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Abstract

Here we prove some results about the coefficients rn of
∏
i≥0(1 +

q3i2+3i+1). These coefficients count the number of a special type of
partitions of n, namely totally symmetric plane partitions with self
conjugate main diagonal. In particular, we prove the conjecture that
n = 860 is the largest n such that rn = 0.

1 Introduction

For n ≥ 0, let rn be such that∏
i≥0

(1 + q3i2+3i+1) =
∑
n≥0

rnq
n

= 1 + q + q7 + q8 + q19 + q20 + q26 + q27 + q37 + · · ·

The coefficient rn counts the number of a special type of partitions of n,
namely totally symmetric plane partitions with self conjugate main diagonal
(see [3] for the definition of such partitions and some of their properties).
Although it appears that there are a lot of gaps in the above expansion
at the beginning, we noticed computationally that n = 860 is the largest
n ≤ 10000 such that rn = 0. So, we set ourselves the task to prove that this
is indeed so without the computational restriction n ≤ 10000. This is our
first result.

Theorem 1. If rn = 0, then n ≤ 860.

Since rn counts also the number of partitions of n in distinct parts of the
form 3i2 + 3i + 1 each, it follows that rn cannot exceed the total number
q(n) of partitions of n into distinct parts, whose asymptotic behaviour is
well known:

q(n) ∼ 1

4 · 31/4n3/4
exp

(
π
√
n/3
)

as n→∞ (1)

(see [1]). Our next theorem addresses the growth rate of rn as n→∞.
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Theorem 2. The asymptotic formula

rn ∼ c1 · n−5/6 · exp(c0n
1/3) (2)

holds as n→∞, where

c0 =

(
9π

16

(
1− 1√

2

)2

ζ(3/2)2

)1/3

and

c1 =

(
(1− 1/

√
2)ζ(3/2)

36π

)1/3

.

Our proof of Theorem 1 is elementary. The deepest tool we use is the char-
acterization of those positive integers n which admit a representation as a
sum of three squares, and this is well known. Theorem 2 is obtained as a
corollary to a more general result on partitions into distinct elements from a
given set.

2 An auxiliary result

We start with the following lemma.

Lemma 3. If m is a positive integer with m ≡ 3 (mod 8), m ≡ 0 (mod 5)
but 25 - m, then m = x2

1 + x2
2 + x2

3, where x1 < x2 < x3 are odd positive
integers.

Proof. It is well known that ifm is a positive integer not of the form 4e(8k+7),
then m can be written as a sum of three squares. So, we certainly have that
m = x2

1 + x2
2 + x2

3. Since m is odd, either all three numbers x1, x2, x3 are
odd, or one is odd and two are even. If one is odd and two are even, then
x2

1 + x2
2 + x2

3 ≡ 1, 5 (mod 8), which is not the case for us. Thus, x1, x2, x3

are all odd. If they are all equal, then m = 3x2
1, but this is impossible since

5 | m but 25 - m. If only two of them are equal, then we get a representation
of m of the form m = 2x2 + y2 with integers x and y. Since 5 | m but 25 - m,
it follows that x and y are coprime to 5 and reducing the above relation
modulo 5, we get 2x2 ≡ −y2 (mod 5), or (yx−1)2 ≡ 3 (mod 5), which is not
possible because 3 is not a quadratic residue modulo 5.
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3 Proof of Theorem 1

Let L = {5, 6, 7, 8, 9, 10}. For each n ≥ 10000 let L ∈ L be such that n ≡ L
(mod 6). We search for a representation of n of the form

n =
L∑
j=1

(3i2j + 3ij + 1) where i1 > i2 > · · · > iL. (3)

Clearly the existence of such a representation for n will imply that rn 6= 0.
The above expression (3) can be rewritten as

4n− L
3

= x2
1 + · · ·+ x2

L, where xj = 2ij + 1 for j = 1, . . . , L.

