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Abstract. A partition of a positive integer n is a finite sequence of positive integers
a1, a2, . . . , ak such that a1 +a2 + · · ·+ak = n and ai+1 ≥ ai for all i. Let d be a fixed
positive integer. We say that we have an ascent of size d or more if ai+1 ≥ ai + d.
We determine the mean, the variance and the limiting distribution of the number of
ascents of size d or more in the partitions of n.

1. Introduction

A partition of a positive integer n is a finite sequence of positive integers a1, a2, . . . , ak

such that a1 + a2 + · · · + ak = n and ai+1 ≥ ai for all i. We say n is the size of the
partition, ai is the ith part of the partition and we call p(n) the number of partitions
of n.
For instance the 11 partitions of n = 6 are 6, 15, 24, 33, 222, 123, 114, 1113, 1122,
11112 and 111111, i.e., p(6) = 11.
We define an ascent of size d or more whenever ai+1 ≥ ai + d. In this paper we aim to
look at the distribution of the number of ascents of size d or more in the partitions of
n. The case for d = 0, equivalent to the number of parts in partitions of n, was first
studied by P. Erdős and J. Lehner in [5]. Henceforth we will restrict our attention to
the case where d ≥ 1.

In Section 2, we find an expression for the mean number of ascents of size d or more
in the partitions of n. For this, we use a generating function and Ferrer’s diagrams. If
αn is the number of ascents of size d or more in a random partition of n, we find that

E(αn) =

∑

m≥1

p(n − md)

p(n)
.

In Section 3, we proceed to find the variance V(αn), where for d ≥ 1

V(αn) =
1

p(n)

∑

i≥0

(i + 1)p(n − d(3 + i)) +
1

p(n)

∑

i≥0

p(n − d(3 + 2i)) + E(αn) − E(αn)2.

In Section 4, we find an asymptotic expression for the mean and prove that as n → ∞

E(αn) ∼
√

6n

π d
+

3

π2 d
− 1

2
.
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In Section 5, we find the following asymptotic expression for the variance:

V(αn) ∼
√

6n (dπ2 − 6)

2d2π3
+

3

2dπ2
− 18

d2π4
.

Finally, in Section 6, we show using the saddle point method that asymptotically this
number of ascents follows a normal distribution with mean and variance found in Sec-
tions 4 and 5 respectively.

2. Generating function: Ferrers’ diagrams

In this section, we find a connection between partitions with an ascent of size d and
partitions with a part of multiplicity d. To show this, we first need to consider the
Ferrers graphical representation of a partition, which is a collection of lattice points
where each row of dots corresponds to a part of the partition, as seen in [1].
For instance, the Ferrers graphical representation of the partition of 13, 1+2+5+5 is

1 •
2 • •
5 • • • • •
5 • • • • •

4 3 2 2 2

If we add up the number of dots in each column, we obtain another partition called
the conjugate of the original partition. In our example, the conjugate of 1+2+5+5 is
4+3+2+2+2.
The partition 1+2+5+5 has an ascent of size 3 between the parts 2 and 5. This, in
turn, is reflected in the conjugate with a part of multiplicity 3. The part 2 is repeated
3 times.
The idea can be generalised, i.e., the conjugate of a partition with an ascent of size d or
more has a part with multiplicity of at least d. Let us look at the generating function
where z marks the size of the partition and u marks the parts with multiplicity of at
least d.

Gd(z, u) =
∏

i≥1

(

1 + zi + z2i + · · · + z(d−1)i + u(zdi + z(d+1)i + · · · )
)

=
∏

i≥1

(

1 − zdi

1 − zi
+ u

zdi

1 − zi

)

(2.1)

= P (z)
∏

i≥1

(

1 + (u − 1)zdi
)

, (2.2)

where P (z) =
∏

j≥1

1
1−zj =

∑

n≥0

p(n)zn.
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As usual, to obtain the number of parts with multiplicity of at least d, we differentiate
with respect to u and put u = 1, to obtain

∂

∂u
Gd(z, u)

∣

∣

∣

u=1
= P (z)

∑

i≥1

zdi = P (z)
zd

1 − zd
. (2.3)

However, this is perhaps not totally correct! Let’s look at, for instance, the partition
of 9, 4+5.

