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THE NUMBER OF COMPOSITIONS INTO POWERS OF b

DANIEL KRENN AND STEPHAN WAGNER

Abstract. For a fixed integer base b ≥ 2, we consider the number of compositions of 1 into
powers of b and, related, the maximum number of representations a positive integer can have
as an ordered sum of powers of b.

We study the asymptotic growth of those numbers and give precise asymptotic formu-
lae for it, and thus improving an earlier result of Molteni. Our approach uses generating
functions, which we obtain from infinite transfer matrices.

1. Introduction

Representations of integers as sums of powers of 2 occur in various contexts, most notably
of course in the usual binary representation. Partitions of integers into powers of 2, i.e.,
representations of the form

` = 2a1 + 2a2 + · · ·+ 2an (1.1)

with nonnegative integers a1 ≥ a2 ≥ · · · ≥ an (not necessarily distinct!) are also known as
Mahler partitions (see [2, 10,13,17]).

The number of such partitions exhibits interesting periodic fluctuations. The situation
changes when compositions into powers of 2 are considered, i.e., when the summands are
arranged in an order. In other words, we consider representations of the form (1.1) without
further restrictions on the exponents a1, a2, . . . , an other than being nonnegative.

Motivated by the study of the exponential sum

s(ξ) =

τ∑
r=1

ξ2
r
,

where ξ is a primitive qth root of unity and τ the order of 2 modulo q (see [14]), Molteni [15]
recently studied the maximum number of representations a positive integer can have as an
ordered sum of n powers of 2. More generally, fix an integer b ≥ 2, let

Ub(`, n) = #{(a1, a2, . . . , an) ∈ Nn
0 | ba1 + ba2 + · · ·+ ban = `} (1.2)

be the number of representations of ` as an ordered sum of n powers of b, and let Wb(s, n)
be the maximum of Ub(`, n) over all positive integers ` with b-ary sum of digits equal to s. It
was shown in [14] that

W2(s, n)

n!
=

∑
k1,k2,...,kr≥1

k1+k2+···+kr=n

r∏
j=1

W2(1, kj)

kj !
, (1.3)
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which generalizes in a straightforward fashion to arbitrary bases b, so knowledge of Wb(1, n)
is the key to understanding Wb(s, n) for arbitrary s.

For the moment, let us consider the case b = 2. There is an equivalent characterisation of
W2(1, n) in terms of compositions of 1. To this end, note that the number of representations
of 2h` as a sum of powers of 2 is the same as the number of representations of ` for all
integers h if negative exponents are allowed as well (simply multiply/divide everything by
2h). Therefore, W2(1, n) is also the number of solutions to the Diophantine equation

2−k1 + 2−k2 + · · ·+ 2−kn = 1 (1.4)

with nonnegative integers k1, k2, . . . , kn, i.e., the number of compositions of 1 into powers of
2. This sequence starts with

1, 1, 3, 13, 75, 525, 4347, 41245, 441675, 5259885, 68958747, . . .

and is A007178 in the On-Line Encyclopedia of Integer Sequences [16].
The main goal of this paper is to determine precise asymptotics for the number of such

binary compositions as n→∞. Lehr, Shallit and Tromp [12] encountered these compositions
in their work on automatic sequences and gave a first bound, namely

W2(1, n)/n! ≤ K · 1.8n

for some constant K. It was mainly based on an asymptotic formula for the number of
partitions of 1 into powers of 2, which was derived independently in different contexts, cf.
[1, 6, 11] for example (or see the recent paper of Elsholtz, Heuberger and Prodinger [4] for a
detailed survey). This bound was further improved by Molteni, who gave the inequalities

0.3316 · (1.1305)n ≤ W2(1, n)/n! ≤ (1.71186)n−1 · n−1.6

in [14]. Giorgilli and Molteni [8] provided an efficient recursive formula for W2(1, n) and used
it to prove an intriguing congruence for it. In his recent paper [15], Molteni succeeded in
proving the following result, thus also disproving a conjecture of Knuth on the asymptotic
behaviour of W2(1, n).

Theorem I (Molteni [15]). The limit

γ = lim
n→∞

(W2(1, n)/n!)1/n = 1.192674341213466032221288982528755 . . .

exists.

Molteni’s argument is quite sophisticated and involves the study of the spectral radii of
certain matrices. The aim of this paper will be to present a different approach to the asymp-
totics ofW2(1, n) (and more generally,W2(s, n)) by means of generating functions that allows
us to obtain more precise information. Our main theorem reads as follows.

Theorem II. There exist constants α = 0.2963720490 . . . , γ = 1.1926743412 . . . (as in
Theorem I) and κ = 2/(3γ) < 1 such that

W2(1, n)

n!
= αγn(1 +O(κn)).

More generally, for every fixed s, there exists a polynomial Ps(n) with leading term αsns−1/(s−
1)! such that

W2(s, n) = Ps(n) γn(1 +O(κn)).

http://oeis.org/A007178
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We also prove a more general result for arbitrary bases instead of 2. Consider the Dio-
phantine equation

b−k1 + b−k2 + · · ·+ b−kn = 1. (1.5)

Multiplying by the common denominator and taking the equation modulo b− 1, we see that
there can only be solutions if n ≡ 1 mod b − 1, i.e., n = (b − 1)m + 1 for some nonnegative
integer m. We write qb(m) for the number of solutions (n-tuples of nonnegative integers
satisfying (1.5)) in this case. Note that qb(m) is also the maximum number of representations
of an arbitrary power of b as an ordered sum of n = (b − 1)m + 1 powers of b. We have the
following general asymptotic formula.