To make things simpler, we put X = (4n−L)/3. Here is how we choose the
odd numbers x1 > x2 > · · · > xL. First, we let

xj ∈

{⌊√
X

L− 3

⌋
− (2j − 2),

⌊√
X

L− 3

⌋
− (2j − 1)

}
for j = 1, . . . , L−5.

We choose them in such a way that xj is odd. They are uniquely determined
and mutually distinct for j = 1, . . . , L − 5. For xL−4 and xL−3, we choose
them in the following way. Let r ∈ {0, 1, 2, 3, 4} be such that

r ≡ X −
L−5∑
i=1

x2
i (mod 5).

We choose xL−4 and xL−3 to be odd distinct numbers in the interval

I =

[⌊√
X

L− 3

⌋
− (2L− 1),

⌊√
X

L− 3

⌋
− (2L− 10)

]
, (4)

in such a way that x2
L−4 + x2

L−3 ≡ r (mod 5). To see why this can be done,
note that every residue class modulo 5 admits a representation as a sum of
two squares a2 +b2 (mod 5), where not both a and b are zero modulo 5 (that
is, for the class 0 just take the representation 12 +22 (mod 5)). So, represent
r ≡ a2 + b2 (mod 5), where b 6≡ 0 (mod 5). Next choose some odd xL−4

in the interval I shown at (4) such that xL−4 ≡ a (mod 5). There exists
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one such choice for xL−4 since I contains 10 consecutive integers. So, pick
such an xL−4. Next choose xL−3 in I which is odd and such that xL−3 ≡ ±b
(mod 5). There are two such possibilities for xL−3, and at least one of them
will be different from the already chosen xL−4. Put m = X −

∑L−3
i=1 x

2
i .

Observe that m ≡ 3 (mod 8) and m ≡ 0 (mod 5). It might be the case
that m ≡ 0 (mod 25). In this case, we replace xL−3 by xL−3 − 10. Since
xL−3 ≡ ±b (mod 5) 6≡ 0 (mod 5), then x2

L−3 and (xL−3− 10)2 are congruent
modulo 8 and 5 but not modulo 25. Thus our new m has indeed the property
that m 6≡ 0 (mod 25). Furthermore, since xj ≤ b

√
X/(L− 3)c holds for all

j = 1, . . . , L − 3, it follows that m ≥ 0. Hence, m is positive (since it is
congruent to 3 modulo 8).

Lemma 3 tells us that m is a sum of squares of three odd distinct positive
integers, let us call them xL−2 > xL−1 > xL. It remains to show that
xL−3 > xL−2. For this, let us estimate m from above. Clearly,

xj >

√
X

L− 3
− 2j for j = 1, . . . , L− 5;

xL−4 >

√
X

L− 3
− (2L− 2);

xL−3 >

√
X

L− 3
− 2L− 10.

Thus,

L−3∑
i=1

x2
i > X − 4

√
X

L− 3

(
L−5∑
j=1

j + (L− 1) + (L+ 5)

)

= X − 2(L2 − 5L+ 28)√
L− 3

√
X

≥ X − 59
√
X,

where we used the fact that L ∈ L (so, L ≤ 10). Hence, m ≤ 59
√
X, showing

that xL−2 < 591/2X1/4. Since

xL−3 >

√
X

L− 3
− 2L− 10 ≥

√
X

7
− 30,

it follows that it suffices that√
X

7
− 30 ≥ 591/2X1/4,
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which is fulfilled for X ≥ 314167. Since (4n − L)/3 = X, we get that
n = (3X + L)/4, so rn 6= 0 for n ≥ 235627.

It remains to check the values of rn for n < 250000 and this can be done
computationally using Mathematica, for example.

