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Solutions

1. If lnx + ln y = 0 for positive real numbers x and y, what is the minimum value of
x+ y?

Solution: From lnx+ ln y = 0, we obtain xy = 1, so x+ y = x+ 1
x
. The derivative

of this function is 1 − 1
x2

, which shows that it is decreasing for 0 < x < 1 and
increasing for x > 1, with a minimum at x = 1 and minimum value 2.

2. Find the value of the limit lim
x→0

d
dx

(
sinx
x

)
x

.

Solution:

lim
x→0

d
dx

(
sinx
x

)
x

= lim
x→0

x cosx−sinx
x2

x
= lim

x→0

x cosx− sinx

x3

= lim
x→0

cosx− x sinx− cosx

3x2
= − lim

x→0

sinx

3x
= −1

3
.

3. If

x ·
(

5

5

)
·
(

10

5

)
·
(

15

5

)
· · ·
(

2015

5

)
=

(
6

5

)
·
(

11

5

)
·
(

16

5

)
· · ·
(

2016

5

)
,

what is the value of x?

Solution: We have(
5

5

)
·
(

10

5

)
·
(

15

5

)
· · ·
(

2015

5

)
=

5!

5! · 0!
· 10!

5! · 5!
· 15!

5! · 10!
· · · 2015!

5! · 2010!
=

2015!

5! · 5! · · · 5!

after cancellation. Likewise,(
6

5

)
·
(

11

5

)
·
(

16

5

)
· · ·
(

2016

5

)
=

6!

5! · 1!
· 11!

5! · 6!
· 16!

5! · 11!
· · · 2016!

5! · 2011!
=

2016!

5! · 5! · · · 5!
.

Therefore,

x =
2016!
5!403

2015!
5!403

=
2016!

2015!
= 2016.

4. Determine the definite integral

∫ 1

0

e
√
x dx.

Solution: Substituting
√
x = u (so that du

dx
= 1

2
√
x

= 1
2u

) yields∫ 1

0

e
√
x dx =

∫ 1

0

eu · 2u du = 2ueu
∣∣∣1
0
−
∫ 1

0

2eu du = 2e− 2eu
∣∣∣1
0

= 2e− 2e+ 2 = 2.



5. The solution set of the equation

tan(arctanx) = arctan(tanx)

is an interval. How long is this interval?

Solution: Note that tan(arctanx) = x for all real x, while arctan(tanx) is always
a number in the interval (−π/2, π/2). Indeed, arctan(tanx) = x for all x in this
interval, so (−π/2, π/2) is the solution set, and its length is π.

6. In the popular number-placement puzzle Sudoku, one has to fill a 9 × 9-grid with
numbers from 1 to 9 in such a way that each row, each column and each of nine
3 × 3 sub-grids contains all the numbers from 1 to 9. After having completed a
Sudoku, Suzy erases two of the numbers. The average of the remaining numbers is
7/79 greater than the average of all numbers in the completed Sudoku grid. Which
two numbers did Suzy erase?

Solution: The total of the numbers in the Sudoku grid is

9 · (1 + 2 + · · ·+ 9) = 9 · 9 · 10

2
= 405,

and the average of the numbers is thus 405/81 = 5. It follows that the average after
removal is 5+7/79 = 402/79. Thus the total must have decreased by 3 to 402. This
is only possible if the numbers erased by Suzy are 1 and 2.

7. Let R be the region consisting of the points (x, y) of the Cartesian plane satisfying
both |x| − |y| ≤ 1 and |y| ≤ 1. Find the area of R.

Solution: The region is shown in the following figure:

It consists of a 2×2-square and four right-angled isosceles triangles whose legs have
length 1. Thus the total area is

4 + 4 · 1

2
= 6.

8. How many complex numbers z satisfy the equation z = z2015?



Solution: If we take absolute values on both sides of the equation, we get

|z| = |z| = |z2015| = |z|2015,

which implies that |z| is either 0 or 1. In the former case, we obtain the obvious
solution z = 0, and in the latter we multiply by z:

1 = |z|2 = z · z = z2016,

so z is one of the 2016 roots of unity. Thus there are 2017 solutions in total.

9. Given a regular 100-gon, how many ways are there to draw a rectangle whose vertices
are vertices of the 100-gon?

Solution: Each rectangle is determined uniquely by its two diagonals, and each
of those diagonals has to be a diameter of the circumcircle. There are 50 potential
diagonals, which gives us

(
50
2

)
= 1225 different choices.

10. Point P lies in the Cartesian plane, but not on the x-axis, and three straight lines
`1, `2 and `3 pass through it. The x-axis forms a triangle with the lines `1 and `2
that is divided into two smaller triangles of equal area by `3. If the gradients of `1
and `2 are 1 and −2 respectively, what is the gradient of `3?

