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Abstract

In this work we study edge weights for two specific families of increasing trees, which include binary
increasing trees and plane oriented recursive trees as special instances, where plane-oriented recursive
trees serve as a combinatorial model of scale-free random trees given by the m = 1 case of the Barabási-
Albert model. An edge e = (k, l), connecting the nodes labeled k and l, respectively, in an increasing
tree, is associated with the weight we = |k − l|. We are interested in the distribution of the number
of edges with a fixed edge weight j in a random generalized plane oriented recursive tree or random
d-ary increasing tree. We provide exact formulas for expectation and variance and prove a normal limit
law for this quantity. A combinatorial approach is also presented and applied to a related parameter, the
maximum edge weight.
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1 Introduction

1.1 Increasing trees
Increasing trees are rooted labeled trees where the nodes of a tree of size n are labeled by distinct integers
from the set {1, . . . , n} in such a way that the sequence of labels along any branch starting at the root is
increasing. In this paper, we will consider two specific combinatorial models of increasing trees, namely
the family of so-called generalized plane oriented recursive trees (often abbreviated as “gports”) and d-ary
increasing trees.

The interest in these two tree families stems from the fact that several important tree models, such
as plane-oriented recursive trees and binary increasing trees (also called tournament trees), are special
instances of these families. These tree models are of importance in many applications. Plane-oriented
recursive trees are a special instance of the well known Barabási-Albert model [2] for scale-free networks
(see also [7]), which is used as a simplified growth model of the world wide web [1]. Binary increasing
trees (d = 2) are of special importance in computer science, since they are isomorphic to binary search
trees, which in turn serve as an analytic model for the famous Quicksort algorithm [11].

Generalized plane oriented recursive trees and d-ary increasing trees can also be described via a tree
evolution process, as pointed out in [14]. For every tree T ′ of size n with vertices v1, . . . , vn one can
give probabilities pT ′(v1), . . . , pT ′(vn), such that when starting with a random tree T ′ of size n of the tree
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family considered, choosing a vertex vi in T ′ at random according to the probabilities pT ′(vi) and attaching
node n + 1 to it, one obtains again a random tree T of size n + 1 of the tree family considered.

1.2 Deterministic edge weights
Let T denote an increasing tree of size n, where T is either a generalized plane oriented recursive tree or a
d-ary increasing tree. We consider edge-weighted increasing trees, where every edge e ∈ E = E(T ) of the
tree will be weighted deterministically as follows. If the edge e = (k, l) is adjacent to the nodes (labeled)
k and l, then we define the weight we of the edge e as we := |k− l|. The notion of edge weights provides a
natural new cost measure for constructing increasing trees (i.e. scale free networks): the smaller the sum of
the edge weights, the cheaper the construction. Let us denote by En the set of edges of a random increasing
tree of size n. The aim of this paper is to study the random variable Sn,j :=

∑
e∈En

I{we=j}, counting the
number of edge weights of size j in a size n random increasing tree. Here, I{we=j} stands for the indicator
variable of the event that e has weight j. An alternative representation of Sn,j is obtained by the growth
process generating random increasing trees of size n:

Sn,j =
n∑

k=j+1

I{k<ck−j}, (1)

where k <c k − j denotes the event that node k is a child of (attached to) node k − j. In the following we
will use both combinatorial and probabilistic methods to analyze the distribution of Sn,j . In order to obtain
exact results for expectation and variance we will proceed similarly to [7]. Using a decomposition for Sn,j

and a theorem concerning weakly dependent random variables, we will be able to show that for arbitrary
but fixed j ∈ N, the random variable Sn,j is asymptotically normal distributed.

A combinatorial approach via generating functions allows one to compute all probabilities P(Sn,j =
m), but it seems to be impossible to derive the normal law from it—as we will see, the recursions lead to
large systems of differential equations with no nice explicit solutions. However, the same combinatorial
approach turns out to be somewhat more useful for the analysis of the probability P(Mn ≤ k), where the
random variable Mn = maxe∈En

we is the maximal edge weight in a random increasing tree of size n.
The analysis of the random variables Sn,j and Mn is much easier for recursive trees. An extensive study
for recursive trees was conducted in [13], where it was also shown that for recursive trees the edge weights
we have an intimate relationship with entries in inversion tables of permutations.

1.3 Notation
We use the abbreviations xl := x(x−1) · · · (x− l+1) and xl := x(x+1) · · · (x+ l−1) for the falling and
rising factorials, respectively. Furthermore, we denote by X

L= Y the equality in distribution of random
variables X and Y , by X ⊕ Y the sum of two independent random variables and by X + Y the sum of
not necessarily independent random variables. Moreover, we write X1 ⊕ · · · ⊕Xl for the sum of mutually
independent random variables. We also denote by Xn

L−→ X the weak convergence, i. e. the convergence
in distribution, of the sequence of random variables Xn to a random variable X .

Throughout this work we often use the abbreviation “gports”, standing for generalized plane oriented
recursive trees. Note that we use the following notations interchangeably: α = − c1

c2
− 1 = −d.

1.4 Plan of the Paper
The paper is organized as follows: in the next section, we describe the construction of the tree families
we investigate. Then, we study the distribution of edge weights first in the simple case j = 1, then in
general. By means of an approach that is due to Bollobás and Riordan [7], we find an explicit formula
for the probability that a certain set of edges is contained in a random tree. This allows us to determine
exact and asymptotic formulas for the mean and variance. Finally, we prove a central limit theorem for
the number of edges with a specific weight. After a short section on edge weight tables, we consider a
combinatorial approach that is applied to the study of the quantities “number of edges with a given weight”
and “maximum edge weight”. However, it turns out that the probabilistic approach usually yields much
stronger results.
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2 Preliminaries

2.1 A combinatorial description of increasing trees
In the following we give a general combinatorial definition of increasing trees (including the families of
gports and d-ary increasing trees). Formally, a simple family of increasing trees T can be defined in the
following way. We start with a sequence of non-negative numbers (ϕk)k≥0, where ϕ0 > 0. The sequence
(ϕk)k≥0 is called the degree-weight sequence. We assume that there exists a k ≥ 2 with ϕk > 0. The
degree-weight sequence is used to define the weight w(T ) of any ordered tree T by w(T ) :=

