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1 Introduction

The classical problem of domination asks for a subset S of the vertex set of
a graph G = (V (G), E(G)) of minimum cardinality such that N [v] ∩ S 6= ∅
for all v ∈ V (G), where N [v] := {u ∈ V (G) | ∃e = (u, v) ∈ E(G)} ∪ {v}
denotes the closed neighborhood of v. Quite a lot of different modifications
and generalizations of this problem are known. For instance, the k-tuple dom-
ination problem [12] asks for a minimum set S such that |N [v]∩S| ≥ k for all
vertices v. Similarly, in the k-domination problem [9,10] the task is to find a
set S of minimum cardinality such that |N(v)∩S| ≥ k for all vertices v, where
N(v) := {u ∈ V (G) | ∃e = (u, v) ∈ E(G)} denotes the open neighborhood
of v. Even more generally, one can prescribe a set Rv for every vertex v and
pose the question whether there exists a set S such that |N [v] ∩ S| ∈ Rv (or
|N(v) ∩ S| ∈ Rv) for all vertices v.

The special cases Rv = {1, 2, 3, . . .} and Rv = {k, k + 1, . . .} have already
been mentioned. These and other variants, such as Rv = {1}, are discussed
in the book of Haynes, Hedetniemi and Slater [13]. Another interesting kind
of domination problem involves parity constraints. It has been treated in a
series of papers by Amin, Slater and others [1–4], motivated by the following
remarkable result of Sutner [17]:

Theorem 1 (Sutner [17]). For every graph G = (V (G), E(G)), there exists
a set S ⊆ V (G) such that |N [v] ∩ S| is odd for every v ∈ V (G).

This means that the domination problem for Rv = {1, 3, 5, . . .} is always solv-
able if we consider closed neighborhoods. Thus, it is pretty natural to consider
a general parity assignment problem, where each Rv is either {1, 3, 5, . . .} or
{0, 2, 4, . . .}. It has been treated quite extensively in [1–4], where the notions
of “parity dimension” and “all parity realizable graphs” have been introduced.
Wagner [18] gives a recursive procedure for determining the parity dimension
of a tree, which is then applied to enumeration problems involving the parity
dimension, in particular to counting all parity realizable trees.

In another recent paper, Gassner and Hatzl [11] discuss an even more general
parity domination problem from an algorithmic point of view: for every vertex
v, we have exactly one of the following four constraints:

• |N(v) ∩ S| ≡ 0 mod 2,
• |N(v) ∩ S| ≡ 1 mod 2,
• |N [v] ∩ S| ≡ 0 mod 2,
• |N [v] ∩ S| ≡ 1 mod 2.

I.e., the open/closed neighborhood has to contain an even/odd number of ver-
tices in S. Another reason to consider domination problems with parity con-
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straints lies in the fact that the problem can be stated easily in terms of matrix
algebra: in the following, we denote by A and I + A the open neighborhood
matrix (adjacency matrix) and the closed neighborhood matrix respectively
(I is the identity matrix). Furthermore, we use a vector a ∈ {0, 1}V (G) as a
representation for the neighborhood information (i.e., whether the open or
closed neighborhood is considered for a certain vertex): if the entry av that
corresponds to a vertex v is 0, the open neighborhood is of interest for this
vertex, and the closed neighborhood otherwise. Another vector b ∈ {0, 1}V (G)

represents the prescribed parities. Using these vectors, our requirements can
be written as

(A + diag(a))x = b (1)

over the field F2. Obviously, xv = 1 if and only if v ∈ S.

In this paper, we are interested in the number of solvable instances—a param-
eter that plays an analogous role to the parity dimension (for the domination
problem with parity constraints considering closed subsets only): let the solv-
ability number s(G) denote the number of solvable instances for a graph G,
i.e., the number of pairs (a, b) ∈ {0, 1}V (G) × {0, 1}V (G) such that there exists
a vector x satisfying the system of linear equations in (1).

Basic linear algebra gives us the the following simple lemma:

Lemma 2. Let G = (V (G), E(G)) be a graph, then

s(G) =
∑

a∈{0,1}V (G)

2rk(A+diag(a)), (2)

where rk(B) denotes the rank of a matrix B over F2.

Remark 3. Replacing 2 by a variable x in the above formula, we obtain a
polynomial

SG(x) =
∑

a∈{0,1}V (G)

xrk(A+diag(a))

with interesting properties: SG(0) = 1 if G is the empty graph, and SG(0) = 0

otherwise; SG(1) = 2|V (G)|, and
S′

G
(1)

SG(1)
gives the average rank of A + diag(a), as

a varies over all possible vectors.

Corollary 4.
2|V (G)| ≤ s(G) ≤ 4|V (G)|.

Thus, log2 s(G)
|V (G)| can be seen as a “normalisation” of s(G) which always lies

between 1 and 2. In Section 2, we will improve these bounds for arbitrary
graphs. Moreover, explicit formulas for some graphs are given. Section 3 is
dedicated to trees and a recurrence formula for rooted trees. This recursion
enables us to improve the lower bound for trees. Afterwards, an algorithm
which computes s(G) in linear time for graphs with bounded tree width is
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discussed. The last section deals with the expected value of s(G) for random
graphs.

2 Special cases and inequalities

In this section, explicit formulas for special graphs are deduced. All these
formulas are obtained using equation (2) and arguments from linear algebra.

Proposition 5. The solvability numbers of the empty graph and the complete
graph on n vertices are 3n and 2 · 3n − 5 · 2n−2 + (−2)n−2 respectively.

Proof. The formula for the empty graph is trivial: just note that the rank
of A + diag(a) equals the number of 1’s in a (since A = 0), from which the
formula follows from the binomial theorem.
The formula for the complete graph is slightly trickier: if a 6= 0, one of the
rows of A + diag(a) consists entirely of 1’s. We subtract this row from all
others and obtain a matrix whose rows (except one) contain at most one 1.
It is easy to see that the rank is thus the number of 0’s in a, increased by 1.
Applying the binomial theorem again yields the main term 2 · 3n. Since the
rank of the adjacency matrix A is n if n is even and n − 1 if n is odd (by a
similar argument—note that the vector (1, 1, . . . , 1) is spanned by the rows of
A if and only if n is even), we obtain 2 · 3n − 2n if n is even and 2 · 3n − 3 · 2n−1

if n is odd, which reduces to 2 · 3n − 5 · 2n−2 + (−2)n−2 for all n.

Proposition 6. The solvability numbers of the path Pn and the cycle Cn on n
vertices are s(Pn) = 5

6
·4n+ 1

6
·(−2)n and s(Cn) = 5

8
·4n− 1

4
·(−2)n, respectively.

