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Abstract. Let p(G) denote the number of pairs of adjacent edges in a graph G. Ahlswede and
Katona considered the problem of maximizing p(G) over all simple graphs with a given number

n of vertices and a given number N of edges. They showed that p(G) is either maximized by a
quasi-complete graph or by a quasi-star. They also studied the range of N (depending on n) for
which the quasi-complete graph is superior to the quasi-star (and vice versa) and formulated
two questions on distributions in this context. This paper is devoted to the solution of these

problems.

1. Introduction

For a simple undirected graph G, we consider the number

(1) p(G) =
∑

v∈V (G)

(

deg v

2

)

of pairs of adjacent edges. A question stemming originally from information theory that was
considered by Ahlswede and Katona in their paper [1] is to maximize p(G), given the number n
of vertices and the number N of edges of G. The problem had also been dealt with earlier (and
solved for “nice” values of N) in an equivalent formulation for matrices by Katz [2].

In order to formulate the main result given by Ahlswede and Katona, we need the notions of
quasi-complete graphs and quasi-stars. Let n and 0 ≤ N ≤

(

n
2

)

be nonnegative integers. Then,

the quasi-complete graph CN
n with n vertices and N edges is constructed as follows:

• Write N =
(

a
2

)

+ b, where 0 ≤ b < a.
• Let a vertices form a complete graph.
• Add another vertex and attach it to b of the previous vertices.
• Finally, add n − a − 1 isolated vertices.

Furthermore, let the quasi-star SN
n be the complement of C

(n

2)−N
n . Then, the following theo-

rem holds:

Theorem 1 (Ahlswede and Katona [1]). Among all graphs G with a given number n of vertices
and a given number N of edges, p(G) is either maximized by the quasi-complete graph CN

n or the
quasi-star SN

n .

The obvious problem that arises is to characterize the values of N for which CN
n resp. SN

n is
optimal. Indeed, Ahlswede and Katona showed more precisely that the following holds:

Theorem 2 (Ahlswede and Katona [1]). There is a nonnegative integer R (depending on n) such
that

p(CN
n ) ≤ p(SN

n ) for 0 ≤ N ≤ 1

2

(

n

2

)

− R,

p(CN
n ) ≥ p(SN

n ) for
1

2

(

n

2

)

− R < N ≤ 1

2

(

n

2

)

,

p(CN
n ) ≤ p(SN

n ) for
1

2

(

n

2

)

≤ N <
1

2

(

n

2

)

+ R,

p(CN
n ) ≥ p(SN

n ) for
1

2

(

n

2

)

+ R ≤ N ≤
(

n

2

)

.

1
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For the sake of completeness, we will prove the existence of R en route to our main result.
As Ahlswede and Katona noticed, R shows some rather unexpected behavior, and so they posed
the following questions:

• What is the relative density of the numbers n for which R = 0?
• How is the normalized value R

n distributed?

The aim of this paper is to answer these two questions. It will turn out that the distribution
is as follows:

Theorem 3. The relative density of the numbers n for which R = 0 is 2 −
√

2. The distribution
function of R

n is given by

D(x) =















0 x < 0,
2(

√
2−1−x)√
2−4x

0 ≤ x ≤ 1 − 1√
2
,

1 x ≥ 1 − 1√
2
.

Figure 1 shows a graph of the distribution function.
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Figure 1. The distribution of R
n

2. Preliminaries

From the definition of the quasi-complete graph and the quasi-star and equation (1), we
immediately get the following formulas:

Lemma 4. If N =
(

a
2

)

+ b with 0 ≤ b ≤ a, then

p(CN
n ) = b

(

a

2

)

+ (a − b)

(

a − 1

2

)

+

(

b

2

)

=
a(a − 1)(a − 2)

2
+ ab +

b(b − 3)

2

and

p(SN
n ) = 2(n − 2)N − n(n − 1)(n − 2)

2
+ p(C

(n

2)−N
n ).

Note that the latter statement actually holds for any graph and its complement. This follows
easily from the identity

(

n − 1 − d

2

)

=

(

d

2

)

+

(

n − 1

2

)

− (n − 2)d

and equation (1) together with the well-known fact that
∑

v∈V (G)

deg v = 2|E(G)|.

