
COMBINATORICS EXERCISES – SOLUTIONS Stephan Wagner

1. There are 85 = 32768 such words, of which 8!
3! = 8 · 7 · 6 · 5 · 4 = 6720 consist of distinct

letters.

2. There are 262 · 105 = 67600000 possible number plates.

3. There are six possible colours for the first stripe, then five for the second one (since we
may not choose the same colour again), and finally five possible colours for the last stripe
(we may not choose the colour of the middle stripe); hence there are 6 ·5 ·5 = 150 possible
flags.

4. There are
(
12
2

)
= 12·11

1·2 = 66 different pairs of vertices (and thus lines that can be drawn
between vertices), of which 12 are the outer sides of the dodecagon. The remaining 66 −
12 = 54 lines are the diagonals.

5. If the three digits are all distinct, then their order is uniquely determined by the condition
a ≤ b ≤ c. Therefore, each of the

(
9
3

)
= 9·8·7

1·2·3 = 84 possible choices of three digits between
1 and 9 corresponds to exactly one number that satisfies the condition;

Likewise, if a = b but a ̸= c, then we have
(
9
2

)
= 9·8

1·2 = 36 possible choices for the digits
(the order follows automatically). We obtain the same number of possibilities if b = c but
a ̸= b.

Finally, there are 9 possible three digit numbers abc for which a = b = c; hence we obtain
a total of

84 + 36 + 36 + 9 = 165

different numbers.

An alternative approach is to note that any multiset of three elements taken from the
set of possible digits {1, 2, . . . , 9} corresponds to exactly one feasible number (the order is
uniquely determined by the condition a ≤ b ≤ c). The formula for multisets (Theorem 1.6
in your notes) yields (

9 + 3− 1

3

)
=

(
11

3

)
=

11 · 10 · 9
1 · 2 · 3

= 165.

Yet another possibility would be to consider all possibilities with c = 9, then c = 8, etc.

6. The number 420 factorises as 2 ·2 ·3 ·5 ·7; a factor 7 can only occur if the digit 7 is present
(since 2 ·7 = 14 is already too large for a digit), and for the same reason 5 must also be one
of the four digits. This leaves us with two possibilities for the digits: 2, 5, 6, 7 or 3, 4, 5, 7;
in both cases, we have 4! possible arrangements for the digits. Hence there are 2 · 4! = 48
such numbers.

7. If five mathematicians and three physicists are chosen for the committee, there are(
15

5

)
·
(
20

3

)
= 3423420

possible committees. If six mathematicians and two physicists are chosen, there are(
15

6

)
·
(
20

2

)
= 950950



possible committees. Finally, if seven mathematicians and one physicist are chosen, there
are (

15

7

)
·
(
20

1

)
= 128700

possible committees. Summing the three, we find that there are altogether 4503070 possible
ways for the dean to select a committee.

8. A palindrome of length 9 is already uniquely determined by its first five letters (the others
are simply the mirror image of the first four). Therefore, we have 265 = 11881376 9-letter
palindromes.

9. We are counting sequences (of men) without repetitions (since no man can be married by
two women). Hence the number of possibilities is 6!

2! = 6 · 5 · 4 · 3 = 360.

10. Since there are only five even numbers among the set {1, 2, . . . , 10}, there is only one
five-element subset that does not contain at least one odd element. Hence there are(
10
5

)
− 1 = 251 such sets.

11. If we substitute w = y2 in (a), we see that the coefficient of x3y4z in (x+ y2 + z)6 is the
same as the coefficient of x3w2z in (x+ w + z)6, which is(

6

3, 2, 1

)
=

6!

3!2!1!
= 60.

In (b), the coefficient is

23 · (−1)4 · (−3) ·
(

8

3, 4, 1

)
= 8 · 1 · (−3) · 8!

3!4!1!
= −6720.

12. The word MATHEMATICS consists of two A’s, two M’s, two T’s, one H, one E, one I, one
C, and one S. First of all, we can choose the positions of the two A’s in

(
11
2

)
ways (there

are 11 letters in total); then there are nine positions left, of which we can choose two for
the M’s in

(
9
2

)
ways. Likewise, we have

(
7
2

)
choices for the two T’s after that. Once the

positions of the A’s, M’s and T’s are fixed, the remaining letters can be arranged in any
of the 5! possible ways among the remaining positions. Hence we have a total of(

11

2

)
·
(
9

2

)
·
(
7

2

)
· 5! = 4989600

different arrangements.