Proof. Again, we want to determine the number of vectors a for which A +
diag(a) has a specific rank. For this purpose, we only have to find nontrivial so-
lutions x to the equation (A+diag(a))x = 0. Let us start with the path Pn, and
let its vertices be v1, v2, . . . , vn, where v1 and vn are the leaves. The correspond-
ing entries of a and x are denoted by a1, a2, . . . , an and x1, x2, . . . , xn. Suppose
that x1 is given. Then x2 is uniquely defined by the equation a1x1 + x2 = 0,
x3 is uniquely defined by x1 + a2x2 + x3 = 0, and so on. Hence, a solution to
(A + diag(a))x = 0 is uniquely determined by x1 (if it exists). It is plain that
x1 = 0 always leads to the trivial solution, so we may assume x1 = 1. In order
to determine whether a nontrivial solution exists for a given vector a, we can
use a finite automaton that reads the entries a1, a2, . . . of a (in this order). A
state is given by two consecutive entries xi, xi+1 of x. The initial state (i = 0)
is (0, 1) (0 for the non-existing vertex v0 and 1 by the assumption that x1 = 1).
The general equation

xi−1 + aixi + xi+1 = 0
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implies that the state transitions are

ai = 0 : (0, 1) → (1, 0), (1, 0) → (0, 1), (1, 1) → (1, 1),

ai = 1 : (0, 1) → (1, 1), (1, 0) → (0, 1), (1, 1) → (1, 0).

Figure 1 shows the resulting automaton. A nontrivial solution exists if and
only if the final state is (xn, xn+1) = (1, 0). If a nontrivial solution exists, it is
unique.

(1,0) (1,1)

(0,1)

0,1
0 1

1

0

Fig. 1. An automaton used for determining the rank of A + diag(a) in the case of
the path.

Now it is an easy exercise to determine the number of vectors a for which a
nontrivial solution exists (and for which the rank of A + diag(a) is thus n− 1
rather than n) from the adjacency matrix of the automaton, which in turn
yields the formula for s(Pn): the number of vectors for which A + diag(a) has
full rank n is given by 2

3
· 2n + 1

3
· (−1)n, whereas the number of vectors for

which A + diag(a) has rank n − 1 is given by 2
3
· 2n−1 + 1

3
· (−1)n−1.

The procedure is basically the same for the cycle. However, we have to pre-
scribe two initial values x1 and x2, for which there are four possibilities.
(x1, x2) = (0, 0) leads to the trivial solution again. The automaton is the
same as for the path—a nontrivial solution exists if and only if (x1, x2) =
(xn+1, xn+2) for some initial values (x1, x2) in the set {(0, 1), (1, 0), (1, 1)}. If
a nontrivial solution exists for exactly one of them, the rank of A + diag(a) is
n − 1. However, if a nontrivial solution exists for all three, the rank is n − 2.
To take account of this, we also count the number of vectors a for which this
occurs. This is done by means of another automaton, whose states are triples
of the states of the first automaton (Figure 2). The automaton returns to its
initial state after n steps if and only if there is a nontrivial solution for all
three choices of (x1, x2).

Now it turns out that the rank of A + diag(a) is n for 2
3
· 2n−1 + 1

3
· (−1)n−1

vectors, n − 1 for 2n−1 vectors and n − 2 for 2
3
· 2n−2 + 1

3
· (−1)n−2 vectors,

which yields the formula for s(Cn).

A formula for the star will be given in Section 3. Similarly, more tedious
calculations yield the following formulas:
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((0,1),(1,0),(1,1)) ((0,1),(1,1),(1,0))

((1,0),(0,1),(1,1)) ((1,0),(1,1),(0,1))

((1,1),(0,1),(1,0)) ((1,1),(1,0),(0,1))

0 0 0 0

0

0

1 1

1 1

1 1

Fig. 2. An automaton used for determining the rank of A + diag(a) in the case of
the cycle.

Proposition 7. The solvability numbers of the fan Fn and the wheel Wn on
n vertices are

s(Fn) = 35
48

· 4n − 1
24

· (−2)n + 5
4
√
−7

(

(−1 +
√
−7)n−1 − (−1 −

√
−7)n−1

)

and

s(Wn) = 85
128

·4n + 15
64
·2n + 7

32
·(−2)n− 25

32

(

(−1 +
√
−7)n−1 + (−1 −

√
−7)n−1

)

,

respectively.

Theorem 8. Let En be the empty graph on n vertices. Then,

s(G) ≥ s(En)

holds for all graphs G with |V (G)| = n. Moreover, the inequality is strict if
G 6= En.

Proof. First we prove that there is always a vector a0 such that A + diag(a0)
has full rank. This is done by means of induction. The statement is trivial for
n = 1. For the induction step, let v be the vertex that corresponds to the last
row of A. By the induction hypothesis, we can choose a vector a′

0 such that
A′+diag(a′

0), where A′ is the adjacency matrix of G\{v}, is invertible. Hence,
there is a unique set R of rows of A′ + diag(a′

0) whose sum is equal to the last
row of A (without the last element). If there is an even number of neighbors
of v among the vertices corresponding to R, we set b = 1, otherwise we set
b = 0. Now, we obtain a vector a0 by appending b to a′

0. Then, A + diag(a0)
has full rank again: by our choice of b, the last row is linearly independent
of the others, which in turn are linearly independent by the assumption that
A′ + diag(a′

0) is invertible. This finishes the induction.
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Therefore, there is always at least one vector a0 for which A + diag(a0) has
full rank. Since changing an entry of a changes the rank at most by 1, there
are at most

∑l
k=0

(

n

k

)

vectors a for which A + diag(a) has rank ≤ l. Equality

only holds for the empty graph (the only graph for which the rank can be 0).
By Lemma 2, this proves the claim.

Similarly, an upper bound for s(G) is given in the next theorem.

Theorem 9. Let Pn be the path with n vertices. Then,

s(G) ≤ s(Pn)

holds for all graphs G with |V (G)| = n. Moreover, the inequality is strict if
G 6= Pn.

Proof. In the proof of Proposition 6 it was shown that |{a ∈ {0, 1}n : rk(A +
diag(a)) < n}| = 2

3
2n−1 + 1

3
(−1)n−1 where A is the adjacency matrix of Pn.