4 • • • •
5 • • • • •

2 2 2 2 1

It has no ascent of size d = 3 or more, but its conjugate does have a part 2, of
multiplicity of 4 which is greater than 3. The above formula fails when the partition
has a first part of size greater or equal to d, here the first part 4 ≥ 3 = d. For
convenience, we will count a first element that is ≥ d as an ascent as well (one could
argue that this is an ascent from 0), which simplifies the calculations. Asymptotically,
this does not make a difference, except for the case d = 1; but even in this case the
difference is marginal. Hence the final number of ascents is

[zn]

(

P (z)
zd

1 − zd

)

= [zn−d]
1

1 − zd

∑

n≥0

p(n)zn (2.4)

=
∑

m≥1

p(n − md). (2.5)

The expected number E(αn) of ascents per partition of n of size d or more is the number
of ascents obtained in (2.5) divided by the total number p(n) of partitions of n, hence:

Theorem 1. The expected number of ascents per partition of n of size d or more is

E(αn) =

∑

m≥1

p(n − md)

p(n)
for d ≥ 1. (2.6)

Wilf in [9] studied the number of distinct part sizes in partitions, this corresponds to
ascents of size d or more when d = 1. Knopfmacher and Warlimont in [7] studied
details of gaps in partitions which is equivalent to ascents of size 2 or more. Also
Corteel et al. in [3] have investigated various questions relating to distinct part sizes
and multiplicity of parts in partitions.

3. Variance of the number of ascents of size d or more in the

partitions of n

Again we shall use the generating function found in Section 2. Differentiating

Gd(z, u) =
∏

i≥1

(

1 − zid

1 − zi
+ u

zid

1 − zi

)

(3.1)
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twice with respect to u and setting u = 1, we obtain

∂2

∂u2
Gd(z, u)

∣

∣

∣

u=1

=
∏

i≥1

1

1 − zi

(

zd zd

1 − zd
− z2d + z2d zd

1 − zd
− z4d + z3d zd

1 − zd
− z6d + · · ·

)

=
∑

i≥0

p(i)zi

(

(

zd

1 − zd

)2

− z2d

1 − z2d

)

.

Hence

[zn]
∂2

∂u2
Gd(z, u)

∣

∣

∣

u=1
= [zn]

∑

i≥0

p(i)zi 2z3d

(1 − zd)(1 − z2d)

= [zn−3d]
∑

i≥0

p(i)zi

(

1

(1 − zd)2
+

1

1 − z2d

)

= [zn−3d]
∑

j≥0

p(j)zj

(

∑

i≥0

(i + 1)zid +
∑

i≥0

z2id

)

=
∑

i≥0

(i + 1)p(n − d(3 + i)) +
∑

i≥0

p(n − d(3 + 2i)). (3.2)

It follows that the variance is

V(αn) =
1

p(n)

(

[zn]
∂2

∂u2
Gd(z, u)

∣

∣

∣

u=1
+ [zn]

∂

∂u
Gd(z, u)

∣

∣

∣

u=1

)

− E(αn)2

=
1

p(n)

∑

i≥0

(i + 1)p(n − d(3 + i)) +
1

p(n)

∑

i≥0

p(n − d(3 + 2i)) + E(αn) − E(αn)2,

so we have the following theorem:

Theorem 2. The variance of the number of ascents per partition of n of size d or

more is for d ≥ 1

V(αn) =
1

p(n)

∑

i≥0

(i + 1)p(n − d(3 + i)) +
1

p(n)

∑

i≥0

p(n − d(3 + 2i)) + E(αn) − E(αn)2.

4. Asymptotic expressions for the mean

It is of interest to see how the expected value E(αn) grows asymptotically as n → ∞,
where

E(αn) =

∑

m≥1

p(n − md)

p(n)
for d ≥ 1 .