From now on, we are going to use the abbreviation Q(N) = p(CN
n ) (note that this does not depend

on n). Then the second formula also shows that p(CN
n ) ≥ p(SN

n ) is equivalent to

(2) Q

((

n

2

)

− N

)

− Q(N) ≤ (n − 2)(n(n − 1) − 4N)

2
.

If we set N = 1
2

(

n
2

)

− r, this simplifies to

(3) Q

(

1

2

(

n

2

)

+ r

)

− Q

(

1

2

(

n

2

)

− r

)

≤ 2r(n − 2).

First we need an estimate for Q(N):
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Lemma 5. For all nonnegative integers N , we have

N

2

(√
8N + 1 − 3

)

≥ Q(N) ≥ N

2

(√
8N + 1 − 7

2

)

.

Proof. We perform the substitution
√

8N + 1 = 2a+c (with a as in Lemma 4), so that −1 ≤ c ≤ 1.
Then the left hand side is equivalent to

1 − c2

128

(

16a2 − 24a − 1 + 8c(a − 1) + c2
)

≥ 0.

The first factor is obviously nonnegative, and the second factor can be estimated by

16a2 − 24a − 1 + 8c(a − 1) + c2 ≥ 16a2 − 24a − 1,

which is positive for a > 1. Similarly, the right hand side is equivalent to

1

128

(

24a − 3 + 8c(a + 1) + c2
(

16a2 − 24a + 2 + 8c(a − 1) + c2
))

≥ 0,

and

24a − 3 + 8c(a + 1) + c2
(

16a2 − 24a + 2 + 8c(a − 1) + c2
)

≥ 16a − 11 + c2(16a2 − 24a + 2),

which is also positive for a > 1. The case a = 1 is trivial. �

Lemma 6. If n ≥ 50 and (3) is satisfied for some r ≥ 0, then either r ≥ 1
2

(

n
2

)

− 3 or r ≤ 2n
3 .

Proof. Making use of the previous lemma, we obtain

n(n − 1) + 4r

8

(

√

2n(n − 1) + 8r + 1 − 7

2

)

− n(n − 1) − 4r

8

(

√

2n(n − 1) − 8r + 1 − 3
)

≤ Q

(

1

2

(

n

2

)

+ r

)

− Q

(

1

2

(

n

2

)

− r

)

≤ 2r(n − 2)

or

(n(n − 1) + 4r)
√

2n(n − 1) + 8r + 1 − (n(n − 1) − 4r)
√

2n(n − 1) − 8r + 1

≤ n(n − 1)

2
+ 2r(8n − 3).

Note that the function f(x) = x
√

2x + 1 −
√

2x3 is increasing, so that the left hand side can be
estimated below by √

2(n(n − 1) + 4r)3/2 −
√

2(n(n − 1) − 4r)3/2.

Now, we are left with

√
2(n(n − 1) + 4r)3/2 −

√
2(n(n − 1) − 4r)3/2 ≤ n(n − 1)

2
+ 2r(8n − 3).

Substituting r = n(n−1)
4 s (so that 0 ≤ s ≤ 1), we find that this is equivalent to
√

n(n − 1)
(

(2 + 2s)3/2 − (2 − 2s)3/2
)

≤ 1 + s(8n − 3).

Let f(s) be the function
(

(2 + 2s)3/2 − (2 − 2s)3/2
)

. It is easily seen to be concave, and so we can

estimate it by its secants. For s ≤ 1
2 , we have

f(s) ≥ 2s(3
√

3 − 1),

and together with
√

n(n − 1) ≥ n − 101
200 , which holds for n ≥ 50, we get

(

n − 101

200

)

· 2s(3
√

3 − 1) ≤ 1 + s(8n − 3).

Solving for s, we have

s ≤ 100

200(3
√

3 − 5)n − (303
√

3 − 401)
,

which is easily seen to be ≤ 8
3(n−1) for n ≥ 50, implying r ≤ 2n

3 . On the other hand, if s ≥ 1
2 , we

estimate f(s) by

f(s) ≥ 8 + 6(3 −
√

3)(s − 1)
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and get
(

n − 101

200

)

·
(

8 + 6(3 −
√

3)(s − 1)
)

≤ 1 + s(8n − 3).