Moreover, it was proved that rk(A + diag(a)) is n or n− 1 for all a ∈ {0, 1}n.
Thus, it suffices to show that

|{a ∈ {0, 1}n : rk(A + diag(a)) < n}| ≥ c(n), (3)

where

c(n) :=
2

3
2n−1 +

1

3
(−1)n−1,

holds for all symmetric n × n matrices A. Without loss of generality, we can
restrict ourselves to adjacency matrices, i.e., to matrices where all diagonal
entries are 0. In order to prove this we use induction on n. It is easy to see
that the inequality given in (3) holds for n = 1 and n = 2. Moreover, if n = 2
we have equality if and only if A is the adjacency matrix of P2.
Let A be an (n + 1)× (n + 1) adjacency matrix and assume that (3) holds for
n and n − 1. For the inductive step, we give upper bounds on the cardinality
of the following two sets:

S1 := {a ∈ {0, 1}n+1 : rk(A + diag(a)) < n + 1 and a1 = 1}, (4)

S2 := {a ∈ {0, 1}n+1 : rk(A + diag(a)) < n + 1 and a1 = 0}. (5)

Let us assume we are given a symmetric matrix A + diag(a) with a1 = 1. In
order to calculate its rank, we add the first row to all rows i with ai,1 = 1.
Then we obtain a matrix Ã, where ãi,1 = 0 holds for all i = 2, . . . , n + 1 and
ã1,1 = 1. Consequently, the rank of Ã equals the rank of its (1, 1)-minor, i.e.,
the matrix that results from deleting the first row and first column. Note that
this minor is still a symmetric matrix (since ai,1a1,j is added to each entry
ai,j, which is clearly symmetric), so (by the induction hypothesis) there are
at least c(n) different diagonal vectors for which it does not have full rank.
Moreover, each of the possible diagonals appears exactly once as a varies over
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all possible vectors. Thus, using the induction hypothesis, |S1| ≥ c(n) follows.
The upper bound on the cardinality of S2 can be obtained similarly. We assume
without loss of generality that a2,1 = a1,2 = 1. Otherwise, all entries in the
first row, respectively column, are 0 and we can conclude that |S2| = 2n.
Consequently, equation (3) follows immediately for n+1, because 2n + c(n) ≥
c(n + 1). Now we use some elementary row and column operations again to
calculate the rank of A + diag(a). First we add the second row to all rows i
with ai,1 = 1. Afterwards, we add the second column to all columns j with
b1,j = 1. After interchanging the first and the second row, we end up with a
matrix Ã for which ã1,1 = ã2,2 = 1 and ãi,1 = 0 for all i = 2, . . . , n + 1 and
ã2,j = 0 for all j = 3, . . . , n + 1. Due to this fact, the matrix Ã has full rank
if and only if the matrix obtained from Ã by deleting the first two rows and
columns has full rank. Let us denote this (n− 2)× (n− 2) matrix by Ã′. Note
that Ã′ is also symmetric, since ai,1a2,j + a1,jai,2 + ai,1a1,j(a2,2 + a2) is added
to each entry ai,j, which is symmetric in i and j again. Furthermore, each of
the possible diagonals of Ã′ appears exactly twice as a varies over all possible
vectors. Using the induction hypothesis, |S1| ≥ 2c(n − 1) can be concluded.
Summarizing, we get

|{a ∈ {0, 1}n+1 : rk(A + diag(a)) < n + 1}|
= |S1| + |S2| ≥ c(n) + 2c(n − 1) = c(n + 1), (6)

which completes the induction step. To see why s(G) < s(Pn) if G 6= Pn, note
that |S1|+ |S2| = c(n)+2c(n−1) holds if and only if A is the adjacency matrix
of Pn+1. Using the induction hypothesis again, this completes the proof.

Theorem 10. Let G be a graph and Gc its complement. Then we have

1
2
s(G) ≤ s(Gc) ≤ 2s(G).

The constant 2 is best-possible in this inequality.

Proof. Let A,A′ be the adjacency matrices of G and Gc. Furthermore, for a
vector a, let a′ = e − a, where e is the vector whose entries are all 1 (i.e., all
entries of a are switched). Finally, let E be the |V (G)| × |V (G)| matrix whose
entries are all 1. Then, it is clear that

A′ + diag(a′) = E − (A + diag(a)).

Furthermore, if we add the vector e as a row to some matrix M and E − M ,
the space that is spanned by the rows of the two matrices becomes the same,
and the rank increases at most by one. Hence, the ranks of M and E − M
differ at most by one. Applying this to A + diag(a) and summing over all a,
we have, by Lemma 2,

1
2
s(G) ≤ s(Gc) ≤ 2s(G),
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as claimed. The formulas for the empty graph and the complete graph show
that the constant 2 is indeed best-possible.

3 A property of distinguished vertices and a recursion for rooted
trees

Let v be a distinguished vertex (the “root”) of a graph G. Given the neighbor-
hood vector a and the parity vector b, we say that an instance is “solvable” if
there exists a solution x in (1) and “almost solvable” if there exists a solution
x for the instance (a, b′), where b′ results from replacing the entry bv belonging
to v by 1−bv. Furthermore, if a solution vector x is given, we say that we “use
the root” if the entry xv that corresponds to v is 1, and that we ”don’t use
the root” otherwise. Now, the following lemma holds, which proves extremely
useful in the treatment of trees:

Lemma 11. Given a root v ∈ V (G), a neighborhood vector a and a parity
vector b, the following situations (and no others) are possible:

(1) the instance is neither solvable nor almost solvable,
(2) the instance is solvable using the root or without using the root, but not

almost solvable,
(3) the instance is almost solvable using the root or without using the root,

but not solvable,
(4) the instance is solvable using the root and almost solvable without using

the root,
(5) the instance is almost solvable using the root and solvable without using

the root,
(6) the instance is solvable and almost solvable if we use the root, but neither

solvable nor almost solvable if we don’t use it,
(7) the instance is solvable and almost solvable if we don’t use the root, but

neither solvable nor almost solvable if we use it.

Furthermore, the number of instances belonging to the second case is the same
as the number of instances belonging to case (3), the number of instances
belonging to case (4), and the number of instances belonging to case (5); we
denote this quantity by x(G, v). Similarly, the number of instances belonging
to case (6) is the same as the number of instances belonging to case (7); we
denote this quantity by y(G, v). Then, 3x(G, v)+2y(G, v) = s(G) holds for all
vertices v.

Proof. Set M = A + diag(a). Since the kernel and the image of a symmetric
matrix are orthogonal, we know that precisely one of the following possibilities
hold:
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• there is a vector x with xv = 1 such that Mx = 0,
• there is a vector x such that Mx = ev, where ev is the unit vector whose

entry is 1 at the position that corresponds to v and 0 otherwise.

It is easy to see that the first statement is equivalent to the fact that all
solvable or almost solvable instances (a, b) can be solved (almost solved) with
or without using the root. On the other hand, Mx = ev is equivalent to the
fact that every instance that can be solved can also be almost solved and vice
versa. Hence, if the first statement holds, all (almost) solvable instances (a, b)
belong to case (2) or (3), and there are no instances that can be solved as well
as almost solved. Whether an instance belongs to case (2) or (3) only depends
on bv, and thus the number of instances is the same for each of these two cases.

If the second statement holds, all (almost) solvable instances (a, b) belong to
case (4) or (5) (depending only on bv) if xv = 1, and to case (6) or (7) if
xv = 0. In the former case, note that x becomes a solution to Mx = 0 if av is
changed from 0 to 1 or vice versa. Hence, the instances belonging to cases (2)
and (3) and the instances belonging to cases (4) and (5) are equinumerous.

Finally, we have to prove the fact that there are equally many instances be-
longing to cases (6) and (7). But this is also obvious, since they form affine
spaces of the same dimension which differ only by the first column of M .