Theorem III. For every positive integer b ≥ 2, there exist constants α = αb, γ = γb and
κ = κb < 1 such that the number qb(m) of compositions of 1 into n = (b − 1)m + 1 powers
of b, which is also the maximum number Wb(1, n) of representations of a power of b as an
ordered sum of n powers of b, satisfies

Wb(1, n)

n!
=
qb(m)

n!
= αγm(1 +O(κm)).

More generally, the maximum number Wb(s, n) of representations of a positive integer with
b-ary sum of digits s as an ordered sum of n = (b − 1)m + 1 powers of b is asymptotically
given by

Wb(s, n)

n!
= Pb,s(m) γm(1 +O(κm)),

where Pb,s(m) is a polynomial with leading term αsms−1/(s− 1)!.

The key idea is to equip every partition of 1 into powers of 2 (or generally b) with a weight
that essentially gives the number of ways it can be permuted to a composition, and to apply
the recursive approach that was used to count partitions of 1: if p2(n) denotes the number of
such partitions into n summands, then the remarkable generating function identity

∞∑
n=1

p2(n)xn =

∑∞
j=0(−1)jq2

j−1∏j
i=1

q2
i−1

1−q2i−1∑∞
j=0(−1)j

∏j
i=1

q2i−1

1−q2i−1

(1.6)

holds, and this can be generalised to arbitrary bases b, see the paper of Elsholtz, Heuberger
and Prodinger [4]. In our case, we do not succeed to obtain a similarly explicit formula for
the generating function, but we can write it as the quotient of two determinants of infinite
matrices and infer analytic information from it. The paper is organised as follows: we first
describe the combinatorial argument that yields the generating function, a priori only within
the ring of formal power series. We then study the expression obtained for the generating
function in more detail to show that it can actually be written as the quotient of two entire
functions. The rest of the proof is a straightforward application of residue calculus (using the
classical Flajolet–Odlyzko singularity analysis [5]).

Finally, we consider the maximum of Ub(`, n) over all `, for which we write

Mb(n) = max
`≥1
Ub(`, n) = max

s≥1
Wb(s, n) .

This means that Mb(n) is the maximum possible number of representations of a positive
integer n as a sum of exactly n powers of b. Equivalently, it is the largest coefficient in the
power series expansion of (

x+ xb + xb
2

+ · · ·
)n
.
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When b = 2, Molteni [15] obtained the following bounds for this quantity:

(1.75218)n �M2(n) /n! ≤ (1.75772)n.

The gap between the two estimates is already very small; we improve this a little further by
providing the precise constant of exponential growth.

Theorem IV. For a certain constant ν = 1.7521819 . . . (defined precisely in Section 5), we
have

M2(n) /n! ≤ νn

for all n ≥ 1, and the constant is optimal: We have the more precise asymptotic formula

M2(n) /n! ∼ λn−1/2νn

with λ = 0.2769343 . . ..

Again, Theorem IV holds for arbitrary integer bases b ≥ 2 for some constants ν = νb
and λ = λb (it will be explained precisely how they are obtained). This is formulated as
Theorem V in Section 5.

2. The recursive approach

For our purposes, it will be most convenient to work in the setting of compositions of 1, i.e.,
we are interested in the number qb(m) of (ordered) solutions to the Diophantine equation (1.5),
where n = (b−1)m+1, as explained in the introduction. Our first goal is to derive a recursion
for qb(m) and some related quantities, which leads to a system of functional equations for the
associated generating functions.

Let k = (k1, k2, . . . , kn) be a solution to the Diophantine equation (1.5) with k1 ≤ k2 ≤
· · · ≤ kn. We will refer to such an n-tuple as a “partition” (although technically the ki are
only the exponents in a partition). We denote by c(k) the number of ways to turn it into a
composition. If a0 is the number of zeros, a1 the number of ones, etc. in k, then we clearly
have

c(k) =
n!∏
j≥0 aj !

The weight of a partition k, denoted by w(k), is now simply defined as

w(k) =
1∏

j≥0 aj !
=
c(k)

n!
.

Now let

Pm =
{
k = (k1, k2, . . . , kn)

∣∣∣n = (b− 1)m+ 1, b−k1 + b−k2 + · · ·+ b−kn = 1, k1 ≥ k2 ≥ · · · ≥ kn
}

be the set of all partitions of 1 with n = (b− 1)m+ 1 terms and, likewise,

Cm =
{
k = (k1, k2, . . . , kn)

∣∣∣n = (b− 1)m+ 1, b−k1 + b−k2 + · · ·+ b−kn = 1
}

the set of compositions. We obtain the formula

qb(m) = #Cm =
∑

k∈Pm

c(k) = n!
∑

k∈Pm

w(k).

for their number.
Our next step involves an important observation that is also used to obtain (1.6). Consider

an element k of Pm, and let r be the number of fractions in a partition coming from k
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Figure 2.1. The canonical tree associated with the partition/composition
1 = 3 · 2−2 + 2 · 2−3 of 1 into powers of 2. This partition has weight 1

12 and
corresponds to 10 distinct compositions.

with greatest denominator bkn . This number must be divisible by b (as can be seen by
multiplying by bkn) unless k is the trivial partition, so we can replace them by r/b fractions
with denominator bkn−1.

