
Unicyclic graphs with large energy

Eric Ould Dadah Andriantiana 1 and Stephan Wagner 2

Department of Mathematical Sciences
Mathematics Division
Stellenbosch University

Private Bag X1, Matieland 7602
South Africa

Abstract

We study the energy (i.e., the sum of the absolute values of all eigenvalues) of so-
called tadpole graphs, which are obtained by joining a vertex of a cycle to one of the
ends of a path. By means of the Coulson integral formula and careful estimation of
the resulting integrals, we prove two conjectures on the largest and second-largest
energy of a unicyclic graph due to Caporossi, Cvetković, Gutman and Hansen and
Gutman, Furtula and Hua respectively. Moreover, we characterise the non-bipartite
unicyclic graphs whose energy is largest.
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1 Introduction

The energy E(G) of a graph G, defined as the sum of the absolute values of its
eigenvalues, certainly belongs to the most popular graph invariants in chemical
graph theory. It originates from the pi-electron energy in the Hückel molecular
orbital model [6–8], but has also gained purely mathematical interest on its
own right. Maximum and minimum values of the energy are known for various
classes of graphs, and in some cases also the second-largest/second-smallest
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and further values as well as the corresponding extremal graphs; see the review
[10], the recent papers [2,12,13,16,19–26], and the references cited therein.

One of the graph classes that has been quite thoroughly studied is the class
of all unicyclic graphs, i.e., connected graphs with only one unique cycle. The
study of these graphs is motivated by the chemical background as well as
the fact that unicyclic graphs are very similar to trees, so that many of the
techniques that apply to trees can still be used.

Among all unicyclic graphs with a given number n ≥ 6 of vertices, the mini-
mum energy is attained for the graph that results from connecting two leaves
of a star by an edge; the second-smallest, third-smallest, . . . , sixth-smallest
values and the corresponding graphs are also all known [4,13,20,22]. On the
other hand, the converse question for the largest possible energy of a unicyclic
graph appears to be somewhat more intricate. In answering this question, the
so-called tadpole graphs P k

n , which are obtained by merging an end of a path
of length n− k with a cycle of length k, play an essential role. The following
was originally found by means of an extensive computer search:

Conjecture 1 ([3,11]). Among the set Un of all unicyclic graphs of order
n ≥ 7, the cycle Cn has maximal energy if n = 9, 10, 11, 13 and 15. For all
other values of n the unicyclic graph with maximum energy is P 6

n (see Figure
1).

. . .

Fig. 1. The graph P 6
n

Substantial progress on this conjecture was already made shortly afterwards
in a paper of Hou, Gutman and Woo [14], who proved the following:

Theorem 2 ([14]). Let G(n, k) be the set of all unicyclic graphs of order n
and girth k, and let C(n, k) be the set of all unicyclic graphs obtained from
a cycle Ck of length k by adding n − k pendant vertices to it. Suppose that
G ∈ G(n, k), n ≥ k. If G has maximum energy in G(n, k), then G is either
P k
n or, when k ≡ 0 mod 4, a graph from C(n, k).

By virtue of this theorem, the authors of [14] were also able to prove the
following for the slightly narrower class of unicyclic bipartite graphs:

Theorem 3 ([14]). P 6
n has the largest energy among all unicyclic bipartite

n-vertex graphs, except possibly the cycle Cn.

The fact that P 6
n “wins” over Cn for almost all n was proved only very recently

in two independent papers:
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Theorem 4 ([1,18]). For all n ≥ 7, n 6= 9, 10, 11, 13, 15, we have E(Cn) <
E(P 6

n).

The more general Conjecture 1 was settled very recently by Huo, Li and Shi
in [17]. The aim of the present paper is to provide an alternative approach
to this problem; while the proof given in [17] is simpler in some respects, the
main benefit of our method is that it gives more precise information on the
actual value of the maximum energy of an n-vertex unicyclic graph and the
gap between P 6

n and other graphs of the form P k
n (it turns out that, for fixed

k, the difference of the energies converges to a constant as n → ∞). We are
also able to prove additional results by means of our method:

Theorem 5. Let Dn be the graph obtained by joining a vertex of the cycle C6

and the third vertex in Pn−6 by an edge (see Figure 2). For n ≥ 28, Dn is the
unicyclic graph with second-largest energy.

. . .

Fig. 2. The graph Dn

This was conjectured in [9] for bipartite unicyclic graphs, but it still holds in
the non-bipartite case. In order to prove this theorem, we can make use of the
following result:

Theorem 6 ([15]). Let G ∈ Un \ {P k
n |k = 3, 4, . . . , n} be a bipartite unicyclic

graph. For n ≥ 13, if G 6= Dn, we have E(G) < E(Dn).