∏
v ϕd(v),

where v ranges over all vertices of T and d(v) is the out-degree of v. Furthermore, L(T ) denotes the set
of different increasing labellings of the tree T with distinct integers {1, 2, . . . , |T |}, where |T | denotes the
size of the tree T , and L(T ) :=

∣∣L(T )
∣∣ its cardinality. Then the family T consists of all trees T together

with their weights w(T ) and the set of increasing labellings L(T ). For a given degree-weight sequence
(ϕk)k≥0 with a degree-weight generating function ϕ(t) :=

∑
k≥0 ϕktk, we now define the total weights

by Tn :=
∑

|T |=n w(T ) · L(T ). It follows that the exponential generating function T (z) :=
∑

n≥1 Tn
zn

n!
satisfies the autonomous first order differential equation

T ′(z) = ϕ
(
T (z)

)
, T (0) = 0. (2)

This can be deduced from the fact that a simple family of increasing trees T is described by the formal
recursive equation

T = ©1 ×
(
ϕ0 · {ε} ∪̇ ϕ1 · T ∪̇ ϕ2 · T ∗ T ∪̇ ϕ3 · T ∗ T ∗ T ∪̇ · · ·

)
= ©1 × ϕ(T ), (3)

where ©1 denotes the node labeled 1, × the Cartesian product, ∪̇ the disjoint union, ∗ the partition product
for labeled objects, and ϕ(T ) the substituted structure (see for instance [15] or [6]). In short, this formal
recursive equation corresponds to the fact that we may describe a tree as a root node with several subtrees
of the same family attached to it. Next we are going to specify the degree-weight generating function for
the tree families that are investigated in this paper. Generalized plane-oriented recursive trees and d-ary
increasing trees are characterized by the degree-weight generating functions

ϕ(t) =


ϕ0

(1 + c2t
ϕ0

)α
, for generalized plane-oriented recursive trees

ϕ0

(
1 + c2t

ϕ0

)d

for d-ary increasing trees ,

where α := − c1
c2
− 1 with ϕ0 > 0 and 0 < −c2 < c1; and d := c1

c2
+ 1 ∈ {2, 3, 4, . . . } with ϕ0 > 0

and c2 > 0. Identifying d and −α, we see that the definitions are very similar. By solving the differential
equation (2) with respect to the degree-weight generating functions ϕ(t), and extraction of coefficients one
obtains a formula for the total weight Tn of generalized plane-oriented recursive trees, and d-ary increasing
trees,

Tn = ϕ0c
n−1
1 (n− 1)!

(
n− 1 + c2

c1

n− 1

)
, (4)

with ϕ0, c1 and c2 as specified for the particular tree family.

2.2 Description via a tree evolution processes
As mentioned before, generalized plane oriented recursive trees and d-ary increasing trees can be generated
by an evolution process. This description is a consequence of the considerations made in [14]. The process
generates random trees of arbitrary size n. The process starts with the root labeled by 1. At step i + 1 the
node with label i + 1 is attached to any previous node v (with out-degree d+(v)) of the already grown tree
of size i with probability p(v) equal to

p(v) =


deg+(v) + α

(α + 1)i− 1
, for generalized plane-oriented recursive trees,

d− deg+(v)
(d− 1)i + 1

, for d-ary increasing trees,

with d ∈ N \ {1} and α > 0 as before. d − deg+(v) and deg+(v) + α are interpreted as the number of
places where a new node can be attached to v, even if the latter is not necessarily an integer. Hence, the
process associated to generalized plane oriented recursive trees generalizes the preferential attachment rule
of the Barabási-Albert model m = 1.
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2.3 Examples
Example 1. Plane-oriented recursive trees are the family of plane increasing trees such that all node de-
grees are allowed and assigned equal weights. The degree-weight generating function is thus ϕ(t) = 1

1−t .
Equation (2) leads to

T (z) = 1−
√

1− 2z, and Tn = (n−1)!
2n−1

(
2n−2
n−1

)
= 1 · 3 · 5 · · · (2n− 3) = (2n− 3)!!, n ≥ 1.

Moreover, the probability of attaching to a node v in a tree of size i is given by p(v) = deg+(v)+1
2i−1 , which

corresponds to the case m = 1 of the Barabási-Albert model.

Example 2. Binary increasing trees have the degree-weight generating function ϕ(t) = (1 + t)2. Thus it
follows that

T (z) =
z

1− z
, and Tn = n!, for n ≥ 1.

Moreover, the the probability of attaching to a node v in a tree of size i is given by p(v) = 2−deg+(v)
i+1 .

Bearing the special cases of ordinary plane oriented trees and d-ary trees in mind, we will use the
expression “number of increasing trees” (with a certain number of nodes and within a given family of
increasing trees), even though “total weight” would be more appropriate (note that the total weight is not
even necessarily an integer if α is not).

3 The distribution of edge weights: case j = 1

First of all, we will discuss the case j = 1, which turns out to be somewhat simpler compared to the general
case. We obtain explicit results for the probability distribution and a normal limit law as n tends to infinity.
The key tool for studying Sn,1 is the following Lemma, which provides the independence of the indicator
variables.

Lemma 1. The random variable Sn,1, counting the number of edge weights of size 1 in a size n random
gport or d-ary increasing tree, satisfies the decomposition

Sn,j =
n⊕

k=2

I{k<ck−1}, (5)

with the indicators being mutually independent.

Proof. We simply condition on the event that node n− 1 is adjacent to node n.

P{Sn,1 = m} = P{Sn,1 = m|n <c n− 1}P{n <c n− 1}+ P{Sn,1 = m|n ≮c n− 1}P{n ≮c n− 1}
= P{Sn−1,1 = m− 1}P{n <c n− 1}+ P{Sn−1,1 = m}P{n ≮c n− 1}.

Hence, we obtain the stated result by iterating this argument.

The following lemma gives an explicit formula for the probabilities P{k <c i} = E(I{k<ci}).

Lemma 2 (Dobrow and Smythe [9]). The probability that the node k is attached to node i, with 1 ≤ i < k,
in a size n random grown simple increasing tree is given by

P{k <c i} = P{i + 1 <c i}
k−1∏

l=i+1

P{l + 1 ≮c l} =
1 + c2

c1

i + c2
c1

k−1∏
l=i+1

(
1−

1 + c2
c1

l + c2
c1

)
=

(i−1+
c2
c1

i−1

)
(k−1+

c2
c1

k−2

) .
Now we are ready to state our result concerning Sn,1, which also appeared in a different context in

Dobrow and Smythe [9], and Panholzer and Prodinger [14], concerning the depth of node n in a size n
random increasing tree.

