs, and it is related to the matching-generating
polynomial

M(T, x) =
∑
k≥0

m(T, k)xk.

In a similar fashion, one defines the independence polynomial [11] of
a graph G by

I(G, x) =
∑
k≥0

i(G, k)xk,
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where i(G, k) is the number of independent sets of cardinality k in
G. The Hosoya polynomial [7] is closely related to the aforementioned
Wiener index and given by

H(G, x) =
∑

{v,w}⊆V (G)

xd(v,w).

Clearly, one has H ′(G, 1) = W (G). Yet another similar polynomial,

S(T, x) =
∑
k≥1

s(T, k)xk,

where s(T, k) is the number of subtrees of cardinality k in a tree T , oc-
curs in a paper of Jamison [8], who studies the average number of nodes
in a subtree of a tree that can be expressed as the logarithmic deriv-
ative S ′(T, 1)/S(T, 1). Since the matching polynomial is not sufficient
to determine a tree, what about the independence polynomial or the
subtree polynomial? Indeed, Jamison poses the question (which still
seems to be open) whether two non-isomorphic trees of the same order
always have a different average number of nodes in a subtree. The aim
of this paper is to give a simple construction which shows that even
all three polynomials combined (plus possibly other information) are
insufficient to reconstruct a tree. Therefore, in particular, the answer
to Jamison’s question is negative: there are two non-isomorphic trees
T and T ′ for which S(T, x) = S(T ′, x), hence the average order of a
subtree is the same in T and T ′.

Before we prove this statement, let us first review the idea of Schwenk
in his proof of the aforementioned result on cospectral mates (see [2] for
an excellent treatment as well as other constructions yielding cospectral
graphs): the key is to take two trees T1 and T2 with distinguished
vertices v1 and v2 such that the characteristic polynomials agree:

φ(T1, x) = φ(T2, x) and φ(T1 \ v1, x) = φ(T2 \ v2, x).

Figure 1 shows an example. Let R be an arbitrary tree and w be a
vertex of R. We consider the two trees U1 and U2 obtained by taking
the union of T1 and R (T2 and R, respectively) and identifying v1 and
w (v2 and w, respectively), an operation known as coalescence. Then,
making use of an identity for the characteristic polynomials of graphs
[2, Theorem 2.2.3], one obtains

φ(U1, x) = φ(T1 \ v1, x)φ(R, x) + φ(T1, x)φ(R \ w, x)− φ(T1 \ v1, x)φ(R \ w, x)

= φ(T2 \ v2, x)φ(R, x) + φ(T2, x)φ(R \ w, x)− φ(T2 \ v2, x)φ(R \ w, x)

= φ(U2, x),

i.e., U1 and U2 have the same characteristic polynomial, regardless of
the choice of R. Schwenk’s theorem is now a result of the fact that a
random tree of order n almost surely contains any given rooted subtree
as n → ∞ (and thus almost surely T1, rooted at v1, which can be
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replaced by T2, rooted at v2, to obtain a non-isomorphic tree with the
same characteristic polynomial). In the following, we show that this
applies to the independence polynomial and the subtree polynomial as
well, and provide a common construction to find such pairs of trees
(and other graphs).

T1 T2

v1 v2

Figure 1. Construction of cospectral trees

2. Pseudo-twins

Consider the pair of rooted trees of order 11 shown in Figure 2 below:
it is obvious that the two are isomorphic as trees, but not as rooted
trees. What is more striking, however, is the fact that the two remain
isomorphic as forests if the roots are removed. This fact was was also
exploited by Godsil and McKay [5] in their construction of cospectral
trees whose complements are still cospectral. The pair is the smallest
example of its kind. Let us first give a name to such pairs:

Definition 1. Let G be a graph and v, w be two vertices such that G\v
and G \w are isomorphic, but v and w do not belong to the same orbit
of the automorphism group AutG. Then we call v and w pseudo-twins
in G.

Figure 2. A pair of rooted trees.