The following proposition provides a recursion for the auxiliary parameters
x(G, v) and y(G, v) in the case of rooted trees, which enables us to deal with
all sorts of questions concerning the solvability number of trees:

Proposition 12. Let T be a rooted tree and v its root. Furthermore, let the
branches of T be T1, . . . , Tk and their roots (the neighbors of v) v1, . . . , vk.
Then the identities

x(T, v) =
k

∏

i=1

(2x(Ti, vi) + 2y(Ti, vi))

and

y(T, v) = 4

(

k
∏

i=1

(3x(Ti, vi) + 2y(Ti, vi)) −
k

∏

i=1

(2x(Ti, vi) + 2y(Ti, vi))

)

hold, which can be simplified as follows:

s(T ) = 8
k

∏

i=1

s(Ti) − 5
k

∏

i=1

t(Ti, vi),

t(T, v) = 8
k

∏

i=1

s(Ti) − 6
k

∏

i=1

t(Ti, vi),

where t(T, v) = 2x(T, v) + 2y(T, v) is another auxiliary parameter.

10



Proof. Let an instance (a, b) be given and let (a(i), b(i)) be the restriction to
the i-th branch. Obviously, (a, b) can only be solvable or almost solvable if all
restrictions (a(i), b(i)) are. We distinguish three cases:

(1) There are two instances (a(i), b(i)) and (a(j), b(j)) which belong to cases
(2) and (3) of Lemma 11 respectively. Then, we must not use the root v
in order to solve the subproblem in the i-th subtree, but we have to use
it in order to solve the subproblem in the j-th subtree; in view of this
contradiction, (a, b) is neither solvable nor almost solvable in this case.

(2) There is at least one instance (a(i), b(i)) which belongs to case (2) (or (3))
of Lemma 11. We consider the first possibility, since the second can be
treated analogously. Then, we must not use the root v, but we can solve
each of the subproblems, and since we may decide in the i-th branch
whether we want to use vi or not, the instance (a, b) is solvable as well
as almost solvable in this case. Hence, it belongs to case (6) or (7) of
Lemma 11. There are

4 · 2
(

k
∏

i=1

(3x(Ti, vi) + 2y(Ti, vi)) −
k

∏

i=1

(2x(Ti, vi) + 2y(Ti, vi))

)

possible instances for this case (note that there are still 4 ways to choose
av and bv!), and since cases (6) and (7) are equinumerous, we obtain the
formula for y(T, v).

(3) If there are no instances (a(i), b(i)) which belong to case (2) or (3) of
Lemma 11, then it follows analogously that (a, b) belongs to one of the
cases (2)–(5) (note that we can either use or not use the root v in order
to solve the subproblems in this case), the particular case depending
on the choice of av and bv. The formula for x(T, v) follows as a simple
consequence.

Now, substitution of s(Ti) = 3x(Ti, vi) + 2y(Ti, vi) and t(Ti, vi) = 2x(Ti, vi) +
2y(Ti, vi) yields

x(T, v) =
k

∏

i=1

t(Ti, vi)

and

y(T, v) = 4

(

k
∏

i=1

s(Ti) −
k

∏

i=1

t(Ti, vi)

)

,

and the formulas for s(T ) and t(T, v) follow immediately.

The recursive formula provides us with another method to prove the formula
for the path as well as an explicit formula for the star:

Corollary 13. Let Pn and Sn be the path and the star on n vertices respec-
tively. Then, the formulas s(Pn) = 5

6
4n + 1

6
(−2)n and s(Sn) = 8 ·3n−1−5 ·2n−1

hold.

11



Proof. Note that s(K1) = 3 and t(K1, v) = 2 (where v is the only vertex of
K1). Using this fact the formula for both graphs is immediately obtained from
the above proposition (in the case of the path, one has to solve a simple linear
recursion).

It can even be shown that the star has the smallest number of solvable in-
stances among all trees with a given number of vertices, whereas the path has
the largest number of solvable instances (which is clear in view of Theorem 9).

Proposition 14. Let Sn be the star graph with n vertices. Then,

s(Sn) ≤ s(T )

holds for all trees T = (V (T ), E(T )) with |V (T )| = n.

Proof. We show using induction on n that s(Sn) ≤ s(T ) (where s(Sn) =
8 · 3n−1 − 5 · 2n−1), that t(T, v) attains its minimum value among all trees
with n vertices if T = Sn and v is one of its leaves (with a minimum value of
16 · 3n−2 − 2n), and that x(T, v) = s(T ) − t(T, v) is minimum if T is the star
and v its center (with a minimum value of 2n−1). This is obvious for n = 1 or
n = 2. For the induction step, note that

s(T ) = 8
k

∏

i=1

s(Ti) − 5
k

∏

i=1

t(Ti, vi)

= 8s(Tj)
k

∏

i=1
i6=j

s(Ti) − 5(s(Tj) − x(Tj, vj))
k

∏

i=1
i6=j

t(Ti, vi)

=



8
k

∏

i=1
i6=j

s(Ti) − 5
k

∏

i=1
i6=j

t(Ti, vi)



s(Tj) + 5
k

∏

i=1
i6=j

t(Ti, vi) · x(Tj, vj)

for all j, and that 8
∏k

i=1
i6=j

s(Ti) − 5
∏k

i=1
i6=j

t(Ti, vi) > 0. Hence, by the induction

hypothesis, every branch of a tree for which s(T ) is minimum has to be a star,
rooted at its center (or a single vertex). The same way of reasoning works for
the tree for which t(T, v) is minimum. Finally, the branches of a tree for which
x(T, v) is minimum have to be stars (or possibly single vertices), each rooted
at one of its leaves.

For s(T ), the argument is easy now: without loss of generality, we may assume
that v is a leaf, and the claim readily follows.

For t(T, v), we have to maximize the expression

8
k

∏

i=1

(8 · 3ni−1 − 5 · 2ni−1) − 6
k

∏

i=1

(8 · 3ni−1 − 6 · 2n−1)
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subject to the condition
∑k

i=1 ni = n− 1 (here, ni is the number of vertices in
the i-th branch). First, suppose that k ≥ 2, consider two branches l,m, and
set nl + nm = p. We write A and B for

k
∏

i=1
i6=l,m

(8 · 3ni−1 − 5 · 2ni−1) and
k

∏

i=1
i6=l,m

(8 · 3ni−1 − 6 · 2ni−1)

respectively and note that A ≥ B. Now, we have

8
k

∏

i=1

(8 · 3ni−1 − 5 · 2ni−1) − 6
k

∏

i=1

(8 · 3ni−1 − 6 · 2n−1)

= 8A(8 · 3nl−1 − 5 · 2nl−1)(8 · 3nm−1 − 5 · 2nm−1)

− 6B(8 · 3nl−1 − 6 · 2nl−1)(8 · 3nm−1 − 6 · 2nm−1)

= (25A − 27B) · 2p+1 + 128(4A − 3B) · 3p−2

− 16(10A − 9B)

3

(

3p

(

2

3

)nl

+ 2p

(

3

2

)nl
)

,

and this expression is a concave function in nl. Hence, the minimum is attained
at the borders, namely if nl = 1 or nl = p − 1. But this means that the
overall minimum can only be attained if all but one nl equal 1. Thus let
n1 = n2 = . . . = nk−1 = 1 and nk = n − k. Then we have to minimize

8 · 3k−1(8 · 3n−k−1 − 5 · 2n−k−1) − 6 · 2k−1(8 · 3n−k−1 − 6 · 2n−k−1)

= 64 · 3n−2 + 9 · 2n − 8 · 3n

(

2

3

)k

− 20

3
· 2n

(

3

2

)k

,

which is again a concave function (in k). Comparing the values at the borders,
we see that the minimum is attained for k = 1, which corresponds to a star,
v being one of its leaves.