This shows that it is sufficient to compare Dn to all tadpole graphs P k
n once

Conjecture 1 has been verified. In the following section, we gather some auxil-
iary tools. We then proceed to determine a relatively simple integral represen-
tation for E(P k

n ), which is used to study the behaviour of P k
n as k varies. This

leaves us with only a few cases that are studied in more detail to prove Conjec-
ture 1 as well as Theorem 5. Another result that we obtain as a consequence
of our estimates is the following:

Theorem 7. Among all non-bipartite unicyclic graphs in Un (n ≥ 3), P 3
n has

maximum energy if n is even, and Cn has maximum energy if n is odd.
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2 Preliminaries

As most other results on the energy of graphs, our proof is based on the
Coulson integral

E(G) =
1

2π

∫ +∞

−∞

dx

x2
log


bn/2c∑

j=0

(−1)ja2jx
2j

2

+

bn/2c∑
j=0

(−1)ja2j+1x
2j+1

2
 ,

where a1, a2, . . . , an are the coefficients of the characteristic polynomial

φ(G, x) =
n∑
k=0

akx
n−k

of G. For unicyclic graphs, it is known that the coefficients b2j = (−1)ja2j
and b2j+1 = (−1)ja2j+1 are all positive, and so the integral is an increasing
function of each of these coefficients. This property is frequently exploited
to compare the energies of different graphs. For our purposes, however, it is
more convenient to work directly with the characteristic polynomial: the above
integral can also be written in any of the following forms:

E(G) =
1

2π

∫ +∞

−∞

dx

x2
log

(
x2nφ(G, i/x)φ(G,−i/x)

)
=

1

π

∫ +∞

0

dx

x2
log

(
x2nφ(G, i/x)φ(G,−i/x)

)
=

1

π

∫ +∞

0

dx

x2
log

(
x2nφ(G, i/x)φ(G, i/x)

)
=

2

π

∫ +∞

0

dx

x2
log (xn|φ(G, i/x)|) .

Since
d

du

1

sinhu
= − coshu

sinh2 u
,

the change of variable

x =
1

2 sinhu
leads us to

E(G) =
2

π

∫ +∞

0
du

coshu

2 sinh2 u
(4 sinh2 u) log

(
1

2n sinhn u
|φ(G, 2i sinhu)|

)
=

4

π

∫ +∞

0
log

(
|φ(G, 2i sinhu)|

2n sinhn u

)
coshu du, (1)

which is the expression for the energy that we will mostly work with. In order
to determine the characteristic polynomials of the graphs we are interested in,
we also need the following properties:
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Lemma 8 ([5]). Let uv be an edge of a graph G. Then

φ(G, x) = φ(G− uv, x)− φ(G− u− v, x)− 2
∑

C∈C(uv)
φ(G− C, x)

where C(uv) is the set of cycles containing uv. In particular if uv is a pendant
edge, then

φ(G, x) = xφ(G− uv, x)− φ(G− u− v, x).

It is convenient to set φ(∅, x) = 1.

3 The energy of the tadpole graph P k
n

3.1 A formula for E(P k
n )

In order to determine E(P k
n ) using (1), we need an explicit expression for

φ(P k
n , 2i sinhu). Using Lemma 8 we obtain

φ(Pk, x) = xφ(Pk−1, x)− φ(Pk−2, x), (2)

φ(Ck, x) = xφ(Pk, x)− φ(Pk−2, x)− 2,

φ(P n−1
n , x) = xφ(Cn−1, x)− φ(Pn−2, x)

and
φ(P k

n , x) = xφ(P k
n−1, x)− φ(P k

n−2, x). (3)

Note that
φ(P n

n , x) = φ(Cn, x).

The characteristic equation

q2 − xq + 1 = q2 − 2iq sinhu+ 1 = 0 (4)

of the linear recurrence (2) (taking x = 2i sinhu) has the two roots

q1 =
x+
√
x2 − 4

2
= ieu (5)

and

q2 =
x−
√
x2 − 4

2
= (ieu)−1. (6)

Together with the initial values φ(P0, 2i sinhu) = 1 and φ(P1, 2i sinhu) =
2i sinhu we get, after some calculations,

φ(Pk, 2i sinhu) =
e2u

1 + e2u
(ieu)k +

1

1 + e2u
(ieu)−k.
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Hence

φ(Ck, 2i sinhu) =
e2u

1 + e2u
((ieu)k − (ieu)k−2) +

1

1 + e2u
((ieu)−k − (ieu)−k+2)− 2

= (ieu)k + (ieu)−k − 2

= (ieu)k + (−ie−u)k − 2,

and

φ(P k−1
k , 2i sinhu)

= i(eu − e−u)((ieu)k−1 + (−ie−u)k−1 − 2)− e2u

1 + e2u
(ieu)k−2 − 1

1 + e2u
(ieu)−k+2

=
e2u + 1− e−2u

1 + e2u
(ieu)k − e4u − e2u − 1

1 + e2u
(−ie−u)k − 2i(eu − e−u).