This process can be reversed. Given a partition k in which the greatest denominator
bkn occurs r times, we can replace s, 1 ≤ s ≤ r, of these fractions by bs fractions with
denominator bkn+1. This recursive construction can be illustrated nicely by a tree structure,
as in Figure 2.1 in the case b = 2. We have that each partition corresponds to a so-called
canonical tree (see [4]), and vice versa. If the partition that results from this process is
denoted by x′, then we clearly have

w(x′) = w(k) · r!

(r − s)! (bs)!
. (2.1)

Now we can turn to generating functions. Let Pm,r be the subset of Pm that only contains
partitions for which k1 = k2 = · · · = kr 6= kr+1 (i.e., in (1.5), the largest exponent occurs
exactly r times), and let Cm,r be the set of compositions obtained by permuting the terms of
an element of Pm,r. We define a generating function by

Qr(x) =
∑
m≥0

#Cm,r
((b− 1)m+ 1)!

xm =
∑
m≥0

∑
k∈Pm,r

c(k)

((b− 1)m+ 1)!
xm =

∑
m≥0

∑
k∈Pm,r

w(k)xm.

In view of the recursive relation described above and in particular (2.1), we have Q1(x) = 1
and Qr(x) = 0 for all other r not divisible by b, and for all s ≥ 1 we obtain

Qbs(x) =
∑
m≥0

∑
k∈Pm,bs

w(k)xm =
∑
r≥s

∑
m≥s

∑
k∈Pm−s,r

w(k)
r!

(r − s)! (bs)!
xm

= xs
∑
r≥s

r!

(r − s)! (bs)!

∑
m≥s

∑
k∈Pm−s,r

w(k)xm−s = xs
∑
r≥s

r!

(r − s)! (bs)!
Qr(x) .

(2.2)

This can be seen as an infinite system of linear equations. Define the infinite (column-)vector
V(x) = (Qb(x) , Q2b(x) , Q3b(x) , . . .)T , and the infinite matrix M(x) by its entries

mij =

{
(bj)!xi

(bj−i)! (bi)! if i ≤ bj,
0 otherwise.

Then the identity (2.2) above turns into the matrix identity

V(x) = M(x)V(x) +
x

b!
e1, (2.3)
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where e1 = (1, 0, 0, . . .)T denotes the first unit vector. Within the ring of formal power series,
this readily yields

V(x) =
x

b!
(I−M(x))−1e1, (2.4)

and the generating function

Q(x) =
∑
r≥1

Qr(x) =
∑
n≥0

qb(m)

((b− 1)m+ 1)!
xm

(recall that qb(m) is the number of compositions of 1 into n = (b − 1)m + 1 powers of b) is
given by

Q(x) = 1 + 1TV(x) = 1 +
x

b!
1T (I−M(x))−1e1.

For our asymptotic result, we will need the dominant singularity of Q(x), i.e., the zero of
det(I−M(x)) that is closest to 0. It is not even completely obvious that this determinant is
well-defined, but the reasoning is similar to a number of comparable problems.

As mentioned earlier, the determinant T (x) = det(I−M(x)) exists a priori within the ring
of formal power series, as the limit of the principal minor determinants. We can write it as

det(I−M(x)) =
∑
h≥0

(−1)h
∑

1≤i1<i2<···<ih
i1,...,ih∈N

xi1+i2+···+ih
∑
σ

(sgnσ)
h∏
k=1

(b σ(ik))!

(b σ(ik)− ik)! (bik)!
,

(2.5)
where the inner sum is over all permutations of {i1, i2, . . . , ih}. Write n = i1 + i2 + · · · + ih
for the exponent of x, and note that

h∏
k=1

(b σ(ik))!

(bik)!
= 1,

which is independent of σ.
Using the bounds in the appendix, we can show that the formal power series given by (2.5)

defines an entire function. The same is true (by the same argument) for

S(x) = 1T adj(I−M(x))e1 = det(M∗(x)),

where M∗ is obtained from I−M(x) by replacing the first row by 1. Hence we can write the
generating function Q(x) as

Q(x) = 1 +
x

b!

S(x)

T (x)
, (2.6)

where S(x) and T (x) are both entire functions. The singularities of Q(x) are thus all poles,
and it remains to determine the dominant singularity, i.e., the zero of T (x) = det(I−M(x))
with smallest modulus.

3. Analysing the generating function

Infinite systems of functional equations appear quite frequently in the analysis of com-
binatorial problems, see for example the recent work of Drmota, Gittenberger and Mor-
genbesser [3]. Alas, their very general theorems are not applicable to our situation as the
infinite matrix M does not represent an `p-operator (one of their main requirements), due to
the fact that its entries increase (and tend to ∞) along rows. However, we can adapt some
of their ideas to our setting.
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b α γ
2 0.296372 1.19268
3 0.279852 0.534502
4 0.236824 0.170268
5 0.196844 0.0419317
6 0.165917 0.00834837
7 0.142679 0.00138959
8 0.1249575 0.000198440

Table 4.1. Values (numerical approximations) for the constants of Theorem III.

Our goal in this section is the proof of the following lemma.