If G is a tree, then rooting G at two pseudo-twins v and w yields
nonisomorphic rooted trees. The importance of such pseudo-twins for
our purposes comes from the following fact: let H be an arbitrary graph
and u a vertex of H. Let Lv and Lw be the two graphs obtained from
G and H by identifying u and v respectively u and w as in Schwenk’s
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construction described in the introduction. Then Lv and Lw are not
isomorphic, but they are indistinguishable in many ways: it is obvious,
for instance, that they have the same degree sequence (since G \ v
and G \ w have the same number of edges, v and w must have the
same degree), and it is easy to see that they also have the same Tutte
polynomials, since the vertex where G and H are “glued together” is a
cut vertex of the new graph, and one can easily show that T (Lv, x, y) =
T (Lw, x, y) = T (G, x, y)T (H, x, y), without any conditions on v and
w. As explained in the introduction, Lv and Lw also have the same
characteristic polynomial. We show that Lv and Lw coincide in many
other graph invariants as well. A number of such invariants will be
discussed below, but before we proceed with these graph invariants, let
us formulate the non-isomorphism of Lv and Lw as a theorem:

Proposition 2.1. Suppose that G is a connected graph with two dis-
tinguished vertices v and w, and that H is another connected graph of
order > 1 with a distinguished vertex u. We obtain the graphs Lv and
Lw as the coalescence of G and H by identifying u and v respectively
u and w. If Lv and Lw are isomorphic and one of the following two
conditions holds:

• |H| ≥ |G|,
• G is a tree,

then v and w belong to the same orbit of AutG.

Remark 1. This proposition is not as trivial as it seems, and indeed
it is wrong if no additional conditions are imposed. Figure 3 shows a
graph G with the property that an edge can be attached to two vertices
that are not members of the same orbit, creating isomorphic graphs.

Proof. Let φ : V (Lv) → V (Lw) be an isomorphism, and let v′ = φ(v)
be the image of v (identified with u). If v′ = w, then it is easy to
see that the isomorphism also yields an automorphism of G that maps
v to w: in this case, we view both Lv and Lw as the coalescence of
a multiset of rooted graphs whose roots are identified. Some of these
rooted graphs form H, rooted at u, the others form G, rooted at v,
and G, rooted at w respectively. Hence there is an automorphism of G
that maps v to w.

If v′ 6= w, let us now assume that |H| ≥ |G|. Since v is a cut vertex
of Lv, v

′ has to be a cut vertex of Lw. If v′ is in G \w, then one of the
components of Lw \ v′ contains H as a subgraph, while all components
of Lv \ v have cardinality ≤ |H| − 1, a contradiction. Hence v′ has to
be in H.

Let X1, X2, . . . , Xr be induced subgraphs of Lw such that X1\w,X2\
w, . . . , Xr \w are connected components of Lw \w and that their union
is G. Likewise, let Y1, Y2, . . . , Ys be induced subgraphs of Lw such
that Y1 \ v′, Y2 \ v′, . . . , Ys \ v′ are connected components of Lw \ v′
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v

w

Figure 3. A counterexample to Proposition 2.1 if no
additional conditions are imposed.

and their union is φ(G). Finally, let Z be the graph that remains if
X1\w, . . . , Xr\w, Y1\v′, . . . , Ys\v′ are removed from Lw (see Figure 4).

Z

X1 Y1

X2 Y2

Xr Ys . . ....

v′w

Figure 4. Illustration of the proof of Proposition 2.1.

Then the union

U1 = Z ∪X1 ∪X2 ∪ · · · ∪Xr,

rooted at v′, is isomorphic to H, rooted at u. Likewise,

U2 = Z ∪ Y1 ∪ Y2 ∪ · · · ∪ Ys,
rooted at w, is also isomorphic to H, rooted at u. Let us now define
ends : by a (A, a)-end with respect to a vertex b in a graph B, we mean
an induced subgraph A′ of B with a distinguished vertex a′ such that
there is an isomorphism from A to A′ that maps a to a′, and such that
A′\a′ is a component of B\a′ that does not contain b. Since U1, rooted
at v′, is isomorphic to U2, rooted at w, U2 has to contain the same
number of (Xi, w)-ends with respect to w as there are (Xi, w)-ends in
U1 with respect to v′ for any i ∈ {1, 2, . . . , s}. Any such ends inside Z
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are ends with respect to v′ in U1 as well, so the only possibility is that
the set {(X1, w), (X2, w), . . . , (Xr, w)} of rooted graphs is isomorphic
to the set {(Y1, v′), (Y2, v′), . . . , (Ys, v′)}, which means that G, rooted
at w, is isomorphic to φ(G), rooted at v′, and so v and w belong to the
same orbit of AutG.

Now suppose that |H| < |G|, but that G is a tree, and that v and w
are not in the same orbit of AutG. In this case, v′ must be in G \ w
by the same argument as above. H has to be mapped to a subset of
G by φ, and so H has to be a tree as well. Similar to the ends in
the previous part of the proof, we now look at isomorphic copies of H
(rooted at u) as induced rooted subtrees in Lv and Lw. No two such
copies with distinct roots can overlap, since they would have to contain
each other’s roots, and if this was the case, Lv would have to be the
union of the two copies. But then |Lv| ≤ 2(|H| − 1), in contradiction
with the assumption |H| < |G|.