Let n ≡ r(mod d) for d ≥ 2 and set r = 0 if d = 1. Then

∑

m≥1

p(n − md) =

n−d−r
d
∑

m=0

p(md + r).
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We use the asymptotic estimate for p(n)

p(n) = eπ
√

2n
3

(

1

4
√

3n
− 72 + π2

288
√

2πn3/2
+ O(n−2)

)

, (4.1)

which can be found by expanding the dominant term of Rademacher’s series represen-
tation (see [2] for instance) for p(n).
By means of the Euler-MacLaurin summation formula we have the following result

n
∑

j=1

eα
√

j

jβ
= eα

√
n

[

2

αnβ− 1
2

+

(

2(2β − 1)

α2
+

1

2

)

1

nβ
+ O(n−β−1/2)

]

. (4.2)

Thus, working up to order O( 1√
n
),

p(md + r) ∼ 1

4
√

3

eπ

√

2(md+r)
3

md + r
− 1√

2 π

eπ
√

2(md+r)
3 (72 + π2)

288(md + r)3/2
using (4.1)

=
1

4
√

3

eπ
√

2md
3

(1+ r
md

)1/2

md(1 + r
md

)
− 72 + π2

288
√

2 π

eπ
√

2md
3

(1+ r
md

)1/2

(md)3/2(1 + r
md

)3/2

∼ 1

4
√

3

eπ
√

2md
3

(1+ r
2md

)

md(1 + r
md

)
− 72 + π2

288
√

2 π

eπ
√

2md
3

(1+ r
2md

)

(md)3/2(1 + r
md

)3/2

∼ 1

4
√

3

eπ
√

2md
3

md

(

1 +
πr√
6md

)

(

1 − r

md

)

− 72 + π2

288
√

2 π

eπ
√

2md
3

(md)3/2

(

1 +
πr√
6md

)(

1 − 3r

2md

)

.

Thus

p(md + r) ∼ 1

4
√

3

eπ
√

2md
3

md

(

1 +
πr√
6md

)

− 72 + π2

288
√

2 π

eπ
√

2md
3

(md)3/2
.

We now sum over m from m = 1 as the m = 0 term is insignificant. For the accuracy

that is required we shall only take the terms that have β = 1 or 3/2 and α = π
√

2d
3

in

(4.2), the expansion of
n
∑

m=1

eα
√

m

mβ and obtain

n−d−r
d
∑

m=1

p(md + r)

∼ 1

4
√

3 d

n−d−r
d
∑

m=1

eπ
√

2md
3

m
+

π r

12
√

2 d3/2

n−d−r
d
∑

m=1

eπ
√

2md
3

m3/2
− 72 + π2

288
√

2 π d3/2

n−d−r
d
∑

m=1

eπ
√

2md
3

m3/2

∼ 1

4
√

3
eπ
√

2n
3 e

−π d+r√
6n

[√
6 (1 + d+r

2n
)

πd
√

n
+

(

3

π2 d
+

1

2

)

1 + d+r
n

n

]

+
π r

12
√

2
eπ
√

2n
3 e

−π d+r√
6n

[√
6 (1 + d+r

n
)

πdn
+

(

6

π2 d
+

1

2

)

1 + 3(d+r)
2n

n3/2

]

− 72 + π2

288
√

2 π
eπ
√

2n
3 e

−π d+r√
6n

[√
6 (1 + d+r

n
)

πdn
+

(

6

π2 d
+

1

2

)

1 + 3(d+r)
2n

n3/2

]

. (4.3)
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We are ready to divide by p(n) using

1

p(n)
∼ 4

√
3 n

eπ
√

2n
3

[

1 +
(72 + π2)

√
3

72
√

2n π

]

. (4.4)

We also estimate

e
−π d+r√

6n by 1 − π(d + r)√
6n

. (4.5)

Thus, keeping only the terms involving
√

n and constants we obtain after multiplying
(4.3) by (4.4) and substituting (4.5)

n−d−r
d
∑

m=1

p(md + r)

p(n)
∼

√
6n

πd
+

72 + π2

24 π2d
+

3

π2 d
+

1

2
− d + r

d
+

r

d
− 72 + π2

24 π2 d

∼
√

6n

π d
+

3

π2 d
− 1

2
.

So, finally

Theorem 3. The expected number of ascents of size d or more in the partitions of n
is

E(αn) ∼
√

6n

π d
+

3

π2 d
− 1

2
as n → ∞.