Theorem 1. The random variable Sn,1 satisfies the following distributional decomposition.

Sn,1
(d)
= B1 ⊕ · · · ⊕Bn−1, (6)
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where Bk
(d)
= Be(

1+
c2
c1

k+
c2
c1

) is Bernoulli distributed for 1 ≤ k ≤ n− 1. The probability distribution of Sn,1 is

given by

P{Sn,1 = m} =
(1 + c2

c1
)m

(n− 1 + c2
c1

)n−1

[
n− 1

m

]
, (7)

where
[

n
m

]
denotes the signless Stirling numbers of the first kind. The expectation and the variance of Sn,1

are given by the following exact and asymptotic expressions.

E(Sn,1) =
(
1 +

c2

c1

)(
Ψ
(
n +

c2

c1

)
−Ψ

(
1 +

c2

c1

))
∼
(
1 +

c2

c1

)
log(n) +O(1),

V(Sn,1) =
(
1 +

c2

c1

)(
Ψ
(
n +

c2

c1

)
−Ψ

(
1 +

c2

c1

))
+
(
1 +

c2

c1

)2(
Ψ1

(
n +

c2

c1

)
−Ψ1

(
1 +

c2

c1

))
∼
(
1 +

c2

c1

)
log n +O(1),

where Ψ(z) = d
dz log (Γ(z)) = Γ′(z)

Γ(z) denotes the Digamma function and Ψ1(z) = d2

dz2 log (Γ(z)) the
Trigamma function. Furthermore the centered and normalized random variable S∗n,1 is asymptotically
normal distributed:

S∗n,1 =
Sn − E(Sn,1)√

V(Sn,1)
L−→ N (0, 1), (8)

where N (0, 1) denotes the standard normal distribution.

Proof (sketch). The expectation and the variance follow immediately from the distributional decomposi-
tion and the asymptotic expansion of the Ψ-function. The probabilities can easily be obtained from the
probability generating function as follows.

P{Sn,1 = m} = [vm]pn(v) = [vm]
n−1∏
k=1

(
k − 1 + v(1 + c2

c1
)

k + c2
c1

)
= [vm]

(v(1+
c2
c1

)+n−2

n−1

)
(n−1+

c2
c1

n−1

)
=

[znvm](n−1+
c2
c1

n−1

) ∑
k≥1

(
v(1 + c2

c1
) + k − 2

k − 1

)
zk =

[zn−1vm](n−1+
c2
c1

n−1

) 1

(1− z)v(1+
c2
c1

)

=
(1 + c2

c1
)m[zn−1vm](n−1+

c2
c1

n−1

) 1
(1− z)v

=
(1 + c2

c1
)m

(n− 1 + c2
c1

)n−1

[
n− 1

m

]
,

(9)

where we have used [zn]1/(1 − z)α+1 =
(
α+n

n

)
and the expansion of the generating function for the

signless Stirling numbers of the first kind, which is given by

1/(1− z)v =
∑
n≥0

∑
m≥0

[
n

m

]
zn

n!
vm.

For the normal limit law either apply Hwang’s Quasi Power theorem [10], as done in [14], or use Poisson
approximation techniques [9].

Remark 1. Note that by Lemma 5 the random variable Sn,1 satisfies the same distribution as the random
variable Dn counting the depth of node n in a size n random increasing tree. The depth has been studied
before independently by Dobrow and Smythe [9] and Panholzer and Prodinger [14].

4 The distribution of edge weights: case j > 1

In the case j > 1 the indicator variables I{k<ck−j} are by definition of the growth process not mutually
independent any more. For example, for plane oriented recursive trees we have

P{n <c n− 2|n− 1 <c n− 2} =
2

2n− 3
6= P{n <c n− 2|n− 1 ≮c n− 2} =

1
2n− 3

. (10)

Therefore we turn our attention to the derivation of an exact formula for the variance of Sn,j by other means.
For the exact variance we need to calculate probabilities of the form P{k1 <c i1, k2 <c i2}, assuming that
i1 < k1, i2 < k2. In order to derive these probabilities we use an approach (due to Bollobás and Riordan
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[7]) that involves the calculation of a more general quantity. We determine the probability that a subgraph
S is present in a random tree of size n, i.e. we calculate probabilities P{k1 <c i1, . . . kl <c il}. Note
that in [7] the probabilities P{k1 <c i1, . . . kl <c il} were derived for the special case of plane oriented
recursive trees (corresponding to α = 1 in the growth process), we also refer to [8] for an application of
such a result.

4.1 An exact formula for the expectation and variance for j > 1

We fix a graph S with nodes V (S) and edges E(S). E(S) represents the collection of events {k1 <c

i1}, {k2 <c i2}, . . . S is a possible subgraph of Bn for large n, where Bn denotes a tree of size n.
Furthermore orient each edge e = (i, j) ∈ E(S) with i < j from j to i. We write V +(S) for the set of
vertices of S from which edges leave and V −(S) for those vertices at which edges arrive. Note that usually
V +(S) ∩ V −(S) 6= ∅. For i ∈ V −(S) let g

[in]
S (i) denote the in-degree of i in S. We obtain the following

result.

Theorem 2. The probability pS that a given graph S is a subgraph of Bn is given by the following
formulas.

pS =
∏

i∈V −(S)

αg
[in]
S (i)

∏
i∈V +(S)

1
(α + 1)(i− 1)− 1

∏
k/∈V +(S)

(
1 +

CS(k)
(α + 1)(k − 1)− 1

)
for generalized plane oriented recursive trees and

pS =
∏

i∈V −(S)

d
g
[in]
S (i)

∏
i∈V +(S)

1
(d− 1)(i− 1) + 1

∏
k/∈V +(S)

(
1− CS(k)

(d− 1)(k − 1) + 1

)
,

for d-ary increasing trees. Here CS(m) denotes the number of edges e = (i, l) ∈ E(S) with i < m and
l ≥ m.

Before we turn to the proof of Theorem 2, we state two of its applications. For j > 1 we do not
have a decomposition of Sn,j with mutually independent indicator variables for generalized plane oriented
recursive trees and d-ary increasing trees. Nevertheless, the next result shows that for j ∈ N there is only a
local dependency structure of the indicator variables.