Now let v1 = v, v2 = v′ = φ(v). We already know that v2 is in G\w,
so v3 = φ(v2) is well-defined, since we can restrict φ to G. Moreover, v2
has to be the root of a copy of H, and so this also holds for v3. Since
copies of H with distinct roots do not overlap, v3 cannot be in the
H-part of Lw, so φ(v3) is again well-defined. We repeat the argument
to obtain a vertex v4 = φ(v3), etc. The sequence v1, v2 = φ(v1), v3 =
φ(v2), . . . must ultimately reach w. If not, it would have to return to v,
which is impossible since the degree of v in Lv differs from the degree
in Lw. If we remove the subtree that is isomorphic to H from each of
the vertices v = v1, v2, v3, . . . , vk = w in Lv and Lw (in the case of v1,
only in Lv; in the case of vk, only in Lw), we obtain a tree K on which
φ becomes an automorphism.

To complete the proof, it remains to prove the following lemma:

Lemma 2.2. Suppose that there is an automorphism φ of a tree K that
maps vi to vi+1, i = 1, 2, . . . , k−1. Then there exists an automorphism
τ of K that maps v1 to vk and fixes the set {v2, v3, . . . , vk−1}.

Proof. Let us assume that K has a single centroid x, the case of a
double centroid being similar. Then x has to be a fixed point of φ. Let
y be the first common vertex of the paths from v1 to x and from v2 to
x, respectively. Then y has to be a fixed point of φ as well, and since
φ(v2) = v3, y also has to be on the path from v3 to x, etc. Regarding K
as a rooted tree with root x, y is a common ancestor of v1, v2, . . . , vk,
and the subtrees rooted at v1, v2, . . . , vk are all isomorphic as rooted
trees. We prove the result by induction on the distance between y and
the vertices vi. If the distance is 1, then the statement is trivial (the
automorphism that swaps v1 and vk and the subtrees rooted at these
two vertices has the desired property).

Now consider the subtrees of K that are rooted at the children of
y. All subtrees that contain some of the vi have to be isomorphic as
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rooted trees, and they (and possibly others) are somehow permuted by
φ. Let ` > 0 be minimal with the property that φ`(v1) = v`+1 is in the
same subtree as vk. If v1 and vk are in the same subtree, then k ≡ 1
mod `, and φ` is an automorphism that maps v1 to v`+1, v`+1 to v2`+1,
etc., so we can apply the induction hypothesis to this subtree.

Otherwise, let R1 and R2 be the subtrees that contain v1 and vk
respectively. There is an automorphism ψ of K that swaps these two
subtrees and leaves everything else fixed. We can further choose ψ in
such a way that it acts like φ` on R1 and like φ−` on R2. For some
r > 0 and h ≥ 0, this automorphism maps v1, vr+1, v2r+1, . . . , vhr+1

to v`+1, vr+`+1, v2r+`+1, . . . , vhr+`+1 = vk, in this order. Here, r is the
smallest positive integer < k such that φr(v1) = vr+1 is in the same sub-
tree as v1 (if such an r exists; if not, then this remains true with h = 0,
and the automorphism ψ already has the desired property). Note that
φr maps v1 to vr+1, vr+1 to v2r+1, etc., so we can apply the induction
hypothesis to find an automorphism τ1 that only acts on the subtree R1

and maps v1 to vhr+1 while leaving the set {vr+1, v2r+1, . . . , v(h−1)r+1}
fixed (if h = 0, we may simply choose τ1 to be the identity). Now
we can combine τ1 and ψ to an automorphism that acts like ψ ◦ τ1 on
R1 and like τ−11 ◦ ψ−1 on R2 (leaving the other subtrees fixed). This
automorphism τ has the desired property. �

Returning to the proof of Proposition 2.1, we now have an iso-
morphism on K that maps v = v1 to w = vk and keeps the set
{v2, v3, . . . , vk−1} fixed. It therefore extends to an automorphism of
G (once the copies of H that were deleted are added again) that maps
v to w, which finally proves the statement. �

v w
A A A

B B

Figure 5. Construction of pseudo-twins I.

Having proven this result, the question remains how one can con-
struct graphs with a pair of pseudo-twins. Figures 5 to 7 give three
examples of possible constructions with the additional advantage that
they yield trees if the “building blocks” are trees; parts of the same
shape (and with the same letter) indicate isomorphic copies of the
same graph, the two pseudo-twins are denoted by v and w.
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v
w

A A A

A A

A A

B B

Figure 6. Construction of pseudo-twins II.

v
w

A A A

A A A A

B B B B

B B

Figure 7. Construction of pseudo-twins III.