Solving for s again, we obtain

s ≥ 1 − 204

200(3
√

3 − 5)n + (609 − 303
√

3)
≥ 1 − 6

n
,

which implies that
(

n
2

)

− N = 1
2

(

n
2

)

+ r ≥ (n−1)(n−3)
2 ≥

(

n−2
2

)

. But this allows us to refine our
estimate:

• If
(

n
2

)

−N <
(

n−1
2

)

(which implies n ≤ N ≤ 2n− 3), we can use Lemma 4 with a = n− 2
and b = 2n − 3 − N , and (2) becomes, upon simplification,

(

n − N + 4

2

)2

+
N2 + 2N − 4

4
≤ Q(N).

Using Lemma 5, we get

N2 + 2N − 4

4
≤ N

2

(√
8N + 1 − 3

)

,

which is easily shown to be wrong for N ≥ 13, contradicting N ≥ n ≥ 50.
• If

(

n
2

)

− N ≥
(

n−1
2

)

, we use Lemma 4 with a = n − 1 and b = n − 1 − N to find

N(N − 1)

2
≤ Q(N) ≤ N

2

(√
8N + 1 − 3

)

,

which simplifies further to N = 0 or

N + 2 ≤
√

8N + 1

and finally to N ≤ 3 (indeed, if N ≤ 3, we have equality in (2)).

�

This basically leaves us with the case r ≤ 2n
3 . In the following, we write 1

2

(

n
2

)

=
(

e
2

)

+ f ,
where 0 ≤ f < e. The following estimate will be important for the proof of our main theorem:

Lemma 7. If n ≥ 50, then e > 2n
3 + 1.

Proof. Assume the contrary. Then

1

2

(

n

2

)

<

(

e + 1

2

)

≤
(

2n
3 + 1

) (

2n
3 + 2

)

2
=

(2n + 3)(n + 3)

9
,

which is equivalent to n2 − 45n − 36 < 0. This inequality is false for n ≥ 50. �

3. Proof of the main result

Now, we are ready to formulate and prove our main theorem:

Theorem 8. Let n be a positive integer and 0 ≤ N ≤ 1
2

(

n
2

)

. The inequality (2) holds with equality
if any of the following is true:

• N ≤ 3,
• N = 1

2

(

n
2

)

,

• N =
(

e
2

)

and n ∈ {2f, 2f + 1},
• N = 1

2

(

n
2

)

− f(e−2)
3e+2f−2n−1 and 2e + 2f + 1 < 2n,

•
(

e
2

)

≤ N < 1
2

(

n
2

)

and 2e + 2f + 1 = 2n.

Furthermore, (2) holds with strict inequality for

1

2

(

n

2

)

− f(e − 2)

3e + 2f − 2n − 1
< N <

1

2

(

n

2

)

if 2e + 2f + 1 < 2n. For all other values of N , the inequality is not satisfied.
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Proof. Let first n be ≥ 50, and note that equality indeed holds for N ≤ 3 and N = 1
2

(

n
2

)

, which

is easy to check. Otherwise, (2) can only be satisfied if or N ≥ 1
2

(

n
2

)

− 2n
3 by Lemma 6. We write

N = 1
2

(

n
2

)

− r (so that 0 ≤ r ≤ 2n
3 now) again and work with (3) rather than (2). Furthermore,

we have to distinguish two cases: 2f ≥ e and 2f < e.

Throughout the rest of the proof we will make frequent use of the simple fact that a linear
inequality holds on an entire interval if it does at both endpoints.

Case 1: 2f ≥ e. In this case, there are the following possibilities for r:

• 0 ≤ r < e − f , which implies that
(

e

2

)

≤
(

e

2

)

+ f − (e − f) <
1

2

(

n

2

)

− r ≤ 1

2

(

n

2

)

+ r <

(

e

2

)

+ f + e − f =

(

e + 1

2

)

.

Now, application of Lemma 4 to (3) yields (2e+2f −3)r ≤ 2r(n−2), which holds if either
r = 0 (one of our cases of equality) or 2e + 2f + 1 ≤ 2n. However, the latter is impossible
since

2e + 2f + 1 ≥ 3e + 1 > 2n + 4 > 2n

by our assumptions and Lemma 7.
• e − f ≤ r ≤ f , from which it follows that

(

e

2

)

≤ 1

2

(

n

2

)

− r <

(

e + 1

2

)

≤ 1

2

(

n

2

)

+ r <

(

e + 2

2

)

.