Corollary 1. The indicator variables IAk
of the events Ak = {k <c k − j}, for j + 1 ≤ k ≤ n,

are weakly dependent, or j-independent, which means whenever I and L are two subsets of the positive
integers {j + 1, . . . , n} with min{|i − l| : i ∈ I, l ∈ L} > j − 1, then the subsystems (IAi , i ∈ I) and
(IAl

, l ∈ L) are independent.

Remark 2. Note that Theorem 2 together with Corollary 1 extend the results of Lemma 2 and parts of
Theorem 1. Moreover, using the convention d = −α, the two formulas stated in Theorem 2 are basically
equivalent.

Corollary 2. The probability P{k1 <c i1, k2 <c i2}, with 1 ≤ i1 < k1, 1 ≤ i2 < k2 and k2 > k1, is
given by the following closed formulas, using α = −1− c1

c2
= −d,

Case i2 ≥ k1 : P{k1 <c i1, k2 <c i2} = P{k1 <c i1}P{k2 <c i2} =

(i1−1+
c2
c1

i1−1

)(i2−1+
c2
c1

i2−1

)
(k1−1+

c2
c1

k1−2

)(k2−1+
c2
c1

k2−2

) ,
Case i1 < i2 < k1 : P{k1 <c i1, k2 <c i2} =

(1 + c2
c1

)
(k1 − 1)

(i1−1+
c2
c1

i1−1

)(k1−2− c2
c1

k1−2

)
(k2−1+

c2
c1

k2−2

)(i2−1− c2
c1

i2−1

)
Case i = i1 = i2 : P{k1 <c i, k2 <c i} =

1
k1 − 1

(i−1+
c2
c1

i−1

)(k1−2− c2
c1

k1−2

)
(k2−1+

c2
c1

k2−2

)(i−1− c2
c1

i−1

)
Case i1 > i2 : P{k1 <c i1, k2 <c i2} =

(1 + c2
c1

)
(k1 − 1)

(i2−1+
c2
c1

i2−1

)(k1−2− c2
c1

k1−2

)
(k2−1+

c2
c1

k2−2

)(i1−1− c2
c1

i1−1

) .
(11)
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Our proof of Theorem 2 closely follows the arguments of [7] for the special case of plane oriented
recursive trees. Let Sn denote the restriction of S up to time n: Sn consists of edges E = (i, l), with
i, l ≤ n. First we need some notations. We denote by Xn,i the outdegree and by

βn,i =

{
Xn,i + α,

d−Xn,i,
(12)

the “actual node degree” responsible for the connectivity of node i in a random size n increasing tree. We
will refer to βn,i simply as node degree. Further for n ≥ i let rn,i denote the number of edges (k, i) ∈ E(S)
with k > n. Thus rn,i is just the number of edges coming to node i after time n. We consider the random
variable

Yn =
∏

i,l∈E(Sn)

I{(i,l)∈E(Bn)} ×


∏

i∈V (S),i≤n

β
rn,i

n,i , for gports∏
i∈V (S),i≤n

β
rn,i

n,i , for d-ary increasing trees,
(13)

with λn = E(Yn). For large n, one has rn,i ≡ 0, Yn =
∏

i,l∈E(Sn) I{(i,l)∈E(Bn)} and λn = P{S ⊂ Bn}.
Theorem 2 will follow directly from our next lemma by means of induction.

Remark 3. For α = 1 we have ordinary plane oriented recursive trees, already treated in [7]. Note that for
recursive trees things are much easier since P{k1 <c i1, . . . , kl <c il} =

∏l
j=1(kj − 1)−1. Furthermore,

recall that for d-ary increasing trees there are at most d edges coming into each node by definition.

Lemma 3. For n ≥ 0 the numbers λn satisfy the following recurrences.

• There is an edge e = (k, n + 1) ∈ E(S) with k ≤ n:

λn+1 = λn ×


αrn+1,n+1

(α + 1)n− 1
for gports,

drn+1,n+1

(d− 1)n + 1
for d-ary increasing trees,

(14)

• There is no edge e = (k, n + 1) ∈ E(S) with k ≤ n:

λn+1 = λn ×


αrn+1,n+1

(
1 +

CS(n + 1)
(α + 1)n− 1

)
, for gports

drn+1,n+1
(
1− CS(n + 1)

(d− 1)n + 1

)
, for d-ary increasing trees,

(15)

where CS(n + 1) =
∑

k∈V (S),k≤n rn,k denotes the number of edges e = (k, l) ∈ E(S) with k ≤ n
and l ≥ n + 1.

Proof. We will focus on generalized plane oriented trees and only state some of the analogous formulas
for d-ary increasing trees. The outdegree of node n + 1 in a size n + 1 tree is always 0, and so we can
decompose Yn+1 as follows:

Yn+1 = β
rn+1,n+1
n+1,n+1Zn+1 = αrn+1,n+1Zn+1, (16)

with
Zn+1 =

∏
i,l∈E(Sn+1)

I{(i,l)∈E(Bn+1)}
∏

i∈V (S),i≤n

β
rn+1,i

n+1,i . (17)

First, we consider the case that S does not contain an edge e = (k, n + 1) with 1 ≤ k ≤ n. Then
Sn = Sn+1 and also rn+1,i = rn,i for each i ≤ n. Hence

Zn+1 =
∏

i,l∈E(Sn)

I{(i,l)∈E(Bn)}
∏

i∈V (S),i≤n

β
rn,i

n+1,i, (18)

which is exactly the formula for Yn except for the node degrees βn,i. Now if node n + 1 does not attach
to any of the vertices of S we have the equality Zn+1 = Yn. We consider the random attachment of node
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n + 1. If node n + 1 attaches to a node i ∈ S then βn+1,i = βn,i + 1 for gports (or βn+1,i = βn,i − 1 for
d-ary increasing trees) and

β
rn,i

n+1,i = (βn,i + 1)rn,i =
βn,i + rn,i

βn,i
β

rn,i

n,i (19)

resp.