Finally, in order to minimize x(T, v), we have to minimize

k
∏

i=1

f(ni),

where
∑k

i=1 ni = n − 1 and f(x) = 16 · 3x−2 − 2x for x > 1 and f(1) = 2.
However, the simple inequality f(x) ≥ 2x holds, with equality if and only if
x = 1. Therefore, the minimum is attained if and only if n1 = n2 = . . . = 1,
and the minimal value is 2n−1. This finishes the induction and hence the whole
argument.

To conclude this section, we remark that the recursion for s(T ) and t(T, v) can
easily be translated to the world of generating functions (compare [18])—for
instance, if one wants to determine the average solvability number of a rooted
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ordered tree, the following functional equations for the generating functions
S(x) =

∑

T s(T )x|T | and T (x) =
∑

T t(T, v)x|T | hold:

S(x) =
8x

1 − S(x)
− 5x

1 − T (x)
,

T (x) =
8x

1 − S(x)
− 6x

1 − T (x)
.

By an asymptotic analysis, it can be followed from these equations that the
average solvability number of a rooted ordered tree on n vertices is asymptot-
ically

√

3567 + 523
√

41

7544
·




293 − 41
√

41

8





n

.

4 Tree-decomposition and tree-width

In this section, we define the terms tree-width and the tree-decomposition and
state some well known properties that are used in this paper. These concepts
were originally introduced by Robertson and Seymour [16] in connection with
graph minor theory. However, it has been shown that that many NP-complete
problems like independent set, Hamiltonian circuit, vertex cover and Steiner
trees can be solved in polynomial time on graphs with bounded tree-width
(see [5]). Thus, this graph class is also interesting from an algorithmical point
of view. Recently, Gassner and Hatzl [11] developed a linear time algorithm
for a domination problem with parity constraints on graphs with bounded
tree-width. In this paper, similar ideas are used in order to find the number of
solvable instances for graphs of bounded tree-width in linear time. However, as
for many other algorithms that solve problems on graphs with bounded tree-
width the constant factor hidden in the O-notation turns out to be very large.
Thus, the algorithm discussed here does not lead to a reasonable algorithm
from a practical point of view and a lot of additional ideas are required in
order to speed up the running time.

Extensive surveys on tree-width can be found in the papers of Bodlaender [5]
and Kloks [14]. Bodlaender [6] also developed a linear time algorithm which
determines, for a given graph G = (V,E), whether the tree-width of G is at
most k (for fixed k), and if so, outputs a tree-decomposition of G with tree-
width at most k. However, the computation of the tree-width is NP-hard for
general graphs (see [7]). Examples for graphs that have bounded tree-width are
trees (tree-width 1), series-parallel graphs (tree-width 2), outerplanar graphs
(tree-width 2), cactus graphs (tree-width 2) and Halin graphs (tree-width 3).
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Definition 15. A tree-decomposition of a graph G = (V (G), E(G)) is a pair
(T,X ) consisting of a tree T = (V (T ), E(T )) and a family of vertex sets, i.e.,
X = {Xt : Xt ⊆ V (G), t ∈ V (T )} such that

(T1) V (G) =
⋃

t∈V (T ) Xt;
(T2) for every edge (u, v) ∈ E(G) there exists a vertex t ∈ V (T ) such that

u ∈ Xt and v ∈ Xt;
(T3) if t2 ∈ V (T ) is on the path between t1 and t3 in T then Xt1 ∩Xt3 ⊆ Xt2 .

Properties (T1) and (T2) imply that the given graph G is the union of the
subgraphs that are induced by the vertex sets Xt. Moreover, property (T3)
is equivalent to the fact that for each vertex v ∈ V the sets Xt containing v
induce a subtree of T . An example of a tree-decomposition is given in Figure
3(a) and 3(b).

Note that there are many different tree-decompositions for a given graph,
e.g., it is always possible that the tree T = (V (T ), E(T )) consists of only
a single vertex, E(T ) = ∅ and X = {V (G)}. However, we are interested in
tree-decompositions for which the cardinalities of the sets Xt are small. It is
easy to see that if G contains a clique of size k there is a set Xt in the tree-
decomposition of G with |Xt| ≥ k, because there has to exist a set containing
all vertices of the clique. On the other hand, if G is a tree, there exists a
tree-decomposition in such a way that all sets in X have cardinality at most
two.
The following definition of tree-width makes these ideas more formal.

Definition 16. The width of a tree-decomposition (T,X ) of a graph G =
(V (G), E(G)) is the number

max{|Xt| − 1 : t ∈ V (T )},

and the tree-width tw(G) of G is the least width of any tree-decomposition of
G.

Using the comments above, it follows that the tree-width of any tree is 1 and
that tw(Kn) = n − 1, where Kn is the complete graph with n vertices. Thus,
in some sense the tree-width measures how tree-like a given graph is.
Another important property of a tree-decomposition which is essential for
many algorithms is the so-called separator property. This follows almost di-
rectly from (T3) and a formal proof can for example be found in Diestel’s
book [8].

Lemma 17. Let e = (t1, t2) be an edge in T and T1, T2 be the components of
T \e with t1 ∈ T1 and t2 ∈ T2. Then Xt1 ∩Xt2 separates the vertex set

⋃

t∈T1
Xt

from
⋃

t∈T2
Xt.

15



It is useful to introduce so called nice tree-decompositions, which have a par-
ticular structure, that helps to keep notation simple. A tree-decomposition
(T,X ) is called nice if it satisfies the following properties:

• T is a rooted binary tree with root vertex r.
• The vertices of T belong to one of the following four types:
(1) Leaf vertex i is a leaf of T and |Xi| = 1;
(2) Introduce vertex i has one child j and Xi = Xj ∪ {v} for some vertex

v ∈ V (G);
(3) Forget vertex i has one child j and Xi = Xj\{v} for some vertex v ∈ V (G);
(4) Join vertex i has two children j and l with Xi = Xj = Xl.

The nice tree-decomposition is not necessary for the proposed algorithm, but
enables us to simplify the description of the algorithm. In [14] it is shown that
if a graph G has tree-width k then there exists a tree-decomposition (T,X )
with |V (T )| = O(n). Moreover, given such a tree-decomposition (T,X ) a nice
tree-decomposition of G that has also O(n) vertices and the same width k can
be found in O(n) time. This result ensures that it suffices to develop a linear
time algorithm for a given nice tree-decomposition.
A nice tree-decomposition is given in Figure 3(c).