We apply Lemma 4 again and find that (3) is equivalent to

(e − f)(e − 1) ≤ r(2n − e − 2f − 2).

For r = e − f , this is equivalent to 2e + 2f + 1 ≤ 2n, which has already been excluded
above. For r = f , on the other hand, the inequality reduces to

e2 − e ≤ f(2n − 2f − 3),

and since
(

e
2

)

= 1
2

(

n
2

)

− f or e2 − e =
(

n
2

)

− 2f , this is in turn equivalent to

(2f − n)(2f − n + 1) ≤ 0,

which is only satisfied for n = 2f or n = 2f + 1, with equality in both cases. In any case,
the inequality does not hold on the entire interval e − f ≤ r < f .

• Finally, we are left with f < r < 2e+1−f (the right hand side being true since 2e+1−f >
e > 2n

3 by Lemma 7), when
(

e − 1

2

)

≤ 1

2

(

n

2

)

− r <

(

e

2

)

<

(

e + 1

2

)

≤ 1

2

(

n

2

)

+ r <

(

e + 2

2

)

.

In this case, we obtain that (3) is equivalent to

e2 − e − (2e − 3)f ≤ 2r(n − e − f).

Now, r = f leads to the same inequality as before, which holds only (with equality) in two
cases. We already know that e + f > n, which implies that the right hand side decreases
as r increases, and so the inequality cannot hold for any other value of r.

Summarizing, we found two cases of equality (r = 0 and r = f if n ∈ {2f, 2f + 1}). In all
other cases, the opposite of (3) holds.

Case 2: 2f < e. Again, there are three possibilities for r:

• For 0 ≤ r ≤ f ,
(

e

2

)

≤ 1

2

(

n

2

)

− r ≤ 1

2

(

n

2

)

+ r <

(

e + 1

2

)

.

As before, we obtain the inequality (2e + 2f − 3)r ≤ 2r(n − 2) from (3), which holds if
either r = 0 or 2e + 2f + 1 ≤ 2n (in the latter case for all 0 < r ≤ f , with equality if
2e + 2f + 1 = 2n and with strict inequality otherwise).



6 STEPHAN WAGNER AND HUA WANG

• For f < r < e − f ,
(

e − 1

2

)

≤ 1

2

(

n

2

)

− r <

(

e

2

)

≤ 1

2

(

n

2

)

+ r <

(

e + 1

2

)

,

and application of Lemma 4 to (3) yields

(2n − 3e − 2f + 1)r + (e − 2)f ≥ 0.

Now, r = f leads to the inequality 2e + 2f + 1 ≤ 2n again, while r = e − f gives us

2f2 − f(2n − 2e + 3) − 3e2 + 2en + e ≥ 0.

The left hand side is convex in f , and it is equal to

−e(3e − 2n − 1) < 0

for f = 0 and to

−e(3e − 2n + 1)

2
< 0

for f = e/2. Both estimates are consequences of Lemma 7. Therefore, the inequality (3)
cannot be satisfied for r = e − f , which shows that (3) either holds for no r within our
interval (if 2e + 2f + 1 > 2n) or for all r which satisfy the inequality

r ≤ f(e − 2)

3e + 2f − 2n − 1
,

where equality also implies equality in (3).
• Finally, for e − f ≤ r ≤ e + f (the right hand side being true since e + f ≥ e > 2n

3 by
Lemma 7),

(

e − 1

2

)

≤ 1

2

(

n

2

)

− r <

(

e

2

)

<

(

e + 1

2

)

≤ 1

2

(

n

2

)

+ r <

(

e + 2

2

)

,

and we obtain from Lemma 4 that (3) is equivalent to

e2 − e − (2e − 3)f ≤ 2r(n − e − f).

r = e− f leads to the same inequality as before, and for r = e + f > 2n
3 , Lemma 6 shows

immediately that the inequality (3) cannot be satisfied. Therefore, (3) does not hold on
the entire interval.

Summarizing this second case, we found that the inequality is only satisfied for r = 0 if
2f +2e+1 > 2n, and that it is satisfied with equality for all r ∈ [0, f ] if 2f +2e+1 = 2n. Finally,

in the case 2f + 2e + 1 < 2n, (3) holds with strict inequality for 0 < r < f(e−2)
3e+2f−2n−1 and with

equality for r = f(e−2)
3e+2f−2n−1 (if this is an integer).