β
rn,i

n+1,i = (βn,i − 1)rn,i =
βn,i − rn,i

βn,i
β

rn,i

n,i , (20)

and all other degrees stay the same, so that we get Zn+1 − Yn = Ynrn,i/βn,i resp. Zn+1 − Yn =
−Ynrn,i/βn,i. In this setting the probability pn+1,i of the event {n + 1 <c i}, i ∈ S, i ≤ n is given by

pn+1,i =

{
Xn,i+α

(α+1)n−1 = βn,i

(α+1)n−1 for gports,
d−Xn,i

(d−1)n−1 = βn,i

(d−1)n+1 for d-ary increasing trees .
(21)

Thus the expected difference is given by

E(Zn+1 − Yn|Bn) =


∑

i∈V (S),i≤n

pn+1,iYnrn,i

βn,i
=

YnCS(n + 1)
(α + 1)n− 1

, for gports,

−
∑

i∈V (S),i≤n

pn+1,iYnrn,i

βn,i
= −YnCS(n + 1)

(d− 1)n− 1
, for d-ary increasing trees .

(22)
Therefore E(Zn+1) = λn(1 + CS(n+1)

(α+1)n−1 ) resp. E(Zn+1) = λn(1 − CS(n+1)
(d−1)n−1 ). Now suppose that there

is an edge e = (n + 1, k) ∈ E(S) with k ≤ n. In this case Yn+1 = 0 unless node n + 1 is attached to k,
which happens with probability pn+1,k. Under the assumption {n + 1 <c k} we have∏

i,l∈E(Sn+1)

I{(i,l)∈E(Bn+1)} =
∏

i,l∈E(Sn)

I{(i,l)∈E(Bn)}, (23)

and the node degrees change as follows. We have βn+1,i = βn,i for 1 ≤ i ≤ n, i 6= k and βn+1,k =
βn,k +1 (or βn+1,k = βn,k−1 for d-ary increasing trees). Furthermore rn+1,i = rn,i for 1 ≤ i ≤ n, i 6= k
and rn+1,k = rn,k − 1. Hence,∏

i∈V (S),i≤n

β
rn+1,i

n+1,i = (βn,k + 1)rn,k−1
∏

i∈V (S),i≤n,i 6=k

β
rn,i

n,i =
1

βn,k

∏
i∈V (S),i≤n

β
rn,i

n,i , (24)

which finally leads to E(Zn+1) = E(Yn)β−1
n,kpn+1,k = E(Yn)

(α+1)n−1 .

Theorem 3. The expectation and the variance of Sn,j are given by the following closed formulas.

E(Sn,j) =
n∑

k=j+1

E(I{k<ck−j}) =
n∑

k=j+1

(k−j−1+
c2
c1

k−j−1

)
(k−1+

c2
c1

k−2

) ,

V(Sn,j) =
n∑

k=j+1

n∑
l=j+1,l 6=k

P{k <c k − j, l <c l − j}+ E(Sn,j)− E(Sn,j)2,

with P{k <c k− j, l <c l− j} as given in Corollary 2. Moreover, the expectation and the variance satisfy
the asymptotic expansion

E(Sn,j) = (1 +
c2

c1
) log n +O(1), V(Sn,j) = (1 +

c2

c1
) log n +O(1).

Proof. The asymptotic results for the expectation are readily obtained from the exact formula. The exact
result for the variance is a consequence of the relation

E(S2
n,j) = E

(( n∑
k=j+1

I{k<ck−j}

)2
)

= E(Sn,j) +
n∑

k=j+1

n∑
l=j+1,l 6=k

P{k <c k − j, l <c l − j}.
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Moreover, we have
n∑

k=j+1

n∑
l=j+1,l 6=k

P{k <c k − j, l <c l − j} − E(Sn,j)2

= 2
n∑

k=j+1

k+j−1∑
l=k+1

(
P{k <c k − j, l <c l − j} − P{k <c k − j}P{l <c l − j}

)
,

according to Corollary 2, where the factor 2 is due to symmetry between k and l. Furthermore, we have
the upper bound(

P{k <c k − j, l <c l − j} − P{k <c k − j}P{l <c l − j}
)
≤ 2κ

(k − 2)2
,

in the range j + 1 ≤ k ≤ n and k + 1 ≤ l ≤ k + j − 1, with κ = max{j + 1, d}. Hence,

n∑
k=j+1

n∑
l=j+1,l 6=k

P{k <c k − j, l <c l − j} − E(Sn,j)2 ≤ 2jκ
n∑

k=j+1

1
(k − 2)2

≤ jκ
π2

3
,

which proves the stated result.

4.2 Central limit theorem
By Corollary 1 we already know that the indicator variables are j-independent. We will use a simplified
version of a result of Barbour et al. [3], see also [4].

Theorem 4 ([3], [4]). Suppose that (Yn)n∈N is a sequence of random variables with E(Yn) = 0 and
bounded third moment E(|Yn|3) < ∞, that are j-independent. Set Zn = Y1 + · · ·+ Yn and σ2

n := V(Zn).
If limn→∞

1
σ3

n

∑n
l=1 E(|Yl|3) = 0, then Zn satisfies a central limit theorem, Zn√

V(Zn)
→ N (0, 1).

Now we are ready to state the central limit theorem for Sn,j .

Theorem 5. For arbitrary but fixed j ∈ N and n tending to infinity, the suitably shifted and normalized
random variable Sn,j =

∑
e∈En

I{w(e)=j} is asymptotically normal distributed,

Sn,j − E(Sn,j)√
V(Sn,j)

d−→ N (0, 1).

Proof. We want to apply Theorem 4 to the centered random variable S̃n,j = Sn,j−E(Sn,j) =
∑n

l=j+1 Yl,
with

Yl = I{l<cl−j} − P{l <c l − j}.
By construction, E(Yl) = 0, and by Corollary 1 the centered indicator variables Yl are j-independent. Let
Ω denote the sample space of all trees of size n and P the probability measure on Ω. We have Ω = Ω1∪Ωc

1,
where Ω1 = Ω1(k) = {ω ∈ Ω : I{k<ck−j}(ω) = 1}, and furthermore

E(|Yk|3) =
∫

Ω

|I{k<ck−j} − P{k <c k − j}|3(ω)dP

=
∫

Ω1

(1− P{k <c k − j})3dP +
∫

Ωc
1

P{k <c k − j}3dP

= P{k <c k − j}(1− P{k <c k − j})3 + (1− P{k <c k − j})P{k <c k − j}3.

Therefore we get the estimates

n∑
k=j+1

E(|Yl|3) =
n∑

k=j+1

(P{k <c k − j}(1− P{k <c k − j})3 + (1− P{k <c k − j})P{k <c k − j}3)

≤
n∑

k=j+1

(P{k <c k − j}+ P{k <c k − j}3) =
(
1 +

c2

c1

)
log n +O(1).