Solution: Suppose that the coordinates of P are (a, b). Then the equation of `1 is
y = x− a+ b, while the equation of `2 is y = −2x+ 2a+ b. The lines cut the x-axis
at (a − b, 0) and (a + b/2, 0) respectively. Now note that `3 has to pass through
the midpoint of these two to cut the triangle into parts of equal area (which follows
from the familiar formula for the area of a triangle as base times height divided by
2). The midpoint is (a− b/4, 0), so the equation of `3 must be y = 4x−4a+ b. This
means that the gradient of `3 is 4.

11. Two random numbers are chosen (independently of each other) from the interval
[0, 1]. What is the probability that they differ by more than their average?

Solution: If x and y are the two numbers, then the given condition can be written
as

|x− y| > x+ y

2

or equivalently one of

x− y > x+ y

2
or y − x > x+ y

2
,

i.e. x > 3y or y > 3x. The part of the unit square defined by these two inequalities
consists of two right-angled triangles, each with side lengths 1

3
and 1 (as shown in

the figure). Their total area is 1
3
, so the probability of falling into one of the regions

is 1
3
.



12. In the solution to the system of equations

20x1 + x2 + x3 + · · ·+ x14 + x15 = −7,

x1 + 20x2 + x3 + · · ·+ x14 + x15 = −6,

x1 + x2 + 20x3 + · · ·+ x14 + x15 = −5,

...
...

...
...

x1 + x2 + x3 + · · ·+ 20x14 + x15 = 6,

x1 + x2 + x3 + · · ·+ x14 + 20x15 = 7,

what is the value of x15?

Solution: If we add all fifteen equations, we obtain

34(x1 + x2 + · · ·+ x15) = 0,

so the sum of all variables is 0. Subtracting this from the last equation gives us

19x15 = 7,

so x15 = 7
19

.

13. Which pairs (a, b) of positive integers satisfy the equation (−2)a + 228 = b2?

Solution: If a is odd, then (−2)a is negative. In this case, a cannot be greater
than 7, since otherwise (−2)a + 228 ≤ (−2)9 + 228 < 0 ≤ b2. Among the remaining
cases a = 1, 3, 5, 7, only a = 5 and a = 7 yield a solution (b = 14 and b = 10,
respectively). If a is even, we can write a = 2c and factorise the resulting equation
228 = b2 − (−2)2c = b2 − 22c:

228 = (b− 2c)(b+ 2c).

The number 228 factorises as 228 = 1 ·228 = 2 ·114 = 3 ·76 = 4 ·57 = 6 ·38 = 12 ·19.
The difference of the two factors b−2c and b+2c must be a power of 2, namely 2c+1.
This is only the case for the factorisation 6 · 38, which gives us the final solution
b = 22 and c = 4 (thus a = 8). So we have three possible triples: (5, 14), (7, 10) and
(8, 22).



14. The sum of k consecutive squares is equal to the sum of the following k− 1 consec-
utive squares. The last of these 2k − 1 squares is 20152. What is the first one?

Solution: Let x2 be the square in the middle; then the first k squares are (x− k+
1)2, (x−k+2)2, . . . , x2, and the following k−1 squares are (x+1)2, (x+2)2, . . . , (x+
k − 1)2. We obtain the equation

k−1∑
j=0

(x− j)2 =
k−1∑
j=1

(x+ j)2,

which simplifies to

kx2 − 2x
k−1∑
j=0

j +
k−1∑
j=0

j2 = (k − 1)x2 + 2x
k−1∑
j=0

j +
k−1∑
j=0

j2,

so

x2 = 4x
k−1∑
j=0

j = 2k(k − 1)x.

Since x cannot be 0, this gives us x = 2k(k−1), which means that the last square is
(2k(k−1)+(k−1))2 = ((k−1)(2k+1))2. So (k−1)(2k+1) = 2015 and thus k = 32.
Finally, we obtain that the first of the 2k− 1 squares is (2015− 2(k− 1))2 = 19532.

15. How many 2 × 2-matrices with determinant 1 are there whose entries are (not
necessarily distinct) elements of the set {1, 2, 3, 4}?

Solution: If the matrix is

[
a b
c d

]
, then we must have ad = bc + 1. Note that the

product ad and the product bc admit one of the following values: 1, 2, 3, 4, 6, 8, 9, 12, 16.
Thus we have the following possible combinations for the pair (ad, bc):

(2, 1), (3, 2), (4, 3), (9, 8).

We can summarise the possibilities in the following table:

value of ad 2 3 4 9
value of bc 1 2 3 8
number of possibilities for (a, d) 2 2 3 1
number of possibilities for (b, c) 1 2 2 2
number of possibilities combined 2 4 6 2

Thus the overall number of possible matrices is 14.