The characteristic polynomial of the linear recurrence relation (3) is the same
as (4), and consequently has the two roots given in (5) and (6). Hence, the
explicit expression of φ(P k

n , 2i sinhu) is of the form

φ(P k
n , 2i sinhu) = A(ieu)n +B(ieu)−n,

where A and B are such that
A(ieu)k +B(ieu)−k = φ(P k

k , 2i sinhu) = (ieu)k + (ieu)−k − 2,

A(ieu)k+1 +B(ieu)−k−1 = φ(P k
k+1, 2i sinhu)

= e2u+1−e−2u

1+e2u
(ieu)k+1 − e4u−e2u−1

1+e2u
(−ie−u)k+1 − 2i(eu − e−u).

Solving the system of equations we get

A =
e2u(e2u + 2)

(1 + e2u)2
+

2(ieu)2−k

1 + e2u
+

(ieu)2(2−k)

(1 + e2u)2

and

B =
(ieu)2k

(1 + e2u)2
− 2(ieu)k

1 + e2u
+

2e2u + 1

(1 + e2u)2
.

Therefore we obtain

φ(P k
n , 2i sinhu) =

(
e2u(e2u + 2)

(1 + e2u)2
+

2(ieu)2−k

1 + e2u
+

(ieu)2(2−k)

(1 + e2u)2

)
(ieu)n

+

(
(ieu)2k

(1 + e2u)2
− 2(ieu)k

1 + e2u
+

2e2u + 1

(1 + e2u)2

)
(ieu)−n

which implies

|φ(P k
n , 2i sinhu)| = enu

∣∣∣∣∣e2u(e2u + 2)

(1 + e2u)2
+

2(ieu)2−k

1 + e2u
+

(ieu)2(2−k)

(1 + e2u)2
+

(ieu)2k−2n

(1 + e2u)2

−2(ieu)k−2n

1 + e2u
+

(2e2u + 1)(ieu)−2n

(1 + e2u)2

∣∣∣∣∣ .
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Since∫ +∞

0
log

(
enu

(2 sinhu)n

)
coshu du

= −n
∫ +∞

0
log(1− e−2u)d(sinhu)

= −n
([

log(1− e−2u) sinhu
]+∞
0
−
∫ +∞

0
(sinhu)d(log(1− e−2u))

)
= n

∫ +∞

0
e−udu = n,

we end up with

E(P k
n ) =

4n

π
+

4

π

∫ +∞

0
log(Qk

n(u)) coshu du, (7)

where

Qk
n(u) =

∣∣∣∣∣e2u(e2u + 2)

(1 + e2u)2
+

2(ieu)2−k

1 + e2u
+

(ieu)2(2−k)

(1 + e2u)2
+

(ieu)2k−2n

(1 + e2u)2

−2(ieu)k−2n

1 + e2u
+

(2e2u + 1)(ieu)−2n

(1 + e2u)2

∣∣∣∣∣
=

∣∣∣∣∣e2u(e2u + 2)

(e2u + 1)2
− 2e2u

(ieu)−k − (ieu)k−2(n+1)

e2u + 1

+
(ieu)−2k+4 + (ieu)2k−2n

(e2u + 1)2
+

2e2u + 1

(e2u + 1)2
(ieu)−2n

∣∣∣∣∣ . (8)

If we fix k and let n→∞, we obtain the following result:

Proposition 9. For any fixed k ≥ 3, we have

lim
n→∞

(
E(P k

n )− 4n

π

)
= C(k)

:=
4

π

∫ +∞

0
log

∣∣∣∣∣e2u(e2u + 2)

(e2u + 1)2
− 2e2u

(ieu)−k

e2u + 1
+

(−e2u)2−k

(e2u + 1)2

∣∣∣∣∣ coshu du.

An analogous result holds if we fix ` = n− k:

Proposition 10. For any fixed ` ≥ 0, we have

lim
n→∞

(
E(P n−`

n )− 4n

π

)
= D(`)

:=
4

π

∫ +∞

0
log

∣∣∣∣∣e2u(e2u + 2)

(e2u + 1)2
+

(−e2u)−`

(e2u + 1)2

∣∣∣∣∣ coshu du.

Finally, we can let k and n− k tend to ∞ simultaneously:
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Proposition 11. If both k and n− k go to infinity, then

E(P k
n )− 4n

π
→ 4

π

∫ +∞

0
coshu log

e2u(e2u + 2)

(e2u + 1)2
du

=
6
√

2

π
arctan

√
2 +

4

π
− 4 ≈ −0.146499.

For example, C(3) ≈ −0.037, C(4) ≈ −0.866, C(5) ≈ −0.084, C(6) ≈ 0.118,
D(0) = 0, D(1) ≈ −0.246, D(2) ≈ −0.087, D(3) ≈ −0.200. Figure 3 shows
plots of more values of C(k) and D(l).