5. Asymptotic expressions for the variance

Theorem 4. For d ≥ 1 the variance for the number of ascents of size d or more

satisfies

V(αn) ∼
√

6n (dπ2 − 6)

2d2π3
+

3

2dπ2
− 18

d2π4
.

Proof. Since the sums in the variance include terms of magnitude np(n) we require
more precise asymptotic estimates than in the case of the mean in order to correctly
compute the constant term in the variance. For the number of partitions p(n) we use
the asymptotic estimate

p(n) = eπ
√

2n
3

(

1

4
√

3n
− 72 + π2

288
√

2πn3/2
+

432 + π2

27648
√

3n2
+ O(n−5/2)

)

(5.1)

which can be found by further expanding the dominant term of Rademacher’s series
representation for p(n).

Via the Euler-Maclaurin summation formula we get the more precise asymptotic for-

mula for
∑

1≤k≤n

e
√

kα

kβ

∑

1≤k≤n

e
√

kα

kβ
∼ e

√
nα

(

2

αnβ− 1
2

+
α2 + 8β − 4

2α2 nβ
+

α4 + 96β(2β − 1)

24α3 nβ+ 1
2

)

+e
√

nα

(

−β (α4 − 192β2 + 48)

12α4 nβ+1
− α8 − 46080β (4β3 + 4β2 − β − 1)

5760α5 nβ+ 3
2

)

. (5.2)
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For the first sum in the variance

s1 :=
1

p(n)

∑

i≥0

p(n − d(3 + 2i))

we can use the same asymptotic estimates as used to find the mean to obtain

s1 ∼

√

3
2

√
n

dπ
+

3

2dπ2
− 1.

For the other sum in the variance the more precise asymptotic estimates (5.1) and (5.2)
are required. For

s2 :=
1

p(n)

∑

i≥0

(i + 1)p(n − d(3 + i)) =
1

p(n)

n−3d−r
d
∑

m=0

(−2d + n − r

d
− m

)

p(dm + r)

where n − d(3 + i) ≡ r (mod d) with 0 ≤ r ≤ d − 1, we eventually obtain

s2 ∼
6n

d2π2
+

√
6 (3 − 2dπ2)

√
n

d2π3
+

11π4d2 − 3(24d + 1)π2 + 108

12d2π4
+ 1. (5.3)

We must also compute a more precise estimate for the mean value

E(αn) =

√
6
√

n

dπ
+

3

dπ2
− 1

2
+

2π4d2 − 3π2 + 216

24
√

6d
√

nπ3
.

The 1/
√

n term above is needed in order to find the constant term in E(αn)2.
This gives for the variance the estimate

V(αn) = s1 + s2 + E(αn) − E(αn)2 ∼
√

6n (dπ2 − 6)

2d2π3
+

3

2dπ2
− 18

d2π4

as claimed.

6. Limiting distribution

In this section, we are going to show that the number of ascents of size at least d in
a random number partition asymptotically follows a normal law. The proof will run
along the same lines as in Hwang’s paper [6]. However, since our setting is less general
than Hwang’s, some of his methods can be replaced by simpler ones. In order to make
this paper self-contained, we are going to give almost all details. Again, we start with
the generating function

Gd(z) := Gd(z, u) =
∞
∏

j=1

1 + (u − 1)zdj

1 − zj
.

Then we know that

Qn(u) := [zn]Gd(z) =
1

2π

∫ π

−π

z−n
0 e−intGd(z0e

it, u) dt

for an arbitrary positive real number z0 < 1. We are going to consider the integrand’s
logarithm

gd(z) =
∞
∑

j=1

log(1 + (u − 1)zdj) −
∞
∑

j=1

log(1 − zj) − n log z.
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In order to apply the saddle point method, we have to determine z0 in such a way that

g′(z0) =
∞
∑

j=1

dj(u − 1)zdj−1
0

1 + (u − 1)zdj
0

+
∞
∑

j=1

jzj−1
0

1 − zj
0

− n

z0

= 0. (6.1)

We write e−β for z0, which yields the equation
∞
∑

j=1

dj(u − 1)e−djβ

1 + (u − 1)e−djβ
+

∞
∑

j=1

je−jβ

1 − e−jβ
=

∞
∑

j=1

dj(u − 1)

u − 1 + edjβ
+

∞
∑

j=1

j

ejβ − 1
= n.