Lemma 3.1. For every b ≥ 2, the generating function Q(x) has a simple pole at a positive
real point ρb and no other poles with modulus < ρb + εb for some εb > 0.

(Sketch). By considering compositions of 1 consisting of b−1 copies of b−1, b−2, . . . , b1−m and
b copies of b−m, we conclude that the radius of convergence of Q(x) is at most (b− 1)!. Since
all coefficients are positive, Pringsheim’s theorem guarantees that the radius of convergence,
which we denote by ρb, is also a singularity (a pole since Q(x) is meromorphic).

By considering wr = limx→ρ−b
(x−ρb)pQr(x), where p is the pole order of ρb, it follows that

all functions Qr(x) have the same pole order (as Q(x)).
Now we split the identity (2.3) appropriately and obtain an equation

Q1(x) =
x

b!
(1−R(x))

for some function R(x), which has only positive coefficients. So R(x) = 1 has a unique
positive real solution, which can be shown is ρb (and is a simple zero). Moreover, by the
triangle inequality there are no complex solutions of R(x) = 1 with the same modulus, which
means that there are no further singularities of Q1(x) (and thus Q(x)) in a circle of radius
ρb + εb around 0 for suitable εb > 0. �

4. Getting the Asymptotics

In this section, we prove Theorems II and III, which give us constants αb, γb and κb < 1
such that for n = (b− 1)m+ 1

Wb(s, n)

n!
= Pb,s(m) γmb (1 +O(κmb ))

holds, where Pb,s(m) is a polynomial with leading term αsbm
s−1/(s− 1)!. Numerical values of

αb and γb can be found in Table 4.1.
The proof of both theorems is identical, except for the fact that different constants occur.

Thus we restrict ourselves here to b = 2.
The first terms of the power series (entire functions) we need to analyze are

S(x) = 1T adj(I −M(x))e1 = det(M∗(x)) = 1− 5
12x

2 − 1
6x

3 − 1
24x

4 + 1
45x

5 + · · ·
and

T (x) = det(I −M(x)) = 1− x− 1
2x

2 + 1
6x

3 + 1
8x

4 + 3
40x

5 + · · ·
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We denote the polynomials consisting of the first N terms of S(x) and T (x), respectively, by
SN (x) and TN (x), respectively.

Proof of Theorem II. By now, we know that the function Q(x) can be written as the quotient
of two entire functions, cf. Lemma A.1, and that it has exactly one simple pole at x0 inside
a disc of radius 3

2 by Lemma C.1 (and by checking that S(x0) 6= 0, which can be done by
means of interval arithmetic as in the proof of the lemma above). Thus we can directly apply
singularity analysis [5] in the meromorphic setting (cf. Theorem IV.10 of [7]) to obtain

q2(n)

(n+ 1)!
= [xn]Q(x) = − S(x0)

2T ′(x0)
x−n0 +O((2/3)n) .

Again, the evaluation of all constants involved can be done using interval arithmetic. By
the methods of Lemmas A.1 and A.3 and Remarks A.2 and A.4, which can be found in
the appendix, we get |T ′(x)− T ′60(x)| ≤ BT ′60 with BT ′60 = 8.397 · 10−12. We also have

|S(x)− S60(x)| ≤ BS60 with BS60 = 1.848 · 10−13 for the function in the numerator of Q(x).
We plug x0 into the approximations S60 and T ′60 and use these bounds to obtain precise values
of the constants that occur in our formula.

In the general case (arbitrary s), we use the relation
∞∑
n=1

Wb(s, n)

n!
xn =

( ∞∑
n=1

Wb(1, n)

n!
xn
)s
,

which follows from Equation (1.3). Once again, we make use of the fact here that the (ex-
ponential) generating function is meromorphic, cf. Section 2. The singular expansion can be
obtained from

∞∑
n=1

Wb(s, n)

n!
xn =

(
α

1− γx
+O

(
1

1− γκx

))s
,

which has αs/(1−γx)s as a main term. Once again, singularity analysis [5] yields the desired
asymptotic formula with main term as indicated in the statement of the theorem. �

We close this section with the following remark concerning the numerical calculations.

Remark 4.1. As mentioned before, we made heavy use of symbolic computations combined
with interval arithmetic to get reliable results (with guaranteed error estimates) for the cal-
culated constants. A more precise result (without the same numerical “certifiability”) would
be

W2(1, n) /n! = 0.296372049053529075588648642133 · 1.192674341213466032221288982529n

+0.119736335383631653495068554245 · 0.643427418149500070120570318509n

+0.0174783635210388007051384381833 · (−0.5183977738993377728627273570710)n

+ · · · .

5. Maximum Number of Representations

Let Ub(`, n) and Wb(s, n) be as defined in (1.2) in the introduction. In this section we
analyze the function M(n), which equals the maximum of Ub(`, n) over all `, i.e., we have

M(n) = max
`≥1
Ub(`, n) = max

s≥1
Wb(s, n) .