13. If the boys and the girls are numbered from 1 to 20, then each possible way to form
pairs corresponds exactly to a permutation of 1, 2, . . . , 20. Therefore, 20! is the answer to
the first question. If we do not distinguish between boys and girls, then one can argue
as follows: the first person can choose 39 different partners; the next person still has 37
choices (everyone except for the first pair); the next person has 35 choices, etc. Therefore,
the answer to the second question is

39 · 37 · 35 · . . . · 3 · 1,

which is also known as the double-factorial (written 39!!).



14. There are nn sequences in total and (n− 1)n sequences that do not contain the number 1.
Therefore, the proportion is

(n− 1)n

nn
=

(
1− 1

n

)n

.

If we let n → ∞, we find

lim
n→∞

(
1− 1

n

)n

= lim
n→∞

en·ln(1−
1
n
),

and

lim
n→∞

n · ln
(
1− 1

n

)
= lim

n→∞

ln(1− 1
n)

1/n
= lim

n→∞

1
n2(1−1/n)

−1/n2
= lim

n→∞
− 1

1− 1/n
= −1.

Therefore, the limit of the proportion is e−1. Likewise, if we consider sequences that do
not contain the numbers 1, 2, . . . , k, then the proportion is (n−k)n

nn , which tends to e−k as
n → ∞.

15. Suppose that we use the letter A k times; then there are
(
n
k

)
possibilities for the positions

of the A’s and 2n−k possible choices for the remaining positions (two possibilities for each
of the positions); hence the number is

n∑
k=0

k even

(
n

k

)
2n−k.

Now we use the same trick as in the proof of Theorem 2.4: since

1k + (−1)k

2
=

{
1 n even,

0 n odd,

we find that

n∑
k=0

k even

(
n

k

)
2n−k =

1

2

(
n∑

k=0

(
n

k

)
1k2n−k +

n∑
k=0

(
n

k

)
(−1)k2n−k

)

=
1

2
((1 + 2)n + (−1 + 2)n) =

3n + 1

2

by the binomial theorem.

16. For each element of 1, 2, . . . , n, we have three options: it can be included in A and B or
in B only or in neither of the two sets. Hence there are 3n such pairs.

17. • The statement is clear if n = m, since both sides of the equation are 1 in this case (if
n < m, both sides are 0). Now assume that the equation holds for a certain n. Then
we have

n+1∑
k=m

(
k

m

)
=

(
n+ 1

m

)
+

n∑
k=m

(
k

m

)
=

(
n+ 1

m

)
+

(
n+ 1

m+ 1

)
=

(
n+ 2

m+ 1

)
by the induction hypothesis and the recursion for binomial coefficients, which com-
pletes the induction.



• If we want to choose a subset of m+ 1 elements from the set {0, 1, . . . , n} such that
the maximum of the subset is k, then it remains to choose m elements from the set
{0, 1, . . . , k−1}, for which there are

(
k
m

)
possibilities. Summing over all possible values

of k, we must obtain the total number of (m + 1)-element subsets of {0, 1, . . . , n},
which is

(
n+1
m+1

)
.

18. In the binomial theorem

(1 + x)n =
n∑

k=0

(
n

k

)
xk,

we differentiate both sides of the equation to obtain

n(1 + x)n−1 =

n∑
k=0

k

(
n

k

)
xk−1.

It remains to plug in x = 1:
n∑

k=0

k

(
n

k

)
= n2n−1.

The average number of elements in a random subset of {1, 2, . . . , n} is thus∑n
k=0 k

(
n
k

)∑n
k=0

(
n
k

) =
n2n−1

2n
=

n

2
,

which is not surprising, since the number of subsets of size k is exactly the same as the
number of subsets of size n− k for any k.