Since σ2
n = V(S̃n,j) = V(Sn,j) =

(
1+ c2

c1

)
log n+O(1), the conditions of Theorem 4 are satisfied, which

implies the asymptotic normality of S̃n,j/
√

V(Sn,j).
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Remark 4. Note that with a bit more effort, one can also obtain the speed of convergence with respect to
the metric d1 [4]: one has d1

(
L( S̃n,j√

V(Sn,j)
),N (0, 1)

)
≤ Cj√

log n
, where Cj is a constant depending on j.

For two probability measures P and Q their d1-distance is defined as d1(P,Q) := sup||h||=1 |E(h(X))−
E(h(Y ))|, where X and Y are random variables with distribution P and Q, respectively. We refer the
reader to [3] and [4].

5 Representation of increasing trees via edge weight tables
It was shown in [13] that the family of recursive trees can be represented by a so-called edge-weight table,
corresponding to the inversion table of permutations. Moreover, it was asked for a corresponding notion
for other tree families. Here we will introduce edge-weight tables for plane oriented recursive trees and
d-ary increasing trees. Such sequences may be important regarding the automatic generating of all trees of
a given family.

Let Cn denote the family of sequences σ = a1b1a2b2 . . . anbn of length 2n, n ≥ 1, such that 1 ≤ ai ≤ i
and 1 ≤ bi ≤ |{j|j + 1 − aj = i + 1 − ai, 1 ≤ j ≤ i − 1}| + 1. Moreover, let Dn = Dn(d) denote
the family of sequences a1b1a2b2 . . . anbn of length 2n, n ≥ 1, such that 1 ≤ ai ≤ i, 1 ≤ bi ≤ d, and if
bi = bj , then i + 1− ai 6= j + 1− aj for 1 ≤ i < j ≤ n.

Proposition 1. The family of plane oriented increasing trees of size n + 1 is in bijection with the family
Cn. Furthermore, the family of d-ary increasing trees of size n + 1 is in bijection with the family Dn.

Proof. We use a recursive construction. For a given size n + 1 plane oriented recursive tree, we note the
edge-weight induced by the node labeled n+1 and its position, going from left to right, which gives anbn.
Now we remove node n + 1 and proceed recursively. Conversely, for a given edge-weight table σ ∈ Cn we
recursively construct the size n + 1 tree by attaching node i to the node labeled i + 1 − ai at position bi,
1 ≤ i ≤ n.

For d-ary increasing trees we proceed analogously, denoting the edge-weight induced by the node
labeled i and its position, i = n + 1, . . . , 2.

6 A combinatorial approach: recurrences and a system of differen-
tial equations

At first sight the most natural approach for the analysis of Sn,j seems to be the usage of the combinatorial
description of increasing trees according to (3), which was often useful for similar problems. Unfortunately,
this approach is not easily applicable since the subtrees are relabeled in the description, whereas we cannot
simply drop the labeling of the subtrees without further considerations.

In order to analyze Sn,j combinatorially for j > 1, we have to proceed in a different way. The main
idea is to partition the Tn different size-n increasing trees into classes according to the out-degrees of the
nodes n− j +1, n− j +2, . . . , n−1, which are relevant for Sn,j . Then one can set up suitable recurrences
for the arising tree classes, always keeping track of the behavior of all relevant outdegrees.

First we need some notation. Let gj−1 = (g1, g2, . . . , gj−1) denote a vector of size j − 1, which will
encode the outdegrees of the nodes n− 1, n− 2, . . . , n− j + 1, and Gk =

∑k
i=1 gi the sum of the first k

entries, 1 ≤ k ≤ j − 1. Furthermore, Wj−1 denotes the set of vectors gj−1 satisfying gk ≥ 0 and

0 ≤ Gk =
k∑

i=1

gi ≤ k

for 1 ≤ k ≤ j − 1, which is the natural restriction for increasing trees. We denote by T
[gj−1]
n =

T
[g1,g2,...,gj−1]
n the number of increasing trees of size n, where the distribution of the outdegrees of the

nodes (n− 1, n− 2, . . . , n− j + 1) is given by the vector gj−1 ∈ Wj−1, i.e. node n− k has outdegree gk

for 1 ≤ k ≤ j − 1. The total number is obtained from the T
[gj−1]
n by summation over all possible degree

sequences of n− 1, . . . , n + j − 1,

Tn =
∑

gj−1∈Wj−1

T [gj−1]
n .
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Our first result is an explicit formula for T
[gj−1]
n , the number of all size-n trees with degrees prescribed by

a sequence gj−1. In the following, we will state all results first for gports, then for d-ary trees. The proofs
are only given for gports, the situation for d-ary trees being completely analogous.

Theorem 6. The number T
[gj−1]
n of all size-n (n ≥ j) increasing trees, where the outdegrees of the nodes

n− 1, . . . , n− j + 1 are prescribed by gj−1 ∈ Wj−1, is given as follows: for generalized plane oriented
recursive trees,

T [gj−1]
n = Tn−j+1 ·

(
(α + 1)(n− j)

)j−1−Gj−1 ·
j−1∏
i=1

(
i−Gi−1

gi

)
αgi .

For d-ary increasing trees,

T [gj−1]
n = Tn−j+1 ·

(
(d− 1)(n− j)

)j−1−Gj−1 ·
j−1∏
i=1

(
i−Gi−1

gi

)
dgi .

Proof. Given the tree induced by the first n − j + 1 nodes (there are Tn−j+1 possibilities for this tree),
we can choose the gi children of node n − i (i = 1, . . . , j − 1) out of a set of i −Gi−1 nodes with larger
number, which can be attached in αgi different ways. Finally, we have to attach the remaining j−1−Gj−1

nodes from the set {n, n − 1, . . . , n − j + 2} to nodes with smaller labels, which gives rise to the second
factor in our formula.

Since we will use the (refined) quantities T
[gj−1]
n to describe a system of differential equations, we are

interested in the cardinality of the system depending on j.

Proposition 2. The cardinality of Wj−1 is given by the j-th Catalan number Cj =
(
2j
j

)
/(j + 1).

Proof (sketch). Observe that we can interpret the elements gj−1 = (g1, g2, . . . , gj−1) of Wj−1 as lattice
paths with steps (1, 0), (1, 1), . . . , (1, j−1), starting at (0, 0), which never exceed the diagonal y = x.