Fig. 3. Plot of the functions C(k) and D(l)

In the following, it will be convenient to use the following abbreviation:

fa,n,r(j) = aj + (−1)ran−j.

Let us note some basic properties of this function:

Lemma 12. For all non-negative integers n, r and a ∈ (0, 1), the function
fa,n,r(j) is positive and decreasing on [0, n/2).

Proof. For all j ∈ [0, n/2) we know that j < n − j, and since a ∈ (0, 1) it is
clear that aj > |(−1)ran−j|, therefore fa,n,r(j) > 0 for all j ∈ [0, n/2).

Next, let us show that fa,n,r is decreasing. For all j ∈ [0, n/2) we have

f ′a,n,r(j) = log a(aj + (−1)r+1an−j)

< 0 for j ∈ [0, n/2),
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which completes the proof.

Remark 13. It follows from the above observation that fa,n,r is increasing
for j ∈ [n

2
, n] if r is even (since fa,n,r(j) = fa,n,r(n − j)) while fa,n,r is still

decreasing for j ≥ n
2

if r is odd (since fa,n,r(j) = −fa,n,r(n− j)).

3.2 The behaviour of E(P k
n ) for different values of k

In this section, we are interested in the behaviour of the energy of P k
n as k

varies. To this end, we need to distinguish two cases depending on the parity
of n as well as three cases for the residue class of k modulo 4.

Case 1: n is an odd integer.

(a) k ≡ 0 mod 4: From (8) we have

Qk
n(u) =

e2u(e2u + 2)

(e2u + 1)2
− 2e2u

e2u + 1

(
e−ku − e−(2n+2−k)u

)
+
e−2(k−2)u − e−2(n−k)u

(e2u + 1)2
− 2e2u + 1

(e2u + 1)2
e−2nu

<
e4u + 2e2u + 1

(e2u + 1)2
+
e−2(k−2)u − 1

(e2u + 1)2
< 1

and consequently

E(P k
n ) <

4n

π
.

As we will see, this implies that no P k
n , for k ≡ 0 mod 4 and odd n,

can be a candidate for the maximum energy in Un because E(P 6
n) >

4n
π

(see inequalities (14) and (15)). They cannot be candidates for the
second-largest energy in Un either, because E(Dn) > 4n

π
for n ≥ 23 (see

inequalities (16) and (17)).
(b) k ≡ 2 mod 4:

Qk
n(u) =

∣∣∣∣∣e2u(e2u + 2)

(e2u + 1)2
+ 2e2u

e−ku − e−(2n+2−k)u

e2u + 1

+
e−2(k−2)u − e−2(n−k)u

(e2u + 1)2
− 2e2u + 1

(e2u + 1)2
e−2nu

∣∣∣∣∣
=
e2u(e2u + 2)

(e2u + 1)2
+

2e2u

e2u + 1
fe−u,2(n+1),1(k)

+
e4u

(e2u + 1)2
fe−2u,n+2,1(k)− 2e2u + 1

(e2u + 1)2
e−2nu. (9)
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Equation (9) shows that Qk
n(u) is decreasing as a function of k in [0, n]

just as fe−u,2(n+1),1(k) and fe−2u,n+2,1(k) are. Therefore we conclude that
for all integers n ≥ k > 10 (where k ≡ 2 mod 4) and all real u > 0 we
have Q6

n(u) > Q10
n (u) > Qk

n(u), which implies that

E(P 6
n) > E(P 10

n ) > E(P k
n ).

(c) k is odd (k ≡ 1 mod 4 or k ≡ 3 mod 4): For this case, what we obtain
from (8) is

(Qk
n(u))2 =

∣∣∣∣∣e2u(e2u + 2)

(e2u + 1)2
± 2i

e−(k−2)u + e−(2n−k)u

e2u + 1

−e
−2(k−2)u − e−2(n−k)u

(e2u + 1)2
− 2e2u + 1

(e2u + 1)2
e−2nu

∣∣∣∣∣
2

=

(
e2u(e2u + 2)

(e2u + 1)2
− e−2(k−2)u − e−2(n−k)u

(e2u + 1)2
− 2e2u + 1

(e2u + 1)2
e−2nu

)2

+

(
2
e−(k−2)u + e−(2n−k)u

e2u + 1

)2

.

Consider the second derivative of log((Qk
n(u))2) with respect to k, which

is

∂2

∂k2
log

(
(Qk

n(u))2
)

=
(Qk

n(u))2 ∂2

∂k2
(Qk

n(u))2 −
(
∂
∂k

(Qk
n(u))2

)2
(Qk

n(u))4

=
u2

(e2u + 1)8(Qk
n(u))4

· Σ,

where Σ is a sum of 79 terms of the form aebu, which are all positive. It
follows that

∂2

∂k2
E(P k

n ) > 0,

which implies that E(P k
n ) is convex as a function of k in this case (by

differentiation under the integral sign). This shows that the maximum
occurs at one of the ends.
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Case 2: n is an even integer.