It is not necessary (though unavoidable for trees) that the pseudo-
twins are cut vertices of the graph. Indeed, a simple way to construct
such graphs is as follows: let G be any graph with two pseudo-twins v
and w, and let H be any other graph. Take the graph join G′ = G∨H
(i.e., the graph that results from the union G∪H by connecting every
vertex of G to every vertex of H). It is clear that v and w are still
pseudo-twins of G′, but no longer cut vertices (see Figure 8 for an
example based on the trees in Figure 2).

v w

Figure 8. Construction of pseudo-twins IV.

Finally, a graph can have more than one pair of pseudo-twins, and a
simple way to achieve this is to extend one of the three constructions
above, see for example Figure 9, in which v1, w1 are pseudo-twins as
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well as v2, w2. It remains an interesting question, though, whether one
can characterize exactly all graphs that have a pair of pseudo-twins.

v1 w1v2 w2
A A A A A

B B B B

Figure 9. Construction of pseudo-twins V.

3. Indistinguishability

Let us now look at some graph invariants whose (even combined)
knowledge is not sufficient to reconstruct a graph, and see how the
construction of pseudo-twins proves this fact:

Theorem 3.1. Let v and w be pseudo-twins of a graph G, and let Lv
and Lw be defined as in the previous section by taking the coalescence
with another graph H. Then

• Lv and Lw have the same number of matchings of any given
cardinality (and thus in particular the same matching number),
• Lv and Lw have the same number of independent sets of any

given cardinality (and thus in particular the same independence
number),
• Lv and Lw have the same number of connected subgraphs (in-

duced or non-induced) of any given order. In particular, if G
and H are trees, then Lv and Lw have the same number of sub-
trees of any given order.
• Lv and Lw have the same characteristic polynomial and there-

fore the same eigenvalues.

Proof. The four parts are all very similar and are based on recursive
formulas for the stated invariants.

• Let us start with the number of matchings. A matching in Lv
consists of a matching in G and a matching in H, with the
additional requirement that the identified vertex u = v is not
covered in both. Let m(G, k) denote the number of matchings
of cardinality k in G. It is then easy to see (by means of the
inclusion-exclusion principle) that

m(Lv, k) =
k∑
j=0

[
m(G, j)m(H \ u, k − j) +m(G \ v, j)m(H, k − j)

−m(G \ v, j)m(H \ u, k − j)
]
.
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Since G \ v and G \ w are isomorphic, it follows immediately
that m(Lw, k) = m(Lv, k).
• An independent set in Lv consists of independent sets in G and
H, with the additional requirement that either both contain
u = v or both do not contain the identified vertex. Thus if
i(G, k) denotes the number of independent sets of cardinality k
in G, we have

i(Lv, k) =
k∑
j=0

[
i(G \ v, j)i(H \ u, k − j)

+ (i(G, j)− i(G \ v, j))(i(H, k − j)− i(H \ u, k − j))
]
.

The same argument as before shows that i(Lw, k) = i(Lv, k).
• Let c(G, k) denote the number of (not necessarily induced) con-

nected subgraphs of order k in G. Since a connected subgraph
in Lv can either contain v or not, we obtain

c(Lv, k) = c(G \ v, k) + c(H \ u, k)

+
k∑
j=1

(c(G, j)− c(G \ v, j))(c(H, k − j + 1)− c(H \ u, k − j + 1)),

so that once again c(Lw, k) = c(Lv, k) for all k. The above
formula remains correct if the connected subgraphs are required
to be induced.
• Let φ(G, x) denote the characteristic polynomial of G. Now the

same identity [2, Theorem 2.2.3] that was used in the introduc-
tion to construct cospectral trees can be used again, and we
obtain

φ(Lv, x) = φ(G, x)φ(H\u, x)+φ(G\v, x)φ(H, x)−xφ(G\v, x)φ(H\u, x),

from which the statement follows immediately again.

�

Remark 2. Note the common form of the recursive relations for the
four different parameters: the conclusion of Theorem 3.1 holds for any
graph variant with the property that its value for the coalescence of
two graphs G and H, where v in G and u in H are identified, can be
determined from invariants of G, H, G \ v and H \ u only.

Remark 3. Theorem 3.1 can be generalized further to double coales-
cences: if H1 and H2 are two arbitrary graphs with distinguished ver-
tices u1 and u2 respectively, then the graph Lv obtained by identifying u1
and v as well as u2 and w is indistinguishable (in the sense of the the-
orem, i.e., matching polynomial, independence polynomial, . . . agree)
from the graph Lw obtained by identifying u1 and w as well as u2 and
v.