Next, we want to apply the Euler-Maclaurin summation formula. To this end, we use
the following integral representation of the second-order polylogarithm Li2(x) (which

can be written as
∑

k≥1
xk

k2 for |x| < 1, see [8]):

Lemma 1.
∫ ∞

0

t dt

v + et
= −Li2(−v)

v

for v ≥ −1. In the special cases v = −1 and v = 0, we obtain π2

6
and 1 respectively.

In the following, we write v for u − 1. Furthermore, we fix a real number δ > 0
and assume δ ≤ u ≤ δ−1. Thus, “uniformly” is supposed to mean “uniformly for
δ ≤ u ≤ δ−1” or “uniformly for δ−1 ≤ v ≤ δ−1−1”. We have, by the Euler-Maclaurin
summation formula,

∞
∑

j=1

j

ejβ − 1
=

π2

6β2
− 1

2β
+ O(1),

and
∞
∑

j=1

djv

v + edjβ
= −Li2(−v)

dβ2
+ Oδ(1),

the latter holding uniformly in v. Hence, we can write equation (6.1) as
(

π2

6
− Li2(1 − u)

d

)

β−2 − 1

2β
+ Oδ(1) = n,

which means that the solution to this equation is z0 = e−β, where

β =
b√
n
− 1

4n
+ Oδ(n

−3/2).

b = b(u) is used as an abbreviation for
√

π2

6
− Li2(1−u)

d
in this and the subsequent

formulas.
In a similar manner, we have

−
∞
∑

j=1

log(1 − e−jβ) =
π2

6β
+

1

2
log

(

β

2π

)

+ O(β)

and
∞
∑

j=1

j2e−jβ

(1 − e−jβ)2
=

π2

3β3
− 1

2β2
+ O(β)
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as well as
∞
∑

j=1

log(1 + ve−djβ) = −Li2(−v)

dβ
− 1

2
log(1 + v) + Oδ(β)

and
∞
∑

j=1

j2e−djβ

(1 + ve−djβ)2
= −2 Li2(−v)

d3vβ3
+ Oδ(β),

uniformly in v. Thus we have

gd(e
−β) =

∞
∑

j=1

log(1 + (u − 1)e−djβ) −
∞
∑

j=1

log(1 − e−jβ) + nβ

=

(

π2

6
− Li2(1 − u)

d

)

β−1 +
1

2
log

(

β

2πu

)

+ nβ + Oδ(β)

= 2b
√

n +
1

2
log

(

b

2πu
√

n

)

+ Oδ(n
−1/2)

and

g′′(e−β) =
∞
∑

j=1

(

d2j2(u − 1)e−(dj−2)β

(1 + (u − 1)e−djβ)2
− dj(u − 1)e−(dj−2)β

1 + (u − 1)e−djβ
+

j2e−(j−2)β

(1 − e−jβ)2
− je−(j−2)β

1 − e−jβ

)

+ ne2β

= e2β

(

n +
∞
∑

j=1

d2j2(u − 1)e−djβ

(1 + (u − 1)e−djβ)2
− dj(u − 1)e−djβ

1 + (u − 1)e−djβ
+

j2e−jβ

(1 − e−jβ)2
− je−jβ

1 − e−jβ

)

=
2b2

β3
+ Oδ(β

−2) =
2n3/2

b
+ Oδ(n).

It is also not difficult to show that g′′′(e−β) = Oδ(n
2). All the estimates hold uniformly

in u.
Now we need a uniform estimate of Gd(z) when z is away from the saddle point. We
set z = z0e

it and use the abbreviation w = 1 − u. Then we have

∣

∣

∣

∣

Gd(z0)

Gd(z)