(a) For k ≡ 0 mod 4, we get

Qk
n(u) =

e2u(e2u + 2)

(e2u + 1)2
− 2e2u

e−ku + e−(2(n+1)−k)u

e2u + 1

+ e4u
e−2ku + e−2(n+2−k)u

(e2u + 1)2
+

2e2u + 1

(e2u + 1)2
e−2nu

=
e2u(e2u + 2)

(e2u + 1)2
− 2(e4u + e2u)

e−ku + e−(2(n+1)−k)u

(e2u + 1)2

+ e4u
e−2ku + e−2(n+2−k)u

(e2u + 1)2
+

2e2u + 1

(e2u + 1)2
e−2nu

<
e2u(e2u + 2)

(e2u + 1)2
− 2(e4u + e2u)

e−(2(n+1)−k)u

(e2u + 1)2
+

e−2(n−k)u

(e2u + 1)2

<
e2u(e2u + 2) + 1

(e2u + 1)2
= 1.

Exactly as in the corresponding subcase for odd n, this implies

E(P k
n ) <

4n

π

for all integers n ≥ k > 0 with k ≡ 0 mod 4. Therefore P k
n cannot be

the unicyclic graph with largest or second-largest energy in this case (see
again inequalities (14), (15), (16) and (17)).

(b) For k ≡ 2 mod 4, equation (8) gives

Qk
n(u) =

e2u(e2u + 2)

(e2u + 1)2
+ 2e2u

e−ku + e−(2(n+1)−k)u

e2u + 1

+
e−2(k−2)u + e−2(n−k)u

(e2u + 1)2
+

2e2u + 1

(e2u + 1)2
e−2nu.

Similar to the case of odd n and k, we obtain

∂2

∂k2
log

(
Qk
n(u)

)
=
Qk
n(u) ∂2

∂k2
Qk
n(u)−

(
∂
∂k
Qk
n(u)

)2
(Qk

n(u))2
=

u2

(e2u + 1)4(Qk
n(u))4

·Σ,

where Σ is a sum of 27 terms of the form aebu, which are all positive. It
follows that

∂2

∂k2
E(P k

n ) > 0,

which means that E(P k
n ) is convex as a function of k. Hence for all integers

k ≡ 2 mod 4 such that n− 2 > k > 10 we havemax{E(P 10
n ),E(Cn)} > E(P k

n ) for n ≡ 2 mod 4,

max{E(P 10
n ),E(P n−2

n )} > E(P k
n ) for n ≡ 0 mod 4.
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(c) For k ≡ 3 mod 4 or k ≡ 1 mod 4 we get (from (8))

(Qk
n(u))2 =

∣∣∣∣∣e2u(e2u + 2)

(e2u + 1)2
± 2ie2u

e−ku − e−(2n+2−k)u

e2u + 1

−e
−2(k−2)u + e−2(n−k)u

(e2u + 1)2
+

2e2u + 1

(e2u + 1)2
e−2nu

∣∣∣∣∣
2

=

(
e2u(e2u + 2)

(e2u + 1)2
− e4ufe

−2u,n+2,2(k)

(e2u + 1)2
+

2e2u + 1

(e2u + 1)2
e−2nu

)2

+

(
2e2u

fe−u,2n+2,1(k)

e2u + 1

)2

. (10)

We can see from (10) that Qk
n(u) decreases as a function of k on [n+2

2
, n]:

this is because the two functions −fe−2u,n+2,2 and fe−u,2n+2,1 both decrease
on this interval. Furthermore, let

B(u, n) = e2u(e2u + 2) + (2e2u + 1)e−2nu

= (e2u + 1)2 + (e2u + 1)2e−2nu − 1− e−2(n−2)u

= (e2u + 1)2(1 + e−2nu)− 1− e−2(n−2)u

so that we have

(Qk
n(u))2 =

(
B(u, n)

(e2u + 1)2
− e4ufe

−2u,n+2,2(k)

(e2u + 1)2

)2

+

(
2e2u

fe−u,2n+2,1(k)

e2u + 1

)2

=
B2(u, n)

(e2u + 1)4
− 2B(u, n)e4u

fe−2u,n+2,2(k)

(e2u + 1)4

+ e8u
f 2
e−2u,n+2,2(k)

(e2u + 1)4
+ 4e4u

f 2
e−u,2n+2,1(k)

(e2u + 1)2
,

12



and

∂

∂k
(Qk

n(u))2

= 4uB(u, n)e4u
fe−2u,n+2,1(k)