5 Calculating the solvability number of graphs with bounded tree-
width

Many problems on graphs with bounded tree-width can be solved in poly-
nomial time using a dynamic programming approach. Indeed, s(G) can also
be obtained using this technique. In order to describe our approach in more
detail some notation is introduced. Let G be a graph and (T,X ) its nice tree-
decomposition with tree-width k and root vertex r. A subtree of T rooted at
a vertex t is denoted by T (t). Furthermore, the subgraph

Gt = (Vt, Et) = G





⋃

j∈T (t)

Xj





is assigned to t ∈ V (T ), where G[U ] denotes the induced subgraph of U .
Obviously, Gr = G holds. In the following, we will count the number of solvable
instances for each subgraph Gt. This is done in a bottom-up manner from the
leaves of the tree to the root r. At the end the number of solvable instances
of Gr corresponds to s(G).

Suppose we consider an instance given by the vectors a, b ∈ {0, 1}|V (G)|. More-
over, a subset S ⊆ Vt for some t ∈ V (T ) is given which should be extended to
a feasible solution by adding some vertices from the set V (G)\Vt. Then using
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(a) A graph G with tree-width 2.

a c b c d
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f i j f g i

g h i

(b) A tree-decomposition of G with width 2.

c e f

c e f c e . . .

c e f c f c d f

c d f c f c c a c

c d f c d b c d b c b
root

J

I

I F J

I I F I L

I F I I L

(c) A part of a nice tree-decomposition of G with the different vertex types.

Fig. 3. An example for a graph, its tree-decomposition and a nice tree-decom-
position.

the separator property all vertices v ∈ Vt \ Xt have to satisfy the parity con-
straints. Otherwise, we cannot extend S to a feasible solution by just adding
vertices from the set V (G)\Vt. However, a vertex v ∈ Xt may violate its parity
constraint with respect to S because the extension of S may include vertices
of V \ Vt that are adjacent to v. Thus, the following definition seems to be
appropriate for a dynamic programming approach. In the following definition
and thereafter P(U) denotes the power set of U .

Definition 18. Let G = (V,E) be a graph, U ⊆ V be a subset of the vertices
and ā ∈ {0, 1}|U | and b̄ ∈ {0, 1}|U | be vectors. Furthermore, let f be a function
that maps a set A ⊆ U to a subset of P(U), i.e., f : P(U) → P(P(U)) and
if A ⊆ U then f(A) = {A1, . . . , Ak} for some pairwise different Ai ⊆ U . An
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instance given by a ∈ {0, 1}|V (G)| and b ∈ {0, 1}|V | is called (ā, b̄, f)-feasible
if and only if au = āu and bu = b̄u hold for all u ∈ U and the following two
conditions are satisfied for all A ⊆ U :

(1) For all Ai ∈ f(A) there exists a set S ⊆ V with S ∩ U = Ai satisfying
the following properties:

|N(v) ∩ S| ≡ bv mod 2 ∀v ∈ A : av = 0, (7)

|N [v] ∩ S| ≡ bv mod 2 ∀v ∈ A : av = 1, (8)

|N(v) ∩ S| 6≡ bv mod 2 ∀v ∈ U \ A : av = 0, (9)

|N [v] ∩ S| 6≡ bv mod 2 ∀v ∈ U \ A : av = 1, (10)

|N(v) ∩ S| ≡ bv mod 2 ∀v ∈ V \ U : av = 0, (11)

|N [v] ∩ S| ≡ bv mod 2 ∀v ∈ V \ U : av = 1. (12)

(2) For all B ⊆ U that are not in f(A) there does not exist such a set S ⊆ V .

Let us denote the set of functions {f | f : P(U) → P(P(U))} by F . It fol-
lows from the definition that each instance is (ā, b̄, f)-feasible for one triple
(ā, b̄, f), where ā, b̄ ∈ {0, 1}|U | and f ∈ F . The idea of the algorithm is to com-
pute the number of instances that are (ā, b̄, f)-feasible for all triples (ā, b̄, f).
We will use sU(ā, b̄, f) for the number of instances that are (ā, b̄, f)-feasible.
Once these numbers are available, the number of solvable instances can easily
be computed. In fact, it suffices to check all triples (ā, b̄, f) where f has the
property that f(U) 6= ∅. Obviously, there is a huge number of triples that have
to be stored, but in fact a lot of functions f will imply that sU(ā, b̄, f) = 0.
Some situations where this is the case are covered in Lemma 11. The follow-
ing lemma states even more triples (ā, b̄, f) for which sU(ā, b̄, f) = 0 follows
immediately.

Lemma 19. Let G = (V,E) be a graph with v ∈ V and N [v] ⊆ U for some
U ⊆ V . Furthermore, vectors ā, b̄ ∈ {0, 1}|U | are given. Then, sU(ā, b̄, f) = 0
for any function f : P(U) → P(P(U)) satisfying one of the following condi-
tions:

(1) āv = 1 and there exists a set A ⊆ U with v ∈ A, A1 ∈ f(A) and
|A1 ∩ N [v]| 6≡ b̄v mod 2.

(2) āv = 1 and there exists a set A ⊆ U with v /∈ A, A1 ∈ f(A) and
|A1 ∩ N [v]| ≡ b̄v mod 2.

(3) āv = 0 and there exists a set A ⊆ U with v ∈ A, A1 ∈ f(A) and
|A1 ∩ N(v)| 6≡ b̄v mod 2.

(4) āv = 0 and there exists a set A ⊆ U with v /∈ A, A1 ∈ f(A) and
|A1 ∩ N(v)| ≡ b̄v mod 2.

Proof. Let f be a function satisfying the first condition. Due to the fact that
N [v] ⊆ U it can be concluded that |N [v] ∩ S| = |N [v] ∩ S ∩ U | holds for any
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subset S ⊆ V . However, S ∩ U = A1 and |N [v] ∩ A1| ≡ bv mod 2 have to be
satisfied in order to have an (ā, b̄, f)-feasible solution. This contradicts (8) in
Definition 18 and sU(ā, b̄, f) = 0 follows.
The cases where f is a function satisfying one of the other conditions in the
lemma can be done in an analogous way.

The next lemma states in more detail what happens if a single vertex v is added
to a graph G. We assume that av = 1 and bv = 0, but it is straightforward to
give similar results for the remaining three cases. Note that this is exactly what
we need in order to deal with introduce vertices in a nice tree-decomposition.
Here, the set U ′ in the next lemma corresponds to a vertex Xi of the tree-
decomposition and the set U corresponds to the child Xj of Xi, i.e., Xi =
Xj ∪ {v}. Note that by the definition of a tree-decomposition N(v) ⊆ Xi

holds in Gi.