∣

∣

∣

∣

2

=
∏

j≥1

∣

∣

∣

∣

∣

1 − wzdj
0

1 − wzdj

∣

∣

∣

∣

∣

2
∏

j≥1

∣

∣

∣

∣

1 − zj

1 − zj
0

∣

∣

∣

∣

2

≥
∏

j≥1

min



1,

∣

∣

∣

∣

∣

1 − wzdj
0

1 − wzdj

∣

∣

∣

∣

∣

2




∏

j≥1

∣

∣

∣

∣

1 − zj

1 − zj
0

∣

∣

∣

∣

2

≥
∏

j≥1

min



1,

∣

∣

∣

∣

∣

1 − wzj
0

1 − wzj

∣

∣

∣

∣

∣

2




∣

∣

∣

∣

1 − zj

1 − zj
0

∣

∣

∣

∣

2

=
∏

j≥1

min

(

1,
(1 − wzj

0)
2

(1 − wzj
0)

2 + 2wzj
0(1 − cos(tj))

)

(1 − zj
0)

2 + 2zj
0(1 − cos(tj))

(1 − zj
0)

2

=
∏

j≥1

(

1 + max

(

0,
2wzj

0(1 − cos(tj))

(1 − wzj
0)

2

))−1(

1 +
2zj

0(1 − cos(tj))

(1 − zj
0)

2

)
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≥
∏

j≥1

(

1 + max

(

0,
2wzj

0(1 − cos(tj))

(1 − zj
0)

2

))−1(

1 +
2zj

0(1 − cos(tj))

(1 − zj
0)

2

)

.

≥
∏

√
n≤j≤2

√
n

(

1 + max

(

0,
2wzj

0(1 − cos(tj))

(1 − zj
0)

2

))−1(

1 +
2zj

0(1 − cos(tj))

(1 − zj
0)

2

)

.

Since z
√

n
0 → e−b, we know that zj

0 is bounded below for
√

n ≤ j ≤ 2
√

n. This bound

holds uniformly in u again. Consequently, the same is true for
2zj

0

(1−zj
0)2

. Let A = A(δ)

be some lower bound for
2zj

0

(1−zj
0)2

. For w < 0, we obtain

∣

∣

∣

∣

Gd(z0)

Gd(z)

∣

∣

∣

∣

2

≥
∏

√
n≤j≤2

√
n

(1 + A(1 − cos(tj))) ,

and for w ≥ 0, we obtain

∣

∣

∣

∣

Gd(z0)

Gd(z)

∣

∣

∣

∣

2

≥
∏

√
n≤j≤2

√
n

1 +
2zj

0(1−cos(tj))

(1−zj
0)2

1 +
2wzj

0(1−cos(tj))

(1−zj
0)2

=
∏

√
n≤j≤2

√
n






1 +

(1 − w)
2zj

0

(1−zj
0)2

(1 − cos(tj))

1 + w
2zj

0

(1−zj
0)2

(1 − cos(tj))







≥
∏

√
n≤j≤2

√
n






1 +

(1 − w)
2zj

0

(1−zj
0)2

(1 − cos(tj))

1 + 2w
2zj

0

(1−zj
0)2







≥
∏

√
n≤j≤2

√
n

(

1 +
(1 − w)A

1 + 2wA
(1 − cos(tj))

)

.

It follows that there exists a constant B = B(δ) such that
∣

∣

∣

∣

Gd(z0)

Gd(z)

∣

∣

∣

∣

2

≥
∏

√
n≤j≤2

√
n

(1 + B(1 − cos(tj)))

holds uniformly in u. Now it is easy to estimate this product. If n−5/7 ≤ |t| ≤ π
2
√

n
, we

have n−3/14 ≤ |tj| ≤ π for all
√

n ≤ j ≤ 2
√

n. Then we may make use of the inequality
u2

2
≥ 1 − cos u ≥ 2u2

π2 (0 ≤ u ≤ π) to deduce
∏

√
n≤j≤2

√
n

(

1 + B(1 − cos(tj))
)

≥
∏

√
n≤j≤2

√
n

(

1 + C1t
2j2
)

≥ (1 + C1t
2n)

√
n+O(1)

for some constant C1 = C1(δ). Furthermore, there is a constant K = K(δ) such that
1 + u ≥ eKu holds for all 0 ≤ u ≤ C1π

2/4. Since we have C1t
2n ≤ C1π

2/4, it follows
that

∏

√
n≤j≤2

√
n

(

1 + B(1 − cos(tj))
)