(e2u + 1)4
− 4ue8u

fe−2u,n+2,2(k)fe−2u,n+2,1(k)

(e2u + 1)4

− 8ue4u
fe−u,2n+2,1(k)fe−u,2n+2,2(k)

(e2u + 1)2

= 4uB(u, n)e4u
fe−2u,n+2,1(k)

(e2u + 1)4
− 4ue8u

fe−4u,n+2,1(k)

(e2u + 1)4
− 8ue4u

fe−2u,2n+2,1(k)

(e2u + 1)2

≤ 4ue4u

(e2u + 1)2

(
(1 + e−2nu)fe−2u,n+2,1(k)− fe−2u,n+2,1(k)

(e2u + 1)2
− e4ufe

−4u,n+2,1(k)

(e2u + 1)2

− fe−2u,2n+2,1(k)

)
for k ≤ n+ 2

2

=
4ue4u

(e2u + 1)2

(
−e−2(n+2−k)u + e−2(n+k)u − fe−2u,n+2,1(k)

(e2u + 1)2
− e4ufe

−4u,n+2,1(k)

(e2u + 1)2

)
< 0.

This means that Qk
n(u) is also decreasing on the interval [1, n+2

2
] and thus

on the entire interval [1, n]. Therefore for all odd k such that 3 < k ≤ n
and all u > 0 we have

Q3
n(u) > Qk

n(u)

which implies

E(P 3
n) > E(P k

n ). (11)

We can conclude now that the tadpole with largest energy is an element of

{P 3
n , P

6
n , P

n−2
n } if n ≡ 0 mod 4,

{P 3
n , P

6
n , Cn} otherwise.

(12)

Since P n−2
n (for n ≡ 0 mod 4) is bipartite, we can use Theorem 3 and Theo-

rem 4 to obtain that for all integers 3 < k ≤ n such that k 6= 6 the following
inequality holds:

E(P k
n ) < max{E(P 3

n),E(P 6
n)}

if n ≥ 16. Once we have shown that E(P 3
n) < E(P 6

n) for all such n, we also
know that the tadpole with second-largest energy must be an element of

{P 3
n , P

10
n , P

n−2
n } if n ≡ 0 mod 4,

{P 3
n , P

10
n , Cn} otherwise.

(13)

13



3.3 Estimating the energy in special cases

We now collect estimates for the energy of the remaining graphs to be con-
sidered: first, we consider the graphs P 6

n and Dn whose energy is estimated
from below. On the other hand, we determine upper estimates for E(Cn),
E(P 3

n), E(P 10
n ) and E(P n−2

n ). Our main theorems are then obtained by com-
bining these estimates. Most of our estimates are obtained from the integral
formula (7). For simplicity of notation we use the substitution z = e−u.

• From [1] we have the following inequalities:
· For even n ≥ 6,

E(P 6
n) >

4n

π
+

0.370

π
+ 2 csc

π

2(n− 3)
− 2

π
2(n− 3)

>
4n

π
+

0.370

π
. (14)

· for odd n ≥ 17,

E(P 6
n) >

4n

π
+

0.370

π
+ 2 cot

π

2(n− 4)
− 2

π
2(n− 4)

>
4n

π
+

0.370

π
+ 2 cot

π

2(17− 4)
− 2

π
2(17− 4)

=
4n

π
+

0.370

π
+ 2 cot

π

26
− 52

π

>
4n

π
+

0.116

π
. (15)

• E(Dn) is given by

E(Dn) =
4n

π
+

4

π

∫ +∞

0
log

∣∣∣∣∣φ(Dn, 2i sinhu)

(ieu)n

∣∣∣∣∣ coshu du.

Using Lemma 8 we have

φ(Dn, x) = (x2 − 1)φ(P 6
n−2, x)− xφ(C6, x)φ(Pn−9, x),

and hence

φ(Dn, 2i sinhu) = (−e2u − e−2u + 1)φ(P 6
n−2, 2i sinhu)

− i(eu − e−u)φ(C6, 2i sinhu)φ(Pn−9, 2i sinhu).

14



Since

(−e2u − e−2u + 1)
φ(P 6

n−2, 2i sinhu)

(ieu)n

=
(−e2u − e−2u + 1)

(ieu)2

(
e2u(e2u + 2)

(e2u + 1)2
− 2e2u

(ieu)−6 − (ieu)6−2(n−2+1)

e2u + 1

+
(ieu)−2·6+4 + (ieu)2·6−2(n−2)

(e2u + 1)2
+

2e2u + 1

(e2u + 1)2
(ieu)−2(n−2)

)

= (1 + z4 − z2)
(
z−4 + 2z−2 + (−1)n(2z2n−6 + z2n−4)

(1 + z−2)2

+2
z4 + (−1)nz2n−10

1 + z−2
+
z8 + (−1)nz2n−16

(1 + z−2)2

)