Finally, let us just mention that the case n < 50 can be checked directly by means of a
computer. �

This allows us to formulate Theorem 2 in a more precise way:

Theorem 9. There is a nonnegative integer R such that

p(CN
n ) ≤ p(SN

n ) for 0 ≤ N ≤ 1

2

(

n

2

)

− R,

p(CN
n ) ≥ p(SN

n ) for
1

2

(

n

2

)

− R < N ≤ 1

2

(

n

2

)

,

p(CN
n ) ≤ p(SN

n ) for
1

2

(

n

2

)

≤ N <
1

2

(

n

2

)

+ R,

p(CN
n ) ≥ p(SN

n ) for
1

2

(

n

2

)

+ R ≤ N ≤
(

n

2

)

.

Specifically, we can take

R =

{

0 2e + 2f + 1 ≥ 2n,
⌈

f(e−2)
3e+2f−2n−1

⌉

2e + 2f + 1 < 2n.
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Note also that R is unique in almost all cases: the only exception is the case 2e+2f +1 = 2n,
when R could be chosen arbitrarily from the interval [0, f ]. However, substituting 1

2

(

n
2

)

−
(

e
2

)

for
f , we find that this equation is equivalent to

(2n − 5)2 = 2(2e − 3)2 − 1.

The solution of this Pell-type equation is given by

n =
1

4

(

(1 +
√

2)2k−1 + (1 −
√

2)2k−1
)

+
5

2

for some nonnegative integer k, and the set of these numbers has density zero.

Now, we are also finally able to solve the problem posed by Ahlwede and Katona:

Proof of Theorem 3. First, we have to determine the probability that 2e + 2f + 1 ≥ 2n. For
this purpose, let us first note that our definition of e and f implies that

e =

⌊

1

2

(

1 +
√

2n2 − 2n + 1
)

⌋

=
1

2

(

1 +
√

2n2 − 2n + 1
)

− α,

where α =
{

1
2

(

1 +
√

2n2 − 2n + 1
)}

∈ [0, 1) ({x} denotes the fractional part of x). Note now that

1

2

(

1 +
√

2n2 − 2n + 1
)

=
n√
2

+
2 −

√
2

4
+ O(n−1),

and since 1√
2

is irrational, this implies that α is equidistributed in the interval [0, 1) (see for

instance [3]).

Furthermore, since f = 1
2

(

n
2

)

−
(

e
2

)

, the inequality 2e + 2f + 1 ≥ 2n is equivalent to

n2 − 5n

2
≥ e2 − 3e − 1,

which is in turn equivalent to e ≤ 1
2

(

3 +
√

2n2 − 10n + 13
)

or

1

2

(

3 +
√

2n2 − 10n + 13
)

≥ 1

2

(

1 +
√

2n2 − 2n + 1
)

− α.

This can be rewritten as

α ≥ 1

2

(

1 +
√

2n2 − 2n + 1
)

− 1

2

(

3 +
√

2n2 − 10n + 13
)

=
√

2 − 1 − 1

4
√

2n2
+ O(n−3),

which means that 2e+2f +1 ≥ 2n is satisfied for an asymptotic fraction of 1− (
√

2− 1) = 2−
√

2
of the values of n. This proves the first part of the statement. For the second part, note that

R

n
=

(e − 2)f

n(2f + 3e − 2n − 1)
+ O(n−1) =

(e − 2)(n2 − n − 2e2 + 2e)

2n(n2 − 5n − 2e2 + 8e − 2)
+ O(n−1)

=
α(

√
2n2 − 2n + 1 − α)(

√
2n2 − 2n + 1 − 2α − 3)

2n((2α + 3)
√

2n2 − 2n + 1 − 4n − 2α2 − 6α + 1)
+ O(n−1) =

α

3
√

2 − 4 + 2
√

2α
+ O(n−1),

from which we deduce that
R

n
∼ α

3
√

2 − 4 + 2
√

2α

follows the distribution function given in the theorem, which is calculated by solving the equation

α

3
√

2 − 4 + 2
√

2α
= x

for α. �
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