This gives the maximum number of representations any positive integer can have as the sum
of exactly n powers of b. We get the following result.
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b λ θ ν = 1/θ µ σ2

2 0.276935 0.570717 1.75219 0.448672 0.417758
3 0.343925 0.0228902 43.6868 0.0172140 0.000398709
4 2.19886 0.000521941 1915.93 0.0167143 9.19609 · 10−6

5 10.60438 0.00001096604 91190.7 0.0166792 3.93733 · 10−7

6 24.3884 2.21593 · 10−7 4.51280 · 106 0.0166709 7.43650 · 10−8

7 42.7928 4.38238 · 10−9 2.28187 · 108 0.0166681 2.41464 · 10−8

8 72.9659 8.54891 · 10−11 1.16974 · 1010 0.0166672 8.3044 · 10−9

Table 5.1. Values (numerical approximations) for the constants of Theorem V.

Theorem V. Let W (x) be the generating function

W (x) =

∞∑
n=1

Wb(1, n)

n!
xn.

Let θ be the unique positive real solution of the equation W (θ) = 1, and set ν = 1/θ. Then
we have

M(n) /n! ≤ νn (5.1)

for all n ≥ 1, and the constant is optimal: we have the more precise asymptotic formula

M(n) /n! = λn−1/2νn
(

1 +O
(
n−1/2

))
with λ =

(
θW ′(θ)σ

√
2π
)−1

, where σ > 0 with

σ2 =
W ′′(θ)

θW ′(θ)3
− 1

θW ′(θ)
+

1

θ2W ′(θ)2
.

Moreover, the maximum M(n) = maxs≥1 Wb(s, n) is attained at s = µn + O(1), where

µ = (θW ′(θ))−1.

In Table 5.1, we are listing numerical values for the constants of Theorem V.
We start with the upper bound (5.1) of Theorem V, which is easy to obtain. We prove the

following lemma.

Lemma 5.1. We have

M(n) /n! ≤ νn

for all n ≥ 1.

Proof. Recall that Equation (1.3) gives us

∞∑
n=1

Wb(s, n)

n!
xn =

( ∞∑
n=1

Wb(1, n)

n!
xn
)s

= W (x)s .

Since θ > 0 with W (θ) = 1, it clearly follows that

∞∑
n=1

Wb(s, n)

n!
θn = 1,
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hence Wb(s, n) /n! ≤ θ−n for all s and n, and taking the maximum over all s ≥ 1 yields

M(n) /n! = max
s≥1
Wb(s, n) /n! ≤ θ−n = νn,

which we wanted to show. �

It remains to prove the asymptotic formula for M(n). To this end, we consider the bivariate
generating function

G(x, u) = 1 +
∞∑
n=1

∞∑
s=1

Wb(s, n)

n!
xnus =

∞∑
s=0

W (x)s us =
1

1− uW (x)
.

In order to get maxs≥1 Wb(s, n), we show that the coefficients varying with s fulfil a local
limit law (as n tends to ∞). The maximum is then attained at its mean.

Proof of Theorem V (Sketch). Set

gn(u) =
∞∑
s=1

Wb(s, n)

n!
us.

We extract gn from the bivariate generating function G(x, u). In order to do so, we proceed
as in Theorem IX.9 (singularity perturbation for meromorphic functions) of Flajolet and
Sedgewick [7]. Note that by Lemma D.2 in the appendix the function G(x, 1) has a dominant
simple pole at x = θ. There exists a nonconstant function θ(u) with the following properties:
it is analytic at u = 1, it fulfils θ(1) = θ, and we have W (θ(u)) = 1/u.

Therefore, by Cauchy’s integral formula and the residue theorem, we obtain

gn(u) =
1

u θ(u)W ′(θ(u))

(
1

θ(u)

)n
+O

(
(θ + ε)−n

)
for u in a suitable neighbourhood of 1.

The get the statement of Theorem V, we use the local version of the quasi-power theorem,
see Theorem IX.14 of [7] or Hwang’s original paper [9]. �

The full version of the proof can be found in Appendix D.
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Appendix A. Bounds and Numerical calculations

In this section of the appendix the two formal power series

T (x) =
∑
n≥0

tnx
n = det(I −M(x)),

and
S(x) =

∑
n≥0

snx
n = 1T adj(I −M(x))e1

of Section 2 (in particular cf. Equations (2.5) and (2.6)) are analyzed. Other (similar) func-
tions arising on the way can be dealt with in a similar fashion.

Note that S(x) is the determinant of a matrix, which is obtained by replacing the first row
of I −M(x) by 1.

We find bounds for the coefficients tn and sn, which will be needed for numerical calculations
with guaranteed error estimates. Further, those bounds will tell us that the two functions
T (x) and S(x) are entire.

Lemma A.1. The coefficient tn satisfies the bound

|tn| ≤ exp

(
−b− 1

2
n log n− cn+ n g(n)

)
with c = (b − 1)

(
log b−1

2
√
2
− 1
)

and with a decreasing function g(n), which tends to zero as

n → ∞. In particular, the formal power series T defines an entire function. The same is
true for the formal power series S. More precisely, we have

|sn| ≤ |tn|+ b! |tn+1| .
Therefore, the coefficient sn satisfies the bound

|sn| ≤ (b! + 1) exp

(
−b− 1

2
n log n− cn+ n g(n)

)
.

Proof. Recall expression (2.5) for the determinant:

det(I−M(x)) =
∑
h≥0

(−1)h
∑

1≤i1<i2<···<ih
i1,...,ih∈N

xi1+i2+···+ih
∑
σ

(sgnσ)

h∏
k=1

(b σ(ik))!

(b σ(ik)− ik)! (bik)!
.