16. How many polynomials P (x) of degree 4 with real coefficients satisfy the equation
P (x2) = P (x)P (−x) for all x?

Solution: Suppose the leading coefficient of P (x) is a, i.e. P (x) = ax4 + · · · . In
this case, P (x2) = ax8 + · · · and P (x)P (−x) = a2x8 + · · · , so the two can only



coincide if a = 1 (if a = 0, then the degree is no longer 4). Now suppose that P (x)
factors as follows:

P (x) = (x− α1)(x− α2)(x− α3)(x− α4).

Then
P (x2) = (x2 − α1)(x

2 − α2)(x
2 − α3)(x

2 − α4),

and on the other hand

P (x)P (−x) = (x2 − α2
1)(x

2 − α2
2)(x

2 − α2
3)(x

2 − α2
4).

This means that α2
1, α

2
2, α

2
3, α

2
4 form a permutation of α1, α2, α3, α4. In particular,

if α is one of the zeros of P (x), then so is α2, thus also α4, α8, . . . . Since there
are only four (and in particular not infinitely many) zeros, this means that some of
these powers must coincide, so α is either 0 or a root of unity.

Now we check which roots of unity can occur. The zeros have to form cycles α →
α2 → · · · → α2r = α, where r is at most 4. Thus α = 0 or one of α, α3, α7, α15 is 1.

The 15th roots of unity e2πi/15, e4πi/15, e8πi/15, e16πi/15 or their conjugates form a cycle
of the required form, but the polynomial (x − e2πi/15)(x − e4πi/15)(x − e8πi/15)(x −
e16πi/15) does not have real coefficients: the coefficient of x3 is

−e2πi/15 − e4πi/15 − e8πi/15 − e16πi/15,

whose imaginary part is − sin(2π/15)− sin(4π/15)− sin(8π/15)− sin(16π/15) < 0.
For the same reason, seventh roots of unity can be excluded.

This leaves us with 0, 1, the third roots of unity e±2πi/3, which give a factor

(x− e2πi/3)(x− e−2πi/3) =
x3 − 1

x− 1
= x2 + x+ 1,

and the fifth roots of unity e2jπi/5, j = 1, 2, 3, 4 (which are also 15th roots of unity,
so they form the required cycle). They give us a factor

(x− e2πi/5)(x− e4πi/5)(x− e6πi/5)(x− e8πi/5) =
x5 − 1

x− 1
= x4 + x3 + x2 + x+ 1.

Now there are ten possible ways to combine the feasible factors x, x− 1, x2 + x+ 1
and x4 + x3 + x2 + x+ 1 to a polynomial of degree 4:

P (x) = x4 + x3 + x2 + x+ 1,

P (x) = (x2 + x+ 1)2 = x4 + 2x3 + 3x2 + 2x+ 1,

P (x) = (x− 1)2(x2 + x+ 1) = x4 − x3 − x+ 1,

P (x) = x(x− 1)(x2 + x+ 1) = x4 − x,
P (x) = x2(x2 + x+ 1) = x4 + x3 + x2,

P (x) = (x− 1)4 = x4 − 4x3 + 6x2 − 4x+ 1,

P (x) = x(x− 1)3 = x4 − 3x3 + 3x2 − x,
P (x) = x2(x− 1)2 = x4 − 2x3 + x2,

P (x) = x3(x− 1) = x4 − x3,
P (x) = x4.



17. Using the fact that
∞∑
n=1

1

n2
=
π2

6
, find the value of

∞∑
n=1

1

n3(n+ 1)3
.

Solution: Making use of the partial fraction decomposition 1
n(n+1)

= 1
n
− 1

n+1
, we

simplify the sum as follows:

∞∑
n=1

1

n3(n+ 1)3
=
∞∑
n=1

(
1

n(n+ 1)

)3

=
∞∑
n=1

( 1

n
− 1

n+ 1

)3
=
∞∑
n=1

1

n3
−
∞∑
n=1

3

n2(n+ 1)
+
∞∑
n=1

3

n(n+ 1)2
−
∞∑
n=1

1

(n+ 1)3

=
∞∑
n=1

1

n3
−
∞∑
n=2

1

n3
−
∞∑
n=1

3

n(n+ 1)

( 1

n
− 1

n+ 1

)
= 1−

∞∑
n=1

3
( 1

n
− 1

n+ 1

)2
= 1−

∞∑
n=1

3

n2
+
∞∑
n=1

6

n(n+ 1)
−
∞∑
n=1

3

(n+ 1)2

= 1−
∞∑
n=1

3

n2
−
∞∑
n=2

3

n2
+
∞∑
n=1

6
( 1

n
− 1

n+ 1

)
= 1− 3 · π

2

6
− 3 ·

(π2

6
− 1
)

+ 6
(1

1
− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+

1

4
− 1

5
· · ·
)

= 1− π2

2
− π2

2
+ 3 + 6 = 10− π2.