Lemma 20. Let G = (V,E) and G′ = (V ′, E ′) be two graphs such that V ′ =
V ∪ v, v /∈ V , and G is an induced subgraph of G′. Assume that U ⊆ V with
N(v) ⊆ U and let us denote U ′ = U ∪ v. For a given function f : P(U) →
P(P(U)) we define a function f ′ : P(U ′) → P(P(U ′)) as follows:

(1) If Ai ∈ f(A) for some A ⊆ U and |Ai ∩ N(v)| ≡ 0 mod 2, then Ai ∈
f ′(A ∪ v) and Ai ∪ {v} ∈ f ′((A \ N(v)) ∪ ((U \ A) ∩ N(v))).

(2) If Ai ∈ f(A) for some A ⊆ U and |Ai ∩ N(v)| ≡ 1 mod 2, then Ai ∈
f ′(A) and Ai ∪ {v} ∈ f ′(v ∪ (A \ N(v)) ∪ ((U \ A) ∩ N(v))).

(3) All sets A′
i ⊆ U ′ with A′

i ∈ f ′(A′) for some A′ ⊆ U ′ are covered by the
cases 1 and 2 above.

Let ā, b̄ ∈ {0, 1}|U | and ā′, b̄′ ∈ {0, 1}|U ′| be given, such that āu = ā′
u and b̄u = b̄′u

hold for all u ∈ U and ā′
v = 1 and b̄′v = 0.

If an instance in G given by a, b ∈ {0, 1}|V | is (ā, b̄, f)-feasible, then the in-
stance in G′ given by a′, b′ ∈ {0, 1}|V |+1 with aw = a′

w and bw = b′w for all
w ∈ V and a′

v = 1 and b′v = 0 is (ā′, b̄′, f ′)-feasible.

Proof. In order to show that the instance a′, b′ ∈ {0, 1}|V |+1 is (ā′, b̄′, f ′)-
feasible assume that A′

i and A′ are subsets of U ′ such that A′
i ∈ f ′(A′). In

the following, we give sets S ′ ⊆ V ′ such that (7) — (12) are satisfied for
U ′ ⊆ V ′. Let us consider four different cases:

(1) v /∈ A′
i and v /∈ A′

In this case we know that A′
i ∈ f(A′) which implies that there exists a set

S ⊆ V such that (7) — (12) are satisfied in G. Moreover, |A′
i ∩N(v)| ≡ 1

mod 2 holds. Thus, setting S ′ = S it can be concluded that (7) — (12)
hold in G′ because v /∈ S and |Ai ∩N(v)| ≡ 1 6≡ bv mod 2. Hence, for all
A′

i ∈ f ′(A′) with v /∈ A′
i and v /∈ A′ there is a set S ′ such that the first

condition in Definition 18 is satisfied.
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(2) v /∈ A′
i and v ∈ A′

In this case A′
i ∈ f(A′ \ v) and |A′

i ∩N(v)| ≡ 0 mod 2 hold. Again, there
exists a set S ⊆ V satisfying (7) — (12) in G. Due to the fact that v /∈ A′

i

it is easy to see that S ′ = S satisfies (7) — (12) in G′.
(3) v ∈ A′

i and v /∈ A′

Here, it can be concluded that A′ equals (A \ N(v)) ∪ ((U \ A) ∩ N(v))
for some A ⊆ U with A′

i \ v ∈ f(A) and |Ai ∩ N(v)| ≡ 0 mod 2. Let us
define S ′ = S ∪ v, where S is again the set satisfying (7) — (12) in G.
Due to the fact that N(v) ⊆ U we only have to check equations (7) —
(10) for all u ∈ N [v]. Let us start with the vertex v itself. It is easy to
see that |N [v] ∩ S ′| = |{v}| + |N(v) ∩ S| = |{v}| + |N(v) ∩ Ai| ≡ 1 6= bv

mod 2 holds. Finally, we consider vertices u ∈ N(v). For those vertices
|N [u]∩S ′| ≡ 1+ |N [u]∩S| mod 2 (|N(u)∩S ′| ≡ 1+ |N(u)∩S| mod 2)
hold. Thus, u ∈ A′ if and only if u ∈ U \ A and S ′ fulfills (7) — (12).

(4) v ∈ A′
i and v ∈ A′

This case is similar to the previous one. The set A′ can be written as
v∪ (A \N(v))∪ ((U \A)∩N(v)) for some A ⊆ U with A′

i \ v ∈ f(A) and
|Ai ∩ N(v)| ≡ 1 mod 2 and the same arguments as above can be used.

In order to conclude the proof it remains to show that the second condition of
Definition 18 is satisfied. However, this can be done in almost the same way.
It is straightforward to prove that if there does not exist a set S in G that
satisfies all the equations (7) — (12), then there is no set S ′ in G′ for which
all the equations are met. A formal proof is omitted.

Theorem 21. The number s(G) can be computed in linear time for graphs G
with bounded tree-width.

Proof. Using a dynamic programming approach from the leaves to the root
leads to a linear time algorithm. To see this note that for a leaf vertex |Xm| = 1
holds and it can be decided in constant time how many instances are (a, b, f)-
solvable for all triples. Lemma 20 shows how a join vertex has to be handled.
In fact, we have to add one new vertex v and consider all four possibilities,
i.e., av ∈ {0, 1} and bv ∈ {0, 1}. Again, all the necessary computations can
be done in constant time assuming that the size of each set Xm in the tree-
decomposition is bounded by a constant.
Let us now discuss join vertices now. Assume that Xm is a join vertex with
children Xj and Xl. Furthermore, sXj

(ā, b̄, f) and sXl
(ā, b̄, f) are known in the

graphs Gj and Gl respectively for all triples (ā, b̄, f). The task is to compute
sXm

(ā, b̄, f) in the graph Gm. Note that the vertex set Xm separates Vj from
Vl in Gm. Using the inclusion-exclusion principle one can conclude that in Gm

|N [v] ∩ S| = |N [v] ∩ S ∩ Vj| + |N [v] ∩ S ∩ Vl| − |N [v] ∩ S ∩ Vj ∩ Vl| (13)

holds for all S ⊆ Vm and v ∈ Vm. Due to the definition of a join vertex it
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follows immediately that Vj ∩ Vl = Xm. Moreover, in equation (13), N [v] can
also be replaced by N(v) and the equation still remains valid.
Let us assume we are given vectors a, b ∈ {0, 1}|Vm|; then we have to de-
termine the function f : P(Xm) → P(P(Xm)) for which the instance (a, b)
in Gm is (ā, b̄, f)-solvable, where āv = av and b̄v = bv for all v ∈ Vm. We
define the vectors a′, b′ ∈ {0, 1}|Vj | and a′′, b′′ ∈ {0, 1}|Vl|, where a′

v = av

and b′v = bv for all v ∈ Vj and a′′
v = av and b′′v = bv for all v ∈ Vl and

assume that the instance in Gj given by a′, b′ is (ā, b̄, f ′)-solvable for some
f ′ : P(Xj) → P(P(Xj)). Similarly, assume that the instance a′′, b′′ in Gl

is (ā, b̄, f ′′)-solvable for some f ′′ : P(Xl) → P(P(Xl)). If Ai ∈ f ′(A′) and
Ai ∈ f ′′(A′′) for some Ai, A