≥ eC1Kt2n3/2+O(t2n) ≥ eC2t2n3/2
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holds for some constant C2 = C2(δ). So if n−5/7 ≤ |t| ≤ π
2
√

n
, we obtain the estimate

∣

∣

∣

∣

Gd(z0)

Gd(z)

∣

∣

∣

∣

≥ e
C2
2

t2n3/2 ≥ e
C2
2

n1/14

, (6.2)

which grows faster than any power of n. For π
2
√

n
≤ |t| ≤ π, we consider the set

∣

∣

∣{
√

n ≤ j ≤ 2
√

n : |tj − 2kπ| ≤ n−1/12 for some integer k}
∣

∣

∣.

There are at most
√

n|t|
2π

+ 1 possible values for k, since we have |t|√n ≤ |tj| ≤ 2|t|√n.

Furthermore, there are at most 2n−1/12

|t| + 1 different values of j belonging to any given

k. Hence the cardinality of this set is at most

(2n−1/12

|t| + 1
)(

√
n|t|
2π

+ 1
)

=

√
n|t|
2π

+ O(n5/12) ≤
√

n

2
+ O(n5/12),

so that we obtain the estimate
∏

√
n≤j≤2

√
n

(

1 + B(1 − cos(tj))
)

≥ (1 + B(1 − cos n−1/12))
√

n/2+O(n5/12)

= (1 + Bn−1/6/2 + O(n−1/3))
√

n/2+O(n5/12)

= exp(Bn1/3/4 + O(n1/4))

and finally, for all π
2
√

n
≤ |t| ≤ π,
∣

∣

∣

∣

Gd(z0)

Gd(z)

∣

∣

∣

∣

≥ eBn1/3/8+O(n1/4) ≥ e
C2
2

n1/14

(6.3)

if C2 is chosen appropriately. Now we are ready to apply the saddle-point method: we
have

Qn(u) =
1

2π

∫ π

−π

z−n
0 e−intGd(z0e

it) dt =
1

2π

∫ π

−π

exp(gd(z0e
it)) dt.

This integral is split into two parts, one of which is negligible. In fact we have, by the
previous estimates,

1

2π

∣

∣

∣

∫ π

n−5/7

exp(gd(z0e
it)) dt

∣

∣

∣
≤ 1

2π

∫ π

n−5/7

| exp(gd(z0e
it))| dt

=
1

2π

∫ π

n−5/7

exp(gd(z0))
∣

∣

∣

Gd(z0e
it)

Gd(z0)

∣

∣

∣ dt

≤ 1

2
exp(gd(z0)) exp(−C2n

1/14/2),

and an analogous estimate holds for the integral between −π and −n−5/7 as well. Thus
we are left with the integral between −n−5/7 and n−5/7. The Taylor expansion of gd(z)
around z0 gives us

gd(z) = gd(z0) + g′′(z0)(z − z0)
2 + Oδ(n

2(z − z0)
3).

For z = z0e
it with −n−5/7 ≤ t ≤ n−5/7, we have

z − z0 = z0(it + O(t2)) = (1 + Oδ(n
−1/2))(it + O(n−10/7)) = it + Oδ(n

−17/14)
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and hence

gd(z) = gd(z0) −
g′′(z0)

2
t2 + Oδ(n

−1/7). (6.4)

Now we can consider the remaining part of the integral: we have

1

2π

∫ n−5/7

−n−5/7

exp gd(z0e
it) dt =

1

2π
exp(gd(z0))(1 + Oδ(n

−1/7))

∫ n−5/7

−n−5/7

e−
g′′(z0)

2
t2 dt,

where
∫ ∞

n−5/7

e−
g′′(z0)

2
t2 dt ≤

∫ ∞

n−5/7

e−
g′′(z0)

2
n−5/7t dt

=

∫ ∞

n−5/7

exp
(

−
(n11/14

b
+ oδ(n

11/14)
)

t
)

dt

=
(

bn−11/14 + oδ(n
−11/14)

)

exp

(

−1

b
n1/14 + oδ(n

1/14)

)

= Oδ

(

exp
(

−C3n
1/14
))

holds uniformly in u for some positive constant C3 = C3(δ). Therefore,

∫ n−5/7

−n−5/7

e−
g′′(z0)

2
t2 dt =

∫ ∞

−∞
e−

g′′(z0)
2

t2 dt − 2

∫ ∞

n−5/7

e−
g′′(z0)

2
t2 dt

=

√

2π

g′′(z0)
+ Oδ

(

exp
(

−C3n
1/14
))

=

√

πb

n3/2
(1 + Oδ(n

−1/2)).