Now we have
h∑
k=1

(b σ(ik)− ik) = (b− 1)

h∑
k=1

ik = (b− 1)n.

Since a! ≥ exp(a(log a − 1)) for all positive integers a and f(x) = x(log x − 1) is a convex
function, we have

h∏
k=1

(b σ(ik)− ik)! ≥ exp

(
h∑
k=1

(b σ(ik)− ik) (log(b σ(ik)− ik)− 1)

)

≥ exp

(
h

(b− 1)n

h

(
log

(b− 1)n

h
− 1

))
= exp

(
(b− 1)n

(
log

(b− 1)n

h
− 1

))
.
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Since i1, i2, . . . , ih have to be distinct, we also have

n = i1 + i2 + · · ·+ ih ≥ 1 + 2 + · · ·+ h =
h(h− 1)

2
.

Thus h ≤
√

2n+ 1, which means that

h∏
k=1

(b σ(ik)− ik)! ≥ exp

(
b− 1

2
n log n+ (b− 1)n

(
log

b− 1

2
√

2
− 1

))
.

Now that we have an estimate for each term in (2.5), let us also determine a bound for the
number of terms corresponding to each exponent n.

It is well known that the number of partitions q(n) of n into distinct parts is asymptotically

equal to exp
(
π
√
n/3 +O(log n)

)
. In Robbins’s paper [18] we can find the upper bound1

q(n) ≤ π√
12n

exp

(
π√
3

√
n+

π2

12

)
.

For each choice of {i1, i2, . . . , ih}, there are at most h! permutations σ, which can be
bounded by Stirling’s formula by

h! ≤ exp

(
h log h− h+

1

2
log h+ 1

)
≤ exp

(√
n

2
log 8n+

3

4
log n+

9

4
log 2

)
.

It follows that the coefficient tn of T is bounded (in absolute values) by

exp
(
π√
3

√
n+ π2

12 + log π − 1
2 log(12n) +

√
n
2 log 8n+ 3

4 log n+ 9
4 log 2

)
exp

(
b−1
2 n log n+ (b− 1)n

(
log b−1

2
√
2
− 1
))

≤ exp

(
−b− 1

2
n log n− cn+ n g(n)

)
,

where g(n) was defined suitably. Since this bound decays superexponentially, the determi-
nant T is an entire function.

The same argumentation works for S. There, we split up into the summands where we
have i1 = 1 and all other summands. The second part (the summands with i1 > 1) can be
bounded by the absolute value of the n-th coefficient of det(I−M(x)). Each of the summands
with i1 = 1 equals a summand of det(I −M(x)) multiplied by the factor

−(b σ(i1)− i1)! (bi1)!

(b σ(i1))!x
= −b!

x

(b σ(1)− 1)!

(b σ(1))!
= −(b− 1)!

xσ(1)

or is zero (when σ(i1) = 1). Therefore, the summands occurring for the n-th coefficient of the
determinant S can be bounded by the absolute value of the coefficient of xn+1 of det(I−M(x))
times b!. This leads the desired result. The “therefore”-part follows, since g(n) is decreasing,
which can be checked easily. �

Remark A.2. The bounds of Lemma A.1 for the determinant (2.5) can be tightened: Instead

of the constant c = (b−1)
(

log b−1
2
√
2
− 1
)

we can use (b−1)
(

log b−1√
2+1/

√
n
− 1
)

. For an explicit

n, we can calculate g(n) more precisely by using the number of partitions of n into distinct

1Note that in the published version of Robbins [18] a constant in the main theorem is printed wrongly.
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parts (and not a bound for that number) and similarly by using the factorial directly instead
of Stirling’s formula.

An even better, but less explicit bound for the n-th coefficient of det(I −M(x)) is given
by

|tn| ≤
∑
h≥0

h!
∑

1≤i1<i2<···<ih
i1,...,ih∈N

i1+i2+···+ih=n

exp

(
−(b− 1)n

(
log

(b− 1)n

h
− 1

))
. (A.1)

Note that we do not know whether this bound is decreasing in n or not. However, for a specific
n, one can calculate this bound, and it is much smaller than the general bounds above. For
example, we have |t60| ≤ 5.96 · 10−14 with this method, whereas Lemma A.1 would give the
bound 1.58 · 106.

Lemma A.3. Let N ∈ N and x ∈ C, and let c and g(n) be as in Lemma A.1. Set

q =
eg(N) |x|
ec
√
N b−1

and suppose q < 1 holds. We get the bound∣∣∣∣∣∣
∑
n≥N

tnx
n

∣∣∣∣∣∣ ≤ qN

1− q

for the tails of the infinite sum in the determinant T . For the tails of the determinant S we
get an additional factor b! + 1 in the bound.

Proof. By Lemma A.1 we have

|tn| ≤ exp

(
−b− 1

2
n log n− cn+ n g(n)

)
.

Using monotonicity yields∣∣∣∣∣∣
∑
n≥N

tnx
n

∣∣∣∣∣∣ ≤
∑
n≥N

(
eg(n) |x|
ec
√
nb−1

)n
≤
∑
n≥N

(
eg(N) |x|
ec
√
N b−1

)n
= qN

1

1− q
.