19. We argue as follows: if the maximum is k, then the remaining r − 1 elements are to be
chosen from the set {1, 2, . . . , k − 1} that contains k − 1 elements. Hence there are

(
k−1
r−1

)
subsets whose maximum is k, which proves the stated formula (note that the maximum
has to be at least r). Next we have

k

(
k − 1

r − 1

)
= k · (k − 1)!

(r − 1)!(k − r)!
=

k!

(r − 1)!(k − r)!
= r · k!

r!(k − r)!
= r ·

(
k

r

)
,

and so we obtain
n∑

k=r

k

(
k − 1

r − 1

)
= r

n∑
k=r

(
k

r

)
= r

(
n+ 1

r + 1

)
by the formula that was stated above in Problem 17. So the average maximum is

r
(
n+1
r+1

)(
n
r

) =
r · (n+1)!

(r+1)!(n−r)!

n!
r!(n−r)!

=
r

r + 1
(n+ 1)

after some cancellations.

20. Suppose that l1 is the first number, that l2 is the difference between the first and second
number, l3 the difference between the second and third number, . . . . Finally, l6 is defined
as the difference between the sixth number and 21. The sum of all these numbers (all
of which are positive integers) must be 21 (think of l1 as the distance from 0 to the
first number, then l2 is the distance from the second to the third, etc.), and we have



the additional restriction that the differences l2, l3, l4, l5 have to be at least 2 (to avoid
consecutive numbers). This explains the stated equation. Substituting as described yields

l1 +m2 +m3 +m4 +m5 + l6 = 17.

The dots-and-bars argument shows that there are
(
16
5

)
= 4368 solutions to this equation

(where l1,m2,m3,m4,m5, l6 can be arbitrary positive integers). This must also be the
number of solutions to the original problem.

Generally, the same argument shows that there are
(
n−k+1

k

)
possible ways to choose k

elements from the set {1, 2, . . . , n} if no two consecutive elements are allowed.

21. In the binomial theorem,

(1 + x)4n =
4n∑
l=0

(
4n

l

)
xl,

plug in x = 1, x = −1, x = i and x = −i respectively, and add the four resulting formulas.
Then one finds

24n + (1 + i)4n + (1− i)4n =
4n∑
l=0

(
4n

l

)
(1 + (−1)l + il + (−i)l).

Now one distinguishes the cases l = 4k, l = 4k + 1, l = 4k + 2, l = 4k + 3: since
(−1)4 = i4 = (−i)4 = 1, the equations

1 + (−1)4k + i4k + (−i)4k = 1 + 1 + 1 + 1 = 4,

1 + (−1)4k+1 + i4k+1 + (−i)4k+1 = 1− 1 + i− i = 0,

1 + (−1)4k+2 + i4k+2 + (−i)4k+2 = 1 + 1− 1− 1 = 0,

1 + (−1)4k+3 + i4k+3 + (−i)4k+3 = 1− 1− i+ i = 0,

hold. Therefore,

24n + (1 + i)4n + (1− i)4n = 4

n∑
k=0

(
4n

4k

)
,

and since (1 + i)4 = (1− i)4 = −4, we have

n∑
k=0

(
4n

4k

)
=

1

4

(
24n + 2 · (−4)n

)
= 24n−2 + (−1)n · 22n−1.

22. Suppose that the man has n friends; then he has
(
n
3

)
possibilities to invite three friends.

We thus have to find the smallest value of n such that
(
n
3

)
= n(n−1)(n−2)

6 ≥ 365. Since
n3

6 ≥
(
n
3

)
≥ 365, one must have n ≥ 3

√
6 · 365 = 12.9862. However, one finds that(

13
3

)
= 286 and

(
14
3

)
= 364 are still too small. Therefore, the man has to have at least 15

friends.

23. Seven of the moves have to be horizontal, the other seven vertical. No matter what their
order is, the piece will then reach the opposite corner in 14 moves. Therefore, there are(
14
7

)
= 3432 possibilities, corresponding to the number of ways to decide which of the 14

moves are horizontal moves.