So this part of the integral is given by

1

2π

∫ n−5/7

−n−5/7

exp(gd(z0e
it)) dt =

√

b

4πn3/2
(1 + Oδ(n

−1/7)) exp gd(z0)

=
b

2π
√

2u
· n−1 · exp(2b

√
n)(1 + Oδ(n

−1/7)).

The remaining part of the integral is, as we have seen, negligible. Hence the asymptotic
formula

Qn(u) =
b(u)

2π
√

2u
· n−1 · exp(2b(u)

√
n)(1 + Oδ(n

−1/7))

holds uniformly in u. Now, let αn again be the number of ascents of size d or more in a
random partition of n, and set Mn(t) = E(e(αn−µn)t/σn), where t is real and µn, σn are

given by µn =
√

6n
dπ

and σ2
n = (dπ2−6)

√
6n

2d2π3 . Then we have

Mn(t) = e−µnt/σn
Qn(et/σn)

Qn(1)

=

√
6b(et/σn)

π
exp

(

−µnt

σn

− t

2σn

+ 2

(

b(et/σn) − π√
6

)√
n

)

(1 + Oδ(n
−1/7)).



THE DISTRIBUTION OF ASCENTS OF SIZE d OR MORE IN PARTITIONS OF n 13

It is easy to compute the Taylor expansion of b(et) around 0:

b(u) =

√
6

π
+

√
6

2dπ
t +

√
6(dπ2 − 6)

8d2π3
t2 + O(t3),

from which we obtain

Mn(t) = et2/2
(

1 + O
(

n−1/7 + (|t| + |t|3)n−1/4
))

uniformly in t as tn−1/12 → 0. By Curtiss’ theorem [4], the distribution of αn is
asymptotically Gaussian: the normalised random variable ωn := αn−µn

σn
satisfies

P(ωn ≤ x) =
1

2π

∫ x

−∞
e−t2/2 dt + o(1) (6.5)

uniformly for all x as n → ∞. Now, take T = n1/12/(log n). By Markov’s inequality,
we have

P(ωn ≥ x) = P(eωnt ≥ etx) ≤ e−txMn(t)

= e−tx+t2/2
(

1 + O
(

n−1/7 + (|t| + |t|3)n−1/4
))

for arbitrary t. Specialising t = x, we obtain

P(ωn ≥ x) ≤ e−x2/2
(

1 + O
(

n−1/7 + |T |3n−1/4
))

for every 0 ≤ x ≤ T , which simplifies to

P(ωn ≥ x) ≤ e−x2/2
(

1 + O((log n)−3)
)

. (6.6)

An analogous inequality holds for P(ωn ≤ −x). If x ≥ T , we take t = T and obtain

P(ωn ≥ x) ≤ e−Tx/2
(

1 + O((log n)−3)
)

. (6.7)

Summing up, we have the following theorem:

Theorem 5. αn, the number of ascents of size d or more in a random partition of

n, asymptotically follows a Gaussian distribution with mean E(αn) ∼ µn =
√

6n
dπ

and

variance V(αn) ∼ σ2
n = (dπ2−6)

√
6n

2d2π3 . The normalised random variable ωn = αn−µn

σn

satisfies

P(ωn ≤ x) =
1

2π

∫ x

−∞
e−t2/2 dt + o(1)

uniformly for all x as n → ∞. Furthermore, the exponential bounds

P(ωn ≥ x) ≤
{

e−x2/2 (1 + O((log n)−3)) 0 ≤ x ≤ n1/12/(log n),

e−n1/12x/(2 log n) (1 + O((log n)−3)) x ≥ n1/12/(log n)

hold as well as the analogous inequalities for P(ωn ≤ −x).
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