4 Proof of Theorem 2

A general asymptotic scheme due to Meinardus ([5], see also [1]) provides a
formula for the coefficients of a generating function of the form

∞∏
j=0

(1− xΛj)−1,

which enumerates partitions into elements from a given increasing sequence
Λ0,Λ1, . . . of positive integers under certain technical conditions. A similar
result can be obtained for generating functions of the form

∞∏
j=0

(1 + xΛj),

which enumerates partitions into distincts elements of the sequence. In our
case, we have Λj = 3j2 + 3j + 1 for j ≥ 0. Hwang [4] studies, in more
generality, the bivariate generating function

∞∏
j=0

(1 + uxΛj),

in which the variable u marks the length (number of parts) of the associ-
ated partitions. In the case of totally symmetric plane partitions with self-
conjugate main diagonal, this corresponds to the number of layers in the
decomposition described in [3]. Hwang proves a central limit theorem for
this quantity, which implies that we also have a central limit theorem for the
number of layers in TSPPs with self-conjugate main diagonal. Let us first
state Hwang’s results explicitly:

Theorem 1 (Hwang [4]). Suppose that the sequence Λ satisfies the following
conditions:
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1. The associated Dirichlet series D(s) =
∑

k≥0 Λ−sk converges in the half-
plane <(s) > α > 0, and can be analytically continued into the half-
plane <(s) ≥ −α0 for some α0 > 0. Within this half-plane, D(s) is
analytic except for a simple pole at s = α with residue A.

2. There exists an absolute constant C1 such that D(s)� |t|C1 uniformly
for <(s) ≥ −α0 as |t| → ∞.

3. Define g(τ) =
∑

k≥0 e
−Λkτ , where τ = r + iy with r > 0 and |y| ≤

π. There exists a positive constant C2 such that g(r) − <(g(τ)) ≥
C2(log(1/r))2+4/α2

uniformly for π/2 ≤ |y| ≤ π as r → 0+.

Then the asymptotic formula

rn = [xn]
∞∏
j=0

(1 + xΛj) ∼ Anλ exp
(
Bnα/(α+1)

)
holds with

A = 2D(0) (2π(1 + α))−1/2 (AΓ(α + 1)ζ(α + 1)(1− 2−α)
)1/(2α+2)

,

B =

(
1 +

1

α

)(
AΓ(α + 1)ζ(α + 1)(1− 2−α)

)1/(α+1)
,

λ = −
1 + α

2

1 + α
.

Furthermore, if ωn denotes the length of a random partition of n into distinct
elements of the sequence Λ, then the distribution of ωn is asymptotically
Gaussian, with mean

µn ∼ (κα)1/(α+1) · (1− 21−α)ζ(α)

α(1− 2−α)ζ(α + 1)
· nα/(1+α)

and variance

σ2
n ∼ (κα)1/(α+1)·

(
(1− 22−α)ζ(α− 1)

α(1− 2−α)ζ(α + 1)
− (1− 21−α)2ζ(α)2

(α + 1)(1− 2−α)2ζ(α + 1)2

)
·nα/(1+α),

where κ = AΓ(α)(1− 2−α)ζ(α + 1).
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In our specific case, the Dirichlet series D(s) can be rewritten as follows:

D(s) =
∞∑
`=0

(3`2 + 3`+ 1)−s = 3−s
∞∑
`=0

((
`+

1

2

)2

+
1

12

)−s

= 3−s
∞∑
`=0

(
`+

1

2

)−2s ∞∑
k=0

(
−s
k

)(
12

(
`+

1

2

)2
)−k

= 3−s
∞∑
k=0

(
s+ k − 1

k

)(
− 1

12

)k ∞∑
`=0

(
`+

1

2

)−2s−2k

= 3−s
∞∑
k=0

(
s+ k − 1

k

)(
− 1

12

)k
ζ

(
2s+ 2k,

1

2

)
.

The sum converges for arbitrary s and thus provides an analytic continuation
with poles at α = 1

2
(with residue A = 1

2
√

3
) and all negative half-integers.