24. In the identity

(1 + x)n+2 = (1 + x)2(1 + x)n = (1 + x)2
n∑

k=0

(
n

k

)
xk

= (1 + 2x+ x2)
n∑

k=0

(
n

k

)
xk

=

n∑
k=0

(
n

k

)
(xk + 2xk+1 + xk+2),

the coefficient of xm+1 on the left hand side is
(
n+2
m+1

)
, by the binomial theorem. The

coefficient of xm+1 on the right hand side, on the other hand, is
(

n
m+1

)
(corresponding to

k = m + 1) plus 2
(
n
m

)
(corresponding to k + 1 = m + 1) plus

(
n

m−1

)
(corresponding to

k + 2 = m+ 1). The identity(
n+ 2

m+ 1

)
=

(
n

m+ 1

)
+ 2

(
n

m

)
+

(
n

m− 1

)
follows as a result.

25. By the inclusion-exclusion principle, this number is

(number of all subsets)− (number of those that do not contain a multiple of 2)

− (number of those that do not contain a multiple of 5)

+ (number of those that do not contain any multiples of 2 or 5)

There are 50 multiples of 2 (thus also 50 non-multiples), 20 multiples of 5 (thus 80 non-
multiples), and 100−50−20+10 = 40 numbers that are neither divisible by 2 nor divisible
by 5. Hence we obtain a total of(

100

3

)
−
(
50

3

)
−
(
80

3

)
+

(
40

3

)
= 69820

subsets that satisfy the conditions.

26. Since all 29 colourings are equally likely, we have to determine the number of those colour-
ings for which one of the 2 × 2-squares is completely red. For each of the squares, there
are 25 such colourings. To apply the inclusion-exclusion principle, we also have to con-
sider the intersections. The number of colourings for which two given 2 × 2-squares are
both entirely red is 22 if they are diagonally opposite, and otherwise 23. Finally, for any
three 2 × 2-squares, there are two possible colourings leaving all of them completely red.
Finally, if every 2× 2-square is entirely red, then the whole 3× 3-square is red, and there
is obviously just one possibility for that. We obtain the total number of

29 − 4 · 25 + 4 · 23 + 2 · 22 − 4 · 2 + 1 = 512− 128 + 32 + 8− 8 + 1 = 417

colourings, i.e., the probability is 417/512 ≈ 0.814453.

27. By the inclusion-exclusion principle, the percentage of students that do not play any of
these sports is

100− 60− 50− 70 + 30 + 35 + 30− 20 = −5,

which is clearly impossible. Therefore, the claim (or any other part of the information)
must be incorrect.



28. There are 1000 squares between 1 and 1000000 = 10002 as well as 100 cubes; if we subtract
these from the total number, we overcount all sixth powers, of which there are 10. Hence
we find that there are

1000000− 1000− 100 + 10 = 998910

numbers between 1 and 1000000 that are neither squares nor cubes.

29. (a) Every possible distribution of the seats among the three parties corresponds to a
composition of 400 into three (nonnegative) summands:

x1 + x2 + x3 = 400.

We know that there are
(
402
2

)
solutions to this equation (see Theorem 1.6 in your

notes). We have to exclude those solutions for which one of the xi is greater than
200. Suppose, for instance, that the first party gets at least 201 seats; then the
remaining 199 seats have to be divided among the three parties, which corresponds
to a solution of

x1 + x2 + x3 = 199,

where x1, x2, x3 are nonnegative integers again. There are
(
201
2

)
possible solutions to

this equation. The same argument applies, of course, to the case that the second or
third party gets a majority, and so we end up with(

402

2

)
− 3 ·

(
201

2

)
= 20301

possible distributions.

(b) Arguing in the exact same way as in (a), we obtain a number of(
402

2

)
− 3 ·

(
135

2

)
= 53466

possible distributions.

30. (a) Altogether, there are
(
52
13

)
= 635013559600 different hands. There are three possibil-

ities for a total of three points:

• One king: 4 choices for the king,
(
36
12

)
choices for the remaining cards.

• One queen and one jack: 42 choices for the queen and the jack,
(
36
11

)
choices for

the remaining cards.

• Three jacks: 4 =
(
4
3

)
choices for the jacks,

(
36
10

)
choices for the remaining cards.

Therefore, there are

4 ·
(
36

12

)
+ 42 ·

(
36

11

)
+ 4 ·

(
36

10

)
= 15636342960

decks with a score of three points.