18. A mathdie has the following six matrices on its faces:

M1 =

0 0 0
0 1 0
0 0 0

 , M2 =

1 0 0
0 0 0
0 0 1

 , M3 =

1 0 0
0 1 0
0 0 1

 ,
M4 =

1 0 1
0 0 0
1 0 1

 , M5 =

1 0 1
0 1 0
1 0 1

 , M6 =

1 0 1
1 0 1
1 0 1

 .
Gus the gambler throws a mathdie three times and multiplies the matrices that
show up on top in the order thrown. What is the probability that the final product
is the matrix M2?

Solution: If the first of the three factors is one of M1,M4,M5,M6, then the first
and last row of the product must be equal. Since this is not the case, the first factor
is M2 or M3. The same argument (with columns instead of rows) shows that the last
factor is M2 or M3. So the product is equal to the middle factor, possibly with the
middle row and/or column replaced by zeros (if M2 is the first or last factor). This
also leaves only M2 or M3 as middle factor. Of the eight remaining possibilities, all
except for M3 ·M3 ·M3 = M3 give the product M2, so the probability is 7

63
= 7

216
.



19. Suppose that f is twice differentiable on the interval [0, 1], and that f(0) = f(1) = 0
as well as f ′′(x) ≥ −1 on the entire interval. Determine the greatest possible value

of
∫ 1

0
f(x) dx.

Solution: We integrate by parts to obtain∫ 1

0

f(x) dx = (x+ a)f(x)
∣∣∣1
0
−
∫ 1

0

(x+ a)f ′(x) dx

= (a+ 1)f(1)− af(0)−
(x2

2
+ ax+ b

)
f ′(x)

∣∣∣1
0

+

∫ 1

0

(x2
2

+ ax+ b
)
f ′′(x) dx

= −
(1

2
+ a+ b

)
f ′(1) + bf ′(0) +

∫ 1

0

(x2
2

+ ax+ b
)
f ′′(x) dx.

Here, a and b can be arbitrary. We choose them as a = −1
2

and b = 0, so that the
first two terms vanish:∫ 1

0

f(x) dx =

∫ 1

0

x2 − x
2

f ′′(x) dx =

∫ 1

0

x(1− x)

2
(−f ′′(x)) dx.

The factor x(1− x)/2 is positive on the entire interval (0, 1), and we are given that
f ′′(x) ≥ −1, so −f ′′(x) ≤ 1 on the entire interval. This yields∫ 1

0

f(x) dx ≤
∫ 1

0

x(1− x)

2
dx =

x2

4
− x3

6

∣∣∣1
0

=
1

12
.

Equality holds if f ′′(x) = −1 for all x, which is the case for f(x) = x(1− x)/2.

20. Let f(x) be the function

f(x) =
1000∑
k=0

(
2015

k

)
xk(1− x)2015−k.

Determine f ′′(1
2
)/f ′(1

2
).



Solution: The product rule gives us

f ′(x) =
1000∑
k=0

(
2015

k

)(
kxk−1(1− x)2015−k − (2015− k)xk(1− x)2014−k

)
=

1000∑
k=0

k

(
2015

k

)
xk−1(1− x)2015−k −

1000∑
k=0

(2015− k)

(
2015

k

)
xk(1− x)2014−k

=
1000∑
k=0

k · 2015!

k!(2015− k)!
xk−1(1− x)2015−k −

1000∑
k=0

(2015− k) · 2015!

k!(2015− k)!
xk(1− x)2014−k

=
1000∑
k=1

2015!

(k − 1)!(2015− k)!
xk−1(1− x)2015−k −

1000∑
k=0

2015!

k!(2014− k)!
xk(1− x)2014−k

=
1000∑
k=1

2015

(
2014

k − 1

)
xk−1(1− x)2015−k −

1000∑
k=0

2015

(
2014

k

)
xk(1− x)2014−k

=
999∑
k=0

2015

(
2014

k

)
xk(1− x)2014−k −

1000∑
k=0

2015

(
2014

k

)
xk(1− x)2014−k

= −2015

(
2014

1000

)
x1000(1− x)1014.

Therefore,

f ′′(x)

f ′(x)
=
−2015

(
2014
1000

)
(1000x999(1− x)1014 − 1014x1000(1− x)1013)

−2015
(
2014
1000

)
x1000(1− x)1014

=
1000(1− x)− 1014x

x(1− x)
.

Plugging in x = 1
2

now gives us f ′′(1
2
)/f ′(1

2
) = −28.