This shows that the first condition of Hwang’s theorem is satisfied. The
second condition immediately follows from growth properties of the Hurwitz
zeta function. Note also that the binomial coefficient

(
s+k−1
k

)
vanishes at

s = 0 for all k > 0, so that we obtain

D(0) = ζ

(
0,

1

2

)
= 0.

Finally, the third condition can be checked by well-known exponential sum
techniques: we have g(τ) =

∑
j≥0 e

−(3j2+3j+1)τ and thus

g(r)−<(g(τ)) =
∑
j≥0

e−(3j2+3j+1)r
(
1− cos((3j2 + 3j + 1)t)

)
�

∑
0≤j<r−1/2

(
1− cos((3j2 + 3j + 1)t)

)
.

Hence we study the sum

∑
0≤j<x

cos((3j2 + 3j + 1)t) = <

( ∑
0≤j<x

e((3j2 + 3j + 1)α)

)
,

where α = t
2π

satisfies 1/4 ≤ |α| ≤ 1/2, and e(x) = exp(2πix) as usual. We
distinguish two cases: if α = a

q
+β for coprime integers a, q with 1 ≤ q ≤ x1/4
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and |β| ≤ x−3/2, then we have

<

( ∑
0≤j<x

e((3j2 + 3j + 1)α)

)
≤ x−

√
x+ <

 ∑
0≤j<

√
x

e((3j2 + 3j + 1)α)


= x−

√
x+ <

 ∑
0≤j<

√
x

e((3j2 + 3j + 1)a/q) +O(βj2)


= x−

√
x+ <

(√
x

q

∑
0≤j<q

e((3j2 + 3j + 1)a/q)

)
+O(q + βx3/2)

= x−
√
x+

√
x

q
<

( ∑
0≤j<q

e((3j2 + 3j + 1)a/q)

)
+O(x1/4).

The Gauss sum ∑
0≤j<q

e((3j2 + 3j + 1)a/q)

is well known to be O(
√
q) (see [2]). Moreover, it can only be equal to q if

q divides all the numbers 3j2 + 3j + 1, j ≥ 0; this is clearly only the case
for q = 1, but this is excluded by the condition 1/4 ≤ |α| ≤ 1/2. Therefore,
there must be an absolute constant η > 0 such that

<

( ∑
0≤j<q

e((3j2 + 3j + 1)a/q)

)
≤ (1− η)q

for all q > 1. But this finally yields

<

( ∑
0≤j<x

e((3j2 + 3j + 1)α)

)
≤ x− η

√
x+O(x1/4).

If, on the other hand, α does not have a rational approximation as above,
then by Dirichlet’s approximation theorem, there must be coprime integers
a, q such that 1 ≤ q ≤ x3/2∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qx3/2
≤ min

(
1

q2
,

1

x3/2

)
,
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and it follows that q ≥ x1/4 (otherwise, one could write α = a
q

+ β with

|β| ≤ 1
x3/2

). Hence by Weyl’s inequality [6], one has∑
0≤j<x

e((3j2 + 3j + 1)α)� x1+ε
(
x−1 + q−1 + x−2q

)1/2 � x7/8+ε

for any ε > 0. But then it also follows that

<

( ∑
0≤j<x

e((3j2 + 3j + 1)α)

)
� x7/8+ε.

In either case, we have shown that

x−<

( ∑
0≤j<x

e((3j2 + 3j + 1)α)

)
≥ η
√
x+O(x1/4)

for sufficiently large x and thus finally

g(r)−<(g(τ))� r−1/4,

which completes the proof of the third condition.

Plugging everything into Theorem 1 yields the desired result, as well as
asymptotic normality of the number of layers in TSPPs with self-conjugate
main diagonal, with mean and variance given by

µn ∼ A1n
1/3

and
σ2
n ∼ A2n

1/3.

Numerically, the two constants are A1 = 0.533049 and A2 = 0.194486 re-
spectively.
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