(b) If we want to determine the number of all decks with a score of at least three points,
we have to subtract all decks with a score ≤ 2. These are

• One queen: 4 choices for the queen,
(
36
12

)
choices for the remaining cards.

• Two jacks: 6 =
(
4
2

)
choices for the jacks,

(
36
11

)
choices for the remaining cards.

• One jack: 4 choices for the jack,
(
36
12

)
choices for the remaining cards.



• No high cards:
(
36
13

)
choices.

Hence there are(
52

13

)
− 2 · 4 ·

(
36

12

)
− 6 ·

(
36

11

)
−
(
36

13

)
= 619084516624

decks with a score ≥ 3.

31. If the middle number is i, then there are i possible choices for the smallest number and
n− i choices for the largest number. Summing over all possible values of i, we must obtain
the total number of subsets of size 3, which is

(
n+1
3

)
. This proves the stated identity.

Generally, if we choose r+ ℓ+1 numbers from the set {0, 1, . . . , n} such that the (r+1)-th
is i, there are

(
i
r

)
choices for the first r numbers and

(
n−i
ℓ

)
choices for the last ℓ numbers.

Summing over all i, we get the identity

n∑
i=0

(
i

r

)(
n− i

ℓ

)
=

(
n+ 1

r + ℓ+ 1

)
.

32. There are
(
n
p

)
ways to choose the fixed points. Once these fixed points have been chosen,

the remaining n − p numbers must form a derangement. Hence we find that the number
of such permutations is(

n

p

)
· (n− p)!

n−p∑
k=0

(−1)k
1

k!
=

n!

p!
·
n−p∑
k=0

(−1)k
1

k!
.

The probability that a randomly chosen permutation has p fixed points is therefore

1

p!

∞∑
k=0

(−1)k
1

k!
=

1

e · p!

as n → ∞.

33. We consider the polynomial identity(
(1 + x)2n

2
+

(1− x)2n

2

)2

=
(1 + x)4n + (1− x)4n

4
+

(1− x2)2n

2
.

On the left hand side, we have

(1 + x)2n

2
+

(1− x)2n

2
=

1

2

(
2n∑
k=0

(
2n

k

)
xk +

2n∑
k=0

(−1)k
(
2n

k

)
xk

)

=

2n∑
k=0
keven

(
2n

k

)
xk =

n∑
k=0

(
2n

2k

)
x2k,

which means that the coefficient of x2n in(
(1 + x)2n

2
+

(1− x)2n

2

)2

is
n∑

k=0

(
2n

2k

)(
2n

2n− 2k

)
=

n∑
k=0

(
2n

2k

)2

.



On the other hand,

(1 + x)4n + (1− x)4n

4
+

(1− x2)2n

2
=

1

2

(
(1 + x)4n + (1− x)4n

2
+ (1− x2)2n

)

=
1

2

 4n∑
k=0
keven

(
4n

k

)
+

2n∑
k=0

(
2n

k

)
(−1)kx2k

 ,

and the coefficient of x2n in this expression is

1

2

((
4n

2n

)
+ (−1)n

(
2n

n

))
.

34. (a) The characteristic equation is q2 − 3q + 2 = 0, with the two solutions q1 = 1 and
q2 = 2. Since 3 is not a solution of the characteristic equation, the solution of the
recursion must have the form

an = A+B · 2n + C · 3n.

First we determine the nonhomogeneous solution:

C · 3n = 3 · C · 3n−1 − 2 · C · 3n−2 + 3n.

Dividing by 3n, we find

C = C − 2C

9
+ 1

or C = 9
2 . Now we can use the initial values to determine A and B:

A + B + 9
2 = −3,

A + 2B + 27
2 = 6,

so that A = −15
2 and B = 0 and finally an = 9·3n−15

2 .

(b) The characteristic equation is q2 − q − 2 = 0, with the two solutions q1 = −1 and
q2 = 2. Since 2 is a solution of the characteristic equation, the solution of the recursion
must have the form

an = A · (−1)n + (B + Cn+Dn2) · 2n.