=
(z4 − z2 + 1)2

1 + z2

(
1 + 2z2 + z6 + (−1)n(z2n−6 + 2z2n−8 + z2n−12)

)

and

i(eu − e−u)φ(C6, 2i sinhu)
φ(Pn−9, 2i sinhu)

(ieu)n

= i(z−1 − z)
(
(iz−1)6 + (−iz)6 − 2

) 1
1+z2

(iz−1)n−9 + z2

1+z2
(iz−1)−(n−9)

(iz−1)n

= (z4 − 1)(z4 − z2 + 1)2
(
z2 − (−1)nz2n−14

)
,

we obtain∣∣∣∣∣φ(Dn, 2i sinhu)

(ieu)n

∣∣∣∣∣ =
(1− z2 + z4)2

1 + z2

(
1 + 3z2 + z4 − z8

+ (−1)n(z2n−6 + 3z2n−8 + z2n−10 − z2n−14)
)
.

· For even n, we now have

∣∣∣∣∣φ(Dn, 2i sinhu)

(ieu)n

∣∣∣∣∣ ≥ t1(z, n)

:=
(1− z2 + z4)2

1 + z2

(
1 + 3z2 + z4 − z8 − z2n−14

)

and thus

E(Dn) >
4n

π
+

2

π

∫ 1

0
(z−2 + 1) log t1(z, 28)dz for all even n ≥ 28

>
4n

π
+

0.168

π
. (16)
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· For odd n we have∣∣∣∣∣φ(Dn, 2i sinhu)

(ieu)n

∣∣∣∣∣ ≥ t2(z, n)

:=
(1− z2 + z4)2

1 + z2

(
1 + 3z2 + z4 − z8 − z2n−6 − 3z2n−8

)
and thus

E(Dn) ≥ 4n

π
+

2

π

∫ 1

0
(z−2 + 1) log t2(z, 29)dz for all odd n ≥ 29

>
4n

π
+

0.062

π
. (17)

• For the cycle Cn, we have explicit formulas that were also used in [1]:

E(Cn) =


4 cot π

n
n ≡ 0 mod 4,

4 csc π
n

n ≡ 2 mod 4,

2 csc π
2n

n odd.

This gives us a trivial lower bound for odd n:

E(Cn) >
4n

π
if n is odd.

For an upper bound, we notice that cotx < cscx, and that the function
cscx− 1/x is increasing for x < π. Hence we have

E(Cn) ≤ 4 csc
π

n
≤ 4n

π
+ 4 csc

π

40
− 160

π
<

4n

π
+

0.165

π
< E(Dn) (18)

for even n ≥ 40, and the inequality E(Cn) < E(Dn) can also be verified
directly for even n ∈ [28, 38]. Likewise,

E(Cn) = 2 csc
π

2n
≤ 4n

π
+ 2 csc

π

58
− 116

π
<

4n

π
+

0.057

π
< E(Dn) (19)

for odd n ≥ 29.
• From (8) we get

(Q3
n(u))2 =

∣∣∣∣∣e2u(e2u + 2)

(e2u + 1)2
− 2ie2u

e−3u − (−1)ne(1−2n)u

e2u + 1

−e
−2u + (−1)ne(6−2n)u

(e2u + 1)2
+

2e2u + 1

(e2u + 1)2
(ieu)−2n

∣∣∣∣∣
2

=

(
z−4 + 2z−2 − z2 − (−1)nz2n−6 + (−1)n(2z2n−2 + z2n)

(z−2 + 1)2

)2

+

(
2z − 2(−1)nz2n−3

z−2 + 1

)2

. (20)
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· If n is even, then we have

(Q3
n(u))2

=

(
z−4 + 2z−2 − z2 − z2n−6 + 2z2n−2 + z2n

(z−2 + 1)2

)2

+

(
2z − 2z2n−3

z−2 + 1

)2

≤ u1(z, n) :=

(
1 + 2z2 − z6 + z2n+2 + z2n+4

(z2 + 1)2

)2

+

(
2z3

z2 + 1

)2

.

Therefore

E(P 3
n) =

4n

π
+

2

π

∫ +∞

0
log((Q3

6(u))2) coshu du

<
4n

π
+

1

π

∫ 1

0
(z−2 + 1) log u1(z, 28)dz for all even n ≥ 28

≤ 4n

π
− 0.100

π
< E(Dn) (21)

and

E(P 3
n) <

4n

π
+

1

π

∫ 1

0
(z−2 + 1) log u1(z, 6)dz for all even n ≥ 6

≤ 4n

π
− 0.028

π
< E(P 6

n). (22)

· For odd n we obtain from (20) that

(Q3
n(u))2 =

(
z−4 + 2z−2 − z2 + z2n−6 − 2z2n−2 − z2n

(z−2 + 1)2

)2

+

(
2z + 2z2n−3

z−2 + 1

)2

≤ u2(z, n) :=

(
1 + 2z2 − z6 + z2n−2

(z2 + 1)2

)2

+

(
2z3 + 2z2n−1

z2 + 1

)2

.