12 STEPHAN WAGNER AND HUA WANG

The construction of pseudo-twins can be made in such a way that
distance-based graph invariants are taken into account as well. Suppose
that v and w are vertices of G such that the number of vertices whose
distance from v is k equals the number of vertices whose distance from
w is k for any k ≥ 1. Then Lv and Lw, constructed as before, have
the property that the number of pairs of vertices whose distance is k is
the same in Lv and Lw for any k ≥ 1. For the number of pairs within
G or within H, this is trivial, and for pairs including one vertex of G
and one vertex of H, this follows from the choice of v and w, since
any shortest path has to pass through v in Lv and through w in Lw
respectively in this case.

v w

Figure 10. Construction of pseudo-twins VI.

It is not difficult to construct a graph with two-pseudo twins that
satisfy this additional condition, see Figure 10 for an example of a tree
with this property. It follows that Lv and Lw also agree in a number of
distance-based graph invariants: the simplest of these is probably the
diameter, another is the Wiener index that was mentioned in the intro-
duction, and more generally the Hosoya polynomial. Generalizations
of the Wiener index are included as well, such as

Wλ(G) =
∑

{v,w}⊆V (G)

d(v, w)λ,

which gives the λ-th moment of the distance upon division by
(|G|

2

)
(see

[4] and the references therein). Another instance is the hyper-Wiener
index [14]: for two vertices v, w of a tree T , let n(v, w) be the number of
vertices for which the unique path to w passes through v (this includes
v itself). Then it is easy to prove that

WW (T ) =
∑

{v,w}⊆V (T )

n(v, w)n(w, v) =
∑

{v,w}⊆V (T )

d(v, w)(d(v, w) + 1)

2
.

The right hand side makes sense for arbitrary graphs (see [9]) and
defines the hyper-Wiener index. It can readily be seen that Lv and Lw,
as constructed above, have the same hyper-Wiener index.
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4. The special case of trees

Recall that a random tree of order n contains any given rooted sub-
tree with probability tending to 1 as n → ∞. Applying this to any
tree with two pseudo-twins that also satisfies the additional condition
on distances discussed in the preceding section (such as the tree in
Figure 10), we immediately obtain the following result:

Corollary 4.1. Almost every tree T has a mate T ′ such that T and T ′

have

• the same degree sequence,
• the same number of matchings of any given cardinality,
• the same number of independent sets of any given cardinality,
• the same number of subtrees of any given order,
• the same eigenvalues,
• the same number of vertex pairs whose distance is k, for any

fixed k.

As mentioned earlier, the second and fifth item in this list are inti-
mately related, since the coefficients of the characteristic polynomial of
a tree are exactly given by the number of matchings of different cardi-
nalities. The list can probably be extended to other graph invariants.

This corollary also shows that the answer to Jamison’s question men-
tioned in the introduction (do two non-isomorphic trees of the same
order always have different average subtree order?) is negative, and
that actually almost every tree T has a mate T ′ of the same order such
that the average subtree orders of T and T ′ coincide.
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[10] M. Lepović and I. Gutman. A Collective Property of Trees and Chemical Trees.
J. Chem. Inf. Comput. Sci., 38:823–826, 1998.

[11] V. E. Levit and E. Mandrescu. The independence polynomial of a graph—a
survey. In Proceedings of the 1st International Conference on Algebraic Infor-
matics, pages 233–254, Thessaloniki, 2005. Aristotle Univ. Thessaloniki.

[12] M. Razinger, J. R. Chretien, and J. Dubois. Structural Selectivity of Topolog-
ical Indexes in Alkane Series. J. Chem. Inf. Comput. Sci., 25(1):23–27, 1985.

[13] A. J. Schwenk. Almost all trees are cospectral. In New directions in the theory
of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich.,
1971), pages 275–307. Academic Press, New York, 1973.

[14] R. Todeschini and V. Consonni. Handbook of Molecular Descriptors. Weinheim,
2000).

Stephan Wagner, Department of Mathematical Sciences, Stellen-
bosch University, Private Bag X1, Matieland 7602, South Africa

E-mail address: swagner@sun.ac.za

Hua Wang, Department of Mathematical Sciences, Georgia South-
ern University, Statesboro, GA 30460, USA

E-mail address: hwang@georgiasouthern.edu


	1. Introduction
	2. Pseudo-twins
	3. Indistinguishability
	4. The special case of trees
	References