�

Remark A.4. We can also get tighter bounds in Lemma A.3 using the ideas presented in
Remark A.2. We can even use combinations of those bounds: For M > N , we separate∣∣∣∣∣∣

∑
n≥N

tnx
n

∣∣∣∣∣∣ ≤
∑

M>n≥N
|tn| |x|n +

∣∣∣∣∣∣
∑
n≥M

tnx
n

∣∣∣∣∣∣
and use the bound (A.1) for M > n ≥ N and Lemma A.3 (tightened by some ideas from
Remark A.2) for the sum over n ≥M . For example, we obtain the tail-bound∣∣∣∣∣∣

∑
n≥60

tnx
n

∣∣∣∣∣∣ ≤ 8.051 · 10−14 + 3.627 · 10−14

for |x| ≤ 1, where M = 86 was chosen. (We will denote the constant on the right hand side of
the inequality above by BT60 , see the proof of Lemma C.1.) Using Lemma A.3 directly would
just give 0.0041.
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Appendix B. Supplement to Section 3

Proof of Lemma 3.1. First of all, we rule out the possibility that Q(x) is entire by providing
a lower bound for the coefficients qb(m). To this end, consider compositions of 1 consisting

of b− 1 copies of b−1, b−2, . . . , b1−m and b copies of b−m. Since there are ((b−1)m+1)!
((b−1)!)m−1b!

possible

ways to arrange them in an order, we know that

qb(m) ≥ ((b− 1)m+ 1)!

((b− 1)!)m−1b!
,

from which it follows that the radius of convergence of Q(x) is at most (b − 1)!. Since all
coefficients are positive, Pringsheim’s theorem guarantees that the radius of convergence,
which we denote by ρb, is also a singularity. We already know that Q(x) is meromorphic
(being the quotient of two entire functions), hence ρb is a pole singularity. Let p be the pole
order, and set wr = limx→ρ−b

(x−ρb)pQr(x), which must be nonnegative and real. Multiplying

the matrix equation (2.3) by (x − ρb)p and taking the limit, we see that w = (w1, w2, . . .)
T

is a right eigenvector of M(ρb). Since all entries in M(ρb) are nonnegative and those on and
above the main diagonal are strictly positive, it follows that wr > 0 for all r, i.e., all functions
Qr(x) have the same pole order (as Q(x)).

Now we split the identity (2.3). Let m11 = x/(b − 1)! be the first entry of M(x), c the
rest of the first column, r the rest of the first row and M the matrix obtained from M by
removing the first row and the first column. Moreover, V is obtained from V by removing
the first entry Q1(x). Now we have

Q1(x) = m11Q1(x) + rV +
x

b!
(B.1)

and
V = cQ1(x) + MV,

from which we obtain
V = (I−M)−1cQ1(x) . (B.2)

Once again, the inverse (I−M)−1 exists a priori in the ring of formal power series, but one
can show that det(I −M) is in fact an entire function, so the entries of the inverse are all
meromorphic (see again the calculations in the appendix). Moreover, (I −M)−1c cannot
have a singularity at ρb or at any smaller positive real number, bacause if this is the case, the
right hand side of (B.2) would have a higher pole order at that point than the left hand side.
Since it has positive coefficients only (the inverse can be expanded into a geometric series), its
entries must be analytic in a circle of radius > ρb around 0. Now we substitute (B.2) in (B.1)
to obtain

Q1(x) = m11Q1(x) + r(I−M)−1cQ1(x) +
x

b!
and thus

Q1(x) =
x

b!

(
1−m11 − r(I−M)−1c

)−1
.

Note that
R(x) = m11 + r(I−M)−1c

has only positive coefficients, so R(x) = 1 has a unique positive real solution, which must be
ρb (recalling that R(x) is analytic in a circle of radius > ρb around 0). Of course, R′(ρb) > 0,
so its multiplicity is 1, which means that ρb is a simple pole. Moreover, by the triangle
inequality there are no complex solutions of R(x) = 1 with the same modulus, which means
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that there are no further singularities of Q1(x) (and thus Q(x)) in a circle of radius ρb + εb
around 0 for suitable εb > 0. �

Appendix C. Supplement to Section 4

Lemma C.1. The function T (x) has exactly one zero with |x| < 3
2 . This simple zero lies at

x0 = 0.83845184342 . . . .

Remark C.2. Note that 1/x0 = γ = 1.192674341213 . . . .

Proof. We have |T (x)− T60(x)| ≤ BT60 with BT60 = 1.17 · 10−13, see Lemma A.3 and Re-
mark A.4 in the appendix. On the other hand, we have |T60(x)| > 0.062 for |x| = 3

2 (the
minimum is attended on the positive real axis). Therefore, the functions T (x) and T60(x)
have the same number of zeros inside a disc |x| < 3

2 by Rouché’s theorem (0.062 > BT60).
This number equals one, since there is only one zero, a simple zero, of T60(x) with absolute
value smaller than 3

2 .
To find the exact position of that zero consider T60(x)+BT60I with the interval I = [−1, 1].

Using a bisection method (starting with 3
2I) together with interval arithmetic, we find an

interval that contains x0. From this, we can extract correct digits of x0. �

Appendix D. Supplement to Section 5

In this section of the appendix we gather some properties of the solutions x = θ(u) of the
functional equation W (x) = 1/u.

Lemma D.1. For u ∈ C with |u| ≤ 1, each root x of W (x) = 1/u fulfils |x| ≥ θ, where
equality holds only if x is real and positive.