First we determine the nonhomogeneous solution:

(Cn+Dn2) ·2n = (C(n−1)+D(n−1)2) ·2n−1+2 ·(C(n−2)+D(n−2)2) ·2n−2+9n2n.

Dividing by 2n, we find

Cn+Dn2 =
Cn

2
− C

2
+

Dn2

2
−Dn+

D

2
+

Cn

2
− C +

Dn2

2
− 2Dn+ 2D + 9n,

which simplifies to

0 = (−3D + 9)n+
5D − 3C

2
.

Therefore, we must have D = 3 and C = 5. Now we can use the initial values to
determine A and B:

A + B = 0,
−A + 2B + 16 = 4,

so that A = 4 and B = −4 and finally

an =
(
3n2 + 5n− 4

)
2n + 4(−1)n.



35. We use induction on n: for n = 0, we obtain

0∑
k=0

Fk = F0 = 0 = F2 − 1,

which is obviously true. Now suppose that

n∑
k=0

Fk = Fn+2 − 1

holds. Then we also have

n+1∑
k=0

Fk = Fn+1 +

n∑
k=0

Fk = Fn+1 + Fn+2 − 1 = Fn+3 − 1

by definition of Fn, which is what we had to prove to complete the induction.

An alternative approach makes use of generating functions: the generating function for
the Fibonacci numbers is x

1−x−x2 , hence the generating function for the sum
∑n

k=0 Fk is

1

1− x
· x

1− x− x2
.

On the other hand, the generating function for Fn+2 − 1 is

x−2 ·
(

x

1− x− x2
− x

)
− 1

1− x
=

x

(1− x)(1− x− x2)
,

and the two clearly agree, so we must have
∑n

k=0 Fk = Fn+2 − 1.

36. (a)

∞∑
n=0

3nanx
n =

∞∑
n=0

an(3x)
n = A(3x),

(b)

∞∑
n=0

(
n∑

k=0

kak

)
xn =

x

1− x
A′(x) (Combine Theorem 5.4, 6. and 8.).

37. Let the vertices be numbered from 1 to n; the edge between 1 and 2 has to form a triangle
with one of the other n − 2 points. If k is this point, then the n-gon is divided into a
(k − 1)-gon and a (n− k + 2)-gon which have to be triangulated separately. Therefore, if
tn denotes the number of triangulations, we have

tn =
n∑

k=3

tk−1tn−k+2

for n ≥ 3, where we define t2 to be 1. This is exactly the recursion for the Catalan
numbers, albeit shifted: write an = tn+2 to get

an =

n+2∑
k=3

tk−1tn−k+4 =

n+2∑
k=3

ak−3tn−k+2 =

n−1∑
m=0

amtn−m−1,

which describes the Catalan numbers a0 = t2 = 1, a1 = t3 = 1, a2 = t4 = 2, a3 = t5 = 5,
. . . (see p.31 in your notes).



38. A valid password can either be a digit, followed by an arbitrary valid password, or a
letter or special character, followed by a digit, followed by an arbitrary valid password.
Therefore, one has the recursion

an = 10an−1 + 60 · 10an−2 = 10an−1 + 600an−2,

where an is the number of passwords of length n. The initial values are a1 = 10 (any one-
character password consisting of a single digit is valid) and a2 = 700 (the first character is
arbitrary, the second one has to be a digit). The recursion remains true if we set a0 = 1.
Then we obtain

A(x) =

∞∑
n=0

anx
n = a0 + a1x+

∞∑
n=2

(10an−1 + 600an−2)x
n

= 1 + 10x+ 10

∞∑
n=1

anx
n+1 + 600

∞∑
n=0

anx
n+2

= 1 + 10x+ 10x(A(x)− a0) + 600x2A(x) = 1 + (10x+ 600x2)A(x).

It follows that

A(x) =
1

1− 10x− 600x2
=

3/5

1− 30x
+

2/5

1 + 20x
,

so that the number of valid passwords of length eight is found to be 3
5 · 30

8 + 2
5 · (−20)8 =

403900000000. If one is interested in all passwords of length ≤ 8, one has to consider the
generating function for cumulative sums, which is

1

1− x
A(x) =

18/29

1− 30x
− 1/609

1− x
+

8/21

1 + 20x
.