Example 3. As an example, let us consider plane oriented recursive trees (α = 1) with prescribed outde-
grees for the nodes n− 1 and n− 2. We have |W2| = C3 = 5 and by Theorem 6

T [0,0]
n = 2(n− 3)(2(n− 3) + 1)(2n− 7)!!, T [0,1]

n = 4(n− 3)(2n− 7)!!,

T [0,2]
n = 2(2n− 7)!!, T [1,0]

n = 2(n− 3)(2n− 7)!!, T [1,1]
n = (2n− 7)!!.

Now let T
[gj−1]
n,j,m denote the number of size-n increasing trees with m edge weights of size j and outde-

grees specified by gj−1 ∈ Wj−1 as before. We have the relation

TnP{Sn,j = m} =
∑

gj−1∈Wj−1

T
[gj−1]
n,m,j .

Furthermore let Wj−1(gj−1) ⊂ Wj−1 denote the set of vectors lj−1 = (l1, . . . , lj−1) ∈ Wj−1 such that
lj−1 has the form lj−1 = (g2, g3, . . . , gj−1, i)− ek, with 1 ≤ k ≤ j − 2 and 0 ≤ i ≤ j −Gj−1, where ek

denotes a unit vector. In other words, Wj−1(gj−1) consists of all vectors lj−1 in Wj−1 with lh = gh+1 for
h ∈ {1, . . . , j − 2} \ {k}, and lk = gk+1 − 1, where 1 ≤ k ≤ j − 2. We obtain the following recurrences
for T

[gj−1]
n,j,m by distinguishing two cases for g1.

Proposition 3. For n ≥ j + 1 and m ≥ 0 the quantities T
[gj−1]
n,j,m , with gj−1 ∈ Wj−1, satisfy the following

system of recurrence relations. For g1 = 1,

T
[gj−1]
n,j,m =

j−Gj−1∑
i=0

A · T [g2,...,gj−1,i]
n−1,j,m , A :=

α,

d.

For g1 = 0,

T
[gj−1]
n,j,m =

∑
lj−1∈Wj(gj)

B · T [lj−1]
n−1,j,m +

j−1−Gj−1∑
i=0

C · T [g2,...,gj−1,i]
n−1,j,m +

j−1−Gj−1∑
i=0

D · T [g2,...,gj−1,i]
n−1,j,m−1 ,
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with B = B(lj−1), C = C(i) and D = D(i) given by

B :=


∑j−2

h=1(gh+1 − lh)(lh + α),∑j−2
h=1(gh+1 − lh)(d− lh),

C :=

(α + 1)(n− 1)− 1− i−Gj−1 − jα,

(d− 1)(n− 1)− 1 + i + Gj−1 − jd,
D :=

i + α,

d− i,

and initial values T
[gj−1]
j,j,0 = T

[gj−1]
j given by Theorem 6.

Proof. In the case g1 = 1, the newly inserted node labeled n must be attached to node n − 1. Hence
we have to consider trees with n − 1 nodes and m edge weights of size j, where the outdegrees of nodes
n− 2, . . . , n− j + 1 are given by g2, . . . , gj−1 and the outdegree i of node n− j is between zero and

j − 1−
j−1∑
k=2

gk = j − 1− (Gj−1 − g1) = j −Gj−1.

The other case g1 = 0, where node n is not attached to node n−1, splits into three possible cases: node n is
attached to one of the nodes n−2, . . . , n−j+1, or node n is attached to node n−j, increasing the number
of edge weights of size j by one, or node n is not attached to any of the nodes n − 2, . . . , n − j. First we
consider the case that node n is attached to n−k, with 2 ≤ k ≤ j−1. Then there are gk+1−1+α = lk +α
possible positions to attach node n to any n − k. Note that under the assumption lj−1 ∈ Wj(gj) with
lk = gk+1 − 1, we have

∑j−2
h=1(gh+1 − lh)(lh + α) = lk + α, as required.

Next we look at the case that node n is attached to node n− j. Assuming that node n− j has outdegree
i, we have i + α different places to attach node n to node n− j.

Finally we consider the case that node n is not attached to any of the nodes node n − k, 2 ≤ k ≤ j.
Hence, assuming again that node n− j has outdegree i, 0 ≤ i ≤ j − 1−Gj−1, we have

(α + 1)(n− 1)− 1− (i + α)−
j−1∑
k=2

(gk + α)− α = (α + 1)(n− 1)− 1− i−Gj−1 − jα

different places to attach node n to the tree of size n− 1, which finishes the proof of our formula.

Note that for m = 0 one has to skip the terms including T
[g2,...,gj−1,i]
n−1,j,−1 . Now we introduce the bivariate

generating functions

F [gj−1](z, v) =
∑

n≥j+1

∑
m≥0

T
[gj−1]
n,m,j

zn−j

(n− j)!
vm, (25)

for gj−1 ∈ Wj−1. By multiplying our recurrence relations by vmzn−j−1/(n− j − 1)! and summing over
n ≥ j + 1,m ≥ 0 the recurrences above can by translated into a system of linear differential equations.

6.1 The case j = 2

Let us now consider the case j = 2 for gports as an illustration. The initial values are given by T
[1]
2,0,2 = T2

and T
[i]
2,m,2 = 0 for all other i and m. For the sake of simplicity we will drop the dependence on j = 2. By

Proposition 3 we get the recurrences

T [0]
n,m = ((α + 1)(n− 3) + 1)T [0]

n−1,m + αT
[0]
n−1,m−1 + (α + 1)(n− 3)T [1]

n−1,m + (α + 1)T [1]
n−1,m−1,

T [1]
n,m = αT

[0]
n−1,m + αT

[1]
n−1,m.

(26)

Following (25), we set up the generating functions

F [0](z, v) =
∑
n≥3

∑
m≥0

T [0]
n,m

zn−2

(n− 2)!
vm, F [1](z, v) =

∑
n≥3

∑
m≥0

T [1]
n,m

zn−2

(n− 2)!
vm.

Multiplication by vmzn−3/(n − 3)! and summation over n ≥ 3 and m ≥ 0 leads to the following system
of linear differential equations.