Proof. Let u ∈ C with |u| ≤ 1. By the nonnegativity of the coefficients of F and by using the
triangle inequality, we have

W (θ) = 1 ≤ |1/u| = |W (x)| ≤W (|x|) .
The first part of the lemma follows, since W is increasing on the positive real line.

Since the coefficients of W are indeed positive, the power series W is aperiodic (i.e., the gcd
of all exponents whose associated coefficients are not zero is 1), and therefore, the inequality
|W (x)| ≤ W (|x|) is strict, i.e., we have W (θ) < W (|x|), unless x is real and positive. Again,
monotonicity finishes the proof. �

The following lemma tells us that the dominant root of W (x) = 1 is the simple zero θ.

Lemma D.2. There exists exactly one root of W (x) = 1 with |x| ≤ θ, namely θ. Further,
θ is a simple root, and there exists an ε > 0 such that θ is the only root of W (x) = 1 with
absolute value less than θ + ε.

Proof. By Lemma D.1 with u = 1, the positive real θ is the unique root of W (x) = 1 with
minimal absolute value. This proves the first part of the lemma.

Using Theorem III yields

|W (x)| ≤ O

( ∞∑
n=1

(γ |x|)n
)
,

which is bounded for |x| < 1/γ. Therefore, the radius of convergence r ofW is at least 1/γ > θ,
and W is holomorphic and thus analytic for |x| < r. Since zeros of analytic functions do not
accumulate, the existence of an ε > 0 as desired follows.
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The root θ is simple, since W is strictly increasing on the interval (0, r) (all coefficients of
W are positive). �

Lemma D.3. For u ∈ C let |θ(u)| = |x|, where x is a root of W (x) = 1/u with smallest
absolute value. Then, for ϕ ∈ [−π, π], the function

∣∣θ(eiϕ)
∣∣ attains a unique minimum at

ϕ = 0.

Proof. Set u = eiϕ and use Lemma D.1: we obtain |θ(u)| ≥ θ. If ϕ 6= 0, then θ(u) is not a
positive real number, therefore we have |θ(u)| > θ. �

Proof of Theorem V. Set

gn(u) =

∞∑
s=1

Wb(s, n)

n!
us.

We extract gn from the bivariate generating function G(x, u). In order to do so, we proceed
as in Theorem IX.9 (singularity perturbation for meromorphic functions) of Flajolet and
Sedgewick [7]. First, we check that all requirements are fulfilled.

By Lemma D.2 in the appendix, the function G(x, 1) has a dominant simple pole at x = θ
and no other singularities with absolute values smaller than θ+ε. The denominator 1−uW (x)
is analytic and not degenerated at (x, u) = (θ, 1); the latter since its derivative with respect
to x is W ′(θ) 6= 0 (θ is a simple root of F ) and its derivative with respect to u is −W (θ) =
−1 6= 0. Thus, there exists a nonconstant function θ(u) with the following properties: it is
analytic at u = 1, it fulfils θ(1) = θ, and we have W (θ(u)) = 1/u.

Therefore, by Cauchy’s integral formula and the residue theorem, we obtain

gn(u) = −Res

(
1

1− uW (x)
x−n−1, x = θ(u)

)
+

1

2πi

∮
|x|=θ+ε

G(x, u)
dz

zn+1

=
1

u θ(u)W ′(θ(u))

(
1

θ(u)

)n
+O

(
(θ + ε)−n

)
for u in a suitable neighbourhood of 1.

Next, use the local version of the quasi-power theorem, see Theorem IX.14 of [7] or Hwang’s
original paper [9]. Set

A(u) =
(
u θ(u)W ′(θ(u))

)−1
and

B(u) = (θ(u))−1 ,

so that gn(u) = A(u)B(u)n + O((θ + ε)−n). Again, we have to check some requirements.
Since θ(u) 6= 0 for u in a suitable neighbourhood of 0, the function B is analytic at zero.
Since gn(u) is analytic at 0 (for example, by Lemma 5.1), so is the function A. Moreover, we
use the fact that θ

(
eiϕ
)

has a unique minimum at ϕ = 0 (cf. Lemma D.3).
As a result, Theorem IX.14 of [7] gives us

Wb(s, n)

n!
=
A(1)B(1)n

σ
√

2πn
exp

(
− z2

2σ2

)(
1 +O

(
1√
n

))
=

νn

θW ′(θ)σ
√

2πn
exp

(
− z2

2σ2

)(
1 +O

(
1√
n

))
,

(D.1)

where z = (s− µn)/
√
n. Mean and variance can be calculated as follows. We have

µ =
B′(1)

B(1)
= −θ

′(1)

θ(1)
=

1

θW ′(θ)
,
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and σ > 0 is determined by

σ2 =
B′′(1)

B(1)
+
B′(1)

B(1)
−
(
B′(1)

B(1)

)2

= −θ
′′(1)

θ(1)
− θ′(1)

θ(1)
+

(
θ′(1)

θ(1)

)2

=
W ′′(θ)

θW ′(θ)3
− 1

θW ′(θ)
+

1

θ2W ′(θ)2
,

where we used implicit differentiation of W (θ(u)) = 1/u to get expressions for θ′(u) and θ′′(u).

When s = µn + O(1), the value Wb(s,n)
n! is maximal with respect to s. Its value can then

be calculated by (D.1). �
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