Hence

E(P 3
n) ≤ 4n

π
+

1

π

∫ 1

0
(z−2 + 1) log u2(z, 15)dz for n ≥ 15

≤ 4n

π
< min{E(Cn),E(P 6

n)}. (23)

Furthermore, we also have

E(P 3
n) ≤ 4n

π
< E(Dn) (24)

for n ≥ 23.
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• From (8) we get

Q10
n (u) =

∣∣∣∣∣e2u(e2u + 2)

(e2u + 1)2
− 2e2u

(ieu)−10 − (ieu)10−2(n+1)

e2u + 1

+
(ieu)−2·10+4 + (ieu)2·10−2n

(e2u + 1)2
+

2e2u + 1

(e2u + 1)2
(ieu)−2n

∣∣∣∣∣
=
z−4 + 2z−2 + (−1)n(2z2n−2 + z2n) + z16 + (−1)nz2n−20

(z−2 + 1)2

+ 2
z8 + (−1)nz2n−10

z−2 + 1
.

· For even n we have

Q10
n (u) = v1(z, n) :=

1 + 2z2 + 2z2n+2 + z2n+4 + z20 + z2n−16

(z2 + 1)2

+ 2
z10 + z2n−8

z2 + 1
.

It follows that

E(P 10
n ) ≤ 4n

π
+

2

π

∫ 1

0
(z−2 + 1) log v1(z, 28)dz for n ≥ 28

≤ 4n

π
+

0.092

π
< E(Dn). (25)

· For odd n we have

Q10
n (u) =

1 + 2z2 − 2z2n+2 − z2n+4 + z20 − z2n−16

(z2 + 1)2
+ 2

z10 − z2n−8

z2 + 1

≤ v2(z) :=
1 + 2z2 + z20

(z2 + 1)2
+

2z10

z2 + 1
.

This implies

E(P 10
n ) ≤ 4n

π
+

2

π

∫ 1

0
(z−2 + 1) log v2(z)dz

≤ 4n

π
+

0.016

π
< E(Dn). (26)

• For even n ≡ 0 mod 4, using (8) we have

Qn−2
n (u)

=
e4u + 2e2u + 2e−2(n−1)u + e−2nu

(e2u + 1)2
+ 2

e−(n−4)u + e−(n+2)u

e2u + 1
+
e−2(n−4)u + e−4u

(e2u + 1)2

= w(z, n) :=
1 + 2z2 + 2z2n+2 + z2n+4 + z2n−4 + z8

(z2 + 1)2
+ 2

zn−2 + zn+4

z2 + 1
.
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This implies that

E(P n−2
n ) ≤ 4n

π
+

2

π

∫ 1

0
(z−2 + 1) logw(z, 28)dz for n ≥ 28

≤ 4n

π
− 0.02

π
< E(Dn). (27)

3.4 Main theorems, conclusion

We are now ready to collect all estimates and prove our three main results:
Conjecture 1, Theorem 5 and Theorem 7, which all follow now by appropriately
combining the inequalities obtained in the preceding sections: the results of
Section 3.2 have already reduced the number of possibilities considerably (see
observations (12) and (13)), and the remaining cases are all covered by the
estimates in Section 3.3.

In particular, we obtain Conjecture 1 by combining our observation (12) with
Theorem 4, Theorem 3 and the inequalities (22) and (23).

Theorem 5 is a combination of observation (13), Theorem 6 and inequalities
(18), (19), (21), (24), (25), (26) and (27).

Finally, Theorem 7 follows immediately from inequality (11) for even n and
for odd n from inequality (23) (for n ≥ 15; the remaining cases can be checked
directly) together with the observation that E(P k

n ) is a convex function in k
for odd k.

It is very likely that the same approach can also be used to characterise the uni-
cyclic graph with third-largest, fourth-largest, . . . energy, although the number
of cases to be considered will become considerable. Propositions 9, 10 and 11
also show that there are lots of unicyclic graphs whose energy comes close
(within a constant) to the maximum value.
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combinatorics and applications (Gößweinstein, 1999), Springer, Berlin, 2001,
pp. 196–211.

[9] I. Gutman, B. Furtula, H. Hua, Bipartite unicyclic graphs with maximal,
second-maximal, and third-maximal energy, MATCH Commun. Math. Comput.
Chem. 58 (2007) 75–82.

[10] I. Gutman, X. Li, J. Zhang, Graph energy, in: M. Dehmer, F. Emmert-Streib
(eds.), Analysis of Complex Networks. From Biology to Linguistics, Wiley-VCH
Verlag, Weinheim, 2009, pp. 145–174.
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