∂

∂z
F [0](z, v) = (αv + 1)F [0](z, v) + (α + 1)vF [1](z, v) + (α + 1)vT2

+ (α + 1)z
∂

∂z
F [0](z, v) + (α + 1)z

∂

∂z
F [1](z, v),

∂

∂z
F [1](z, v) = αF [0](z, v) + αF [1](z, v) + αT2.

(27)

12



Unfortunately, this system of differential equations is not explicitly solvable. However, one can easily
determine the first few coefficients from it; in the case of ordinary plane oriented recursive trees (α = 1),
one obtains

F [0](z, v) = 2vz + (1 + 4v + v2)z2 +
7 + 26v + 11v2 + v3

3
z3 +

58 + 222v + 119v2 + 20v3 + v4

12
+ . . .

and

F [1](z, v) = z +
1 + 2v

2
z2 +

3 + 10v + 2v2

6
z3 +

17 + 62v + 24v2 + 2v3

24
z4 + . . .

and altogether

F [0](z, v) + F [1](z, v) = (1 + 2v)z +
3 + 10v + 2v2

2
z2

+
17 + 62v + 24v2 + 2v3

6
z3 +

133 + 506v + 262v2 + 42v3 + 2v4

24
z4 + . . .

6.2 Maximal edge weight
To show the usefulness of our approach, we consider a related problem: let pn,m = P{Mn ≤ m} denote
the probability that the maximal edge weight Mn = maxe∈En

we in a size n random increasing tree is
less or equal m. In order to study this probability, we use two different approaches. For large m (i.e.
m = n − k with fixed k), one can apply the principle of inclusion and exclusion to get an expression for
the probabilities pn,n−k as follows:

Theorem 7. The probability that the maximal edge weight Mn is less or equal n− k, with 2 ≤ k ≤ n− 1,
is given by

P{Mn ≤ n− k} = 1 +
k−1∑
l=1

(−1)l
∑

n+2−k≤i1<···<il≤n
1≤jih

≤ih−(n+1−k)

P{i1 <c j1, . . . , il <c jl},

with P{i1 <c j1, . . . , il <c jl} as given by Theorem 2.

Example 4. By application of Theorem 7 we obtain e. g. for k = 2

P{Mn ≤ n− 2} = 1− 1(n−1+
c2
c1

n−2

) .
For small m we have to proceed differently. Let p

[gm−1]
n,m denote the probability that the maximal

edge weight Mn is less or equal m and that the outdegrees of nodes n − 1, . . . , n − m + 1 are given
by g1, . . . , gm−1.

Proposition 4. For n ≥ 2, the probabilities p
[gm−1]
n,m , with gm−1 ∈ Wm−1, satisfy the following system of

recurrence relations. For g1 = 1 we have

p[gm−1]
n,m =

m−Gm−1∑
i=0

A · p[g2,...,gm−1,i]
n−1,m , A :=


α

(α+1)(n−1)−1 ,

d
(d−1)(n−1)+1 .

(28)

For g1 = 0 we have

p[gm−1]
n,m =

∑
lm−1∈Wm(gm)

B · p[lm−1]
n−1,m +

m−1−Gm−1∑
i=0

C · p[g2,...,gm−1,i]
n−1,m ,

B = B(lm−1) :=


∑m−2

h=1 (gh+1 − lh) lh+α
(α+1)(n−1)−1 ,∑m−2

h=1 (gh+1 − lh) d−lh
(d−1)(n−1)+1 ,

C = C(i) :=


i+α

(α+1)(n−1)−1 ,

d−i
(d−1)(n−1)+1 .

(29)

with initial values p
[1]
2,m = 1 and p

[0]
2,m = 0 for all m.

13



By using our earlier results concerning Sn,1 we immediately obtain

pn,1 = P{Mn ≤ 1} = P{Sn,1 = n− 1} =


( α

α+1 )n−1

(n−1)!(n−1− 1
α+1

n−1 )
,

( d
d−1 )n−1

(n−1)!(n−1+ 1
d−1

n−1 )
.

Finally, we compute pn,2 by means of Proposition 4. Unlike the differential equations obtained in the
previous section, the differential equations for the generating functions

P [gm−1]
m (z) :=

∑
n≥2

p[gm−1]
n,m zn−1−1/(α+1)

(in the case of d-ary increasing tree, the exponent has to be modified to n− 1 + 1
d−1 ; this somewhat artifi-

cial choice results in simpler differential equations) will be linear with constant coefficients and therefore
explicitly solvable. We illustrate this in the case m = 2, where we get the recurrence relations

((α + 1)(n− 1)− 1)p[0]
n,2 = αp

[0]
n−1,2 + (α + 1)p[1]

n−1,2,

((α + 1)(n− 1)− 1)p[1]
n,2 = αp

[0]
n−1,2 + αp

[1]
n−1,2

for gports and

((d− 1)(n− 1) + 1)p[0]
n,2 = dp

[0]
n−1,2 + (d− 1)p[1]

n−1,2,

((d− 1)(n− 1) + 1)p[1]
n,2 = dp

[0]
n−1,2 + dp

[1]
n−1,2

for d-ary trees. Let us consider the latter case in more detail: introduction of the generating functions

P
[i]
2 (z) :=

∑
n≥2

p
[i]
n,2z

n−1+1/(d−1)

yields the differential equations

(d− 1)
d

dz
P

[0]
2 (z) = dP

[0]
2 (z) + (d− 1)P [1]

2 (z),

(d− 1)
d

dz
P

[1]
2 (z) = dP

[0]
2 (z) + dP

[1]
2 (z) + dz1/(d−1).

A particularly nice special case is d = 2, where one gets

P
[0]
2 (z) = 2 + z +

3
√

2− 4
4

e(2+
√

2)z − 3
√

2 + 4
4

e(2−
√

2)z,

P
[1]
2 (z) = −3− 2z +

3− 2
√

2
2

e(2+
√

2)z − 3 + 2
√

2
2

e(2−
√

2)z.

Putting these together, one obtains the simple explicit formula

pn,2 =
1

2n!

(
(2 +

√
2)n−1 + (2−

√
2)n−1

)
.

Generally, the asymptotics of the probability depend on the largest eigenvalue of a matrix of dimension
|Wm−1|; by Proposition 2, this is equal to 1

m+1

(
2m
m

)
. In the case m = 2, the largest eigenvalue is

α +
√

α2 + α

α + 1
resp.

d +
√

d2 − d

d− 1
,

but it seems that there is no nice explicit formula for the general case.
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