′, A′′ ⊆ Xi, then there exist sets S ′ and S ′′ satis-
fying (11) and (12) in Gj and Gl respectively. Moreover, S ′ ∩ S ′′ = Ai and
(S ′ ∪ S ′′) ∩ Xm = Ai. Let us define S := S ′ ∪ S ′′; then it follows from the
separator property that |N [v] ∩ S| ≡ bv for all v ∈ Vm \ Xm with av = 1 and
|N(v) ∩ S| ≡ bv for all v ∈ Vi \ Xi with av = 0. Moreover, |N [v] ∩ S ∩ Xi|
and |N(v) ∩ S ∩ Xi| can be calculated for all v ∈ Xi. Due to the fact
that Ai ∈ f ′(A′), the parities of |N [v] ∩ S ′ ∩ Vj| = |N [v] ∩ S ∩ Vj| and
|N(v) ∩ S ′ ∩ Vj| = |N(v) ∩ S ∩ Vj| can be determined for all v ∈ Xm. The
same can be done for |N [v] ∩ S ∩ Vl| and |N(v) ∩ S ∩ Vl| using f ′′. Using all
this information, the parity of |N [v] ∩ S| and |N(v) ∩ S| can be obtained for
all v ∈ Xm making use of equation (13). If the set A ⊆ Xm contains exactly
those vertices v for which the parity |N [v]∩S|, respectively |N(v)∩S|, equals
bv, then it can be concluded that Ai ∈ f(A).
This procedure has to be repeated for all A′, A′′ ⊆ Xm with Ai ∈ f ′(A′) and
Ai ∈ f ′′(A′′), and it leads to all sets A ⊆ Xm with Ai ∈ f(A). Using the same
idea for all sets Ai ⊆ Xm with Ai ∈ f ′(A′) and Ai ∈ f ′′(A′′) for some A′ and
A′′, the function f can be completely determined. Obviously, everything can
be done in constant time if the cardinality of Xm is bounded by a constant.
Finally, we have to deal with forget vertices. Assume that Xm is a forget vertex
in the nice tree-decomposition, i.e., it has one child Xj and Xm = Xj \ v, and
that an instance in Gj given by a, b ∈ {0, 1}|Vj | is (ā, b̄, f)-solvable for some
ā, b̄ ∈ {0, 1}|Xj | and for some f : P(Xj) → P(P(Xj)). Note that due to the
separator property v is not adjacent to any vertex u ∈ V (G) \ Vm in G. We
have to make sure that the parity constraint is fulfilled for v. Consequently,
we are only interested in Ai ∈ f(A) where v ∈ A. In fact, we define a function
f ′ in the following way: Suppose v ∈ A for some A ⊆ Xj and Ai ∈ f(A), then
Ai \ v ∈ f ′(A \ v) if v ∈ Ai and Ai ∈ f ′(A \ v) otherwise. It is easy to check
that if an instance a, b ∈ {0, 1}|Vj | is (ā, b̄, f)-solvable, then a, b ∈ {0, 1}|Vm| is
(ā′, b̄′, f ′)-solvable if ā′

u = āu and b̄′u = b̄u for all u ∈ Xm. This manipulation
can again be done in constant time if |Xm| and |Xj| are bounded by a con-
stant.
This shows that each step in the dynamic programming approach can be done
in constant time. Due to the fact that there exists a nice tree-decomposition
with O(n) vertices the running time is linear. This completes the proof.
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Basically, the algorithm generalizes the approach that has been given in Sec-
tion 2 for determining the solvability number of special graphs. In view of
the high degree of symmetry, a lot of simplifications were possible in these
cases. Finally, we remark that the discussed algorithm immediately implies
the following corollary:

Corollary 22. Let G = (V,E) be a graph with adjacency matrix A and a ∈
{0, 1}|V | a vector. If G has bounded treewidth, then the binary rank of A +
diag(a) can be computed in linear time.

6 Random graphs

In this section, we will show that the expected value of the solvability number
s(G) is of order 4n for a random graph in G(n, 1

2
) (i.e., each edge is inserted

with probability 1
2
), so that the “typical” value of s(G) is pretty close to its

maximum. In particular, the following theorem holds:

Theorem 23. Let G ∈ G(n, 1
2
) be a random graph with vertex set [n] =

{1, 2, . . . , n}. Then the inequality

E(s(G)) > 1
2
· 4n

holds.

Proof. The proof of this theorem essentially follows the approach of Amin,
Clark and Slater [1]. First of all, fix a vector a ∈ {0, 1}n, and let A denote
the (random) adjacency matrix of G. Note that the number of solutions of the
matrix equation (A + diag(a))x = 0 over F2 is exactly X = 2n−rk(A+diag(a)).
We will calculate the expected value of this random variable rather than that
of 2nX−1 which we are actually interested in. To this end, we determine the
probability that a set S is a solution for the instance (a, 0). We write pS for
this probability and obtain

E(X) =
∑

S⊆[n]

pS.

Let s1, s2 be the number of vertices v ∈ S such that av = 1 and av = 0
respectively, and let S1, S2 be the corresponding sets. Furthermore, set s = |S|.
S can only be a solution if

• every vertex in S1 has an odd number of neighbors in S,
• every vertex in S2 has an even number of neighbors in S,
• every vertex in [n] \ S has an even number of neighbors in S.
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If GS is the restriction of G on S, the first two statements are equivalent to the
property that S1 is the set of vertices of odd degree in GS. By the following

lemma, the probability for this is 2(
s−1
2 )/2(s

2) = 21−s if S 6= ∅ and if s1 is even:

Lemma 24 (Read and Robinson [15]). Let U ⊆ V with |V | = n. If |U | is
even, the number of simple graphs on V where U is the set of vertices having

odd degree is 2(n−1
2 ).

Furthermore, the probability that the number of neighbors in S is even equals
1
2

for every vertex in [n] \S, as long as S 6= ∅. By independence, we thus have
pS = 21−s2−(n−s) = 21−n.

S = ∅ is always a solution, so pS = 1 in this case. So if k is the number of 1’s
in a, we obtain

E(X) =
k

∑

s1=0
s1 even

(

k

s1

)

n−k
∑

s2=0

(

n − k

s2

)

21−n + (1 − 21−n) =







2 − 21−n k 6= 0,

3 − 21−n k = 0.

By Jensen’s inequality,

2n
E(X−1) ≥







2n

2−21−n k 6= 0,
2n

3−21−n k = 0.

Summing over all vectors a finally shows that

E(s(G)) ≥ 2n(2n − 1)

2 − 21−n
+

2n

3 − 21−n
>

1

2
· 4n.
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