So the total number of passwords of length ≤ 8 is found to be
∑8

k=0 ak = 18
29 · 30

8 − 1
609 +

8
21 · 208 = 416986863711 (this includes the empty word of length 0).

39. Let an denote the number of configurations with n squares in the bottom row. Each such
configuration is either a single row or obtained by placing a smaller stack whose bottom
row consists of 1 ≤ k ≤ n − 2 squares on top of the bottom row. There are n − 1 − k
possible positions for the smaller stack. Hence,

an = 1 +
n−2∑
k=1

(n− 1− k)ak = 1 +
n−1∑
k=0

(n− 1− k)ak

for n ≥ 1 if we set a0 = 0 for convenience. The sum on the right hand side of the
equation is exactly the coefficient of xn−1 in the product of the two generating functions∑∞

n=0 nx
n = x

(1−x)2
and

∑∞
n=0 anx

n = A(x). Therefore,

A(x) =

∞∑
n=1

xn + x · x

(1− x)2
·A(x) = x

1− x
+

x2

(1− x)2
A(x).

Solving this equation yields

A(x) =
x

1−x

1− x2

(1−x)2

=
x(1− x)

1− 2x
.



It remains to determine the coefficients from this explicit formula:

A(x) =
x(1− x)

1− 2x
= −1

4
+

x

2
+

1

4

1

1− 2x
= −1

4
+

x

2
+

1

4

∞∑
n=0

2nxn,

which shows that an = 1
4 · 2n = 2n−2 for n ≥ 2 (a0 = 0 and a1 = 1).

40. The generating function for odd integers O is given by

x+ x3 + x5 + . . . =
∞∑
n=0

x2n+1 = x
∞∑
n=0

x2n =
x

1− x2
.

Since compositions into odd summands can be specified as Seq(O), we obtain the gener-
ating function

1

1− x
1−x2

=
1− x2

1− x− x2
= 1 +

x

1− x− x2
,

which shows that the number of partitions of n into odd summands is the Fibonacci
number Fn (n ≥ 1).

41. Note first: if A(x) is the generating function of the sequence an, then the generating
function of

∑n
k=0 kak is given by

∞∑
n=0

(
n∑

k=0

kak

)
xn =

x

1− x
A′(x),

as can be seen by combining 6. and 8. of Theorem 5.4. Now the recursion translates to
the differential equation

A(x) =
x

1− x
A′(x).

This differential equation is separable: we find∫
1

A
dA =

∫
1− x

x
dx

or
lnA = lnx− x+ C

and thus
A(x) = xeC−x.

The initial conditions a0 = 0 and a1 = 1 imply that A(0) = a0 = 0 and A′(0) = a1 = 1.
The first condition is satisfied for any value of C, for the second we must have

eC−x − xeC−x
∣∣∣
x=0

= 1

and thus C = 0. So finally

A(x) = xe−x = x

∞∑
n=0

(−x)n

n!
=

∞∑
n=0

(−1)nxn+1

n!
=

∞∑
n=1

(−1)n−1xn

(n− 1)!
,

which shows that an = (−1)n−1

(n−1)! for n ≥ 1.



42. Grandma’s problem can be written symbolically as

Seq≥25({•})× Seq({•})× Seq({•})× Seq≤20({•}),

where • stands for a single rand. This translates to the generating function

x25

1− x
·
(

1

1− x

)2

· 1− x21

1− x
=

x25 − x46

(1− x)4
.

Now we have to extract the coefficient of x100:

[x100]
x25 − x46

(1− x)4
= [x75](1− x)−4 − [x54](1− x)−4 = (−1)75

(
−4

75

)
− (−1)54

(
−4

54

)
=

(
78

75

)
−
(
57

54

)
=

(
78

3

)
−
(
57

3

)
= 46816.

43. Words with this property can be regarded as a collection of three urns (each contains
the positions of one of the letters) that have to contain at least two elements each. The
exponential generating function for one such urn is

∞∑
n=2

xn

n!
= ex − x− 1,

so that we obtain the exponential generating function (ex − x− 1)3 for our problem.

Remark: If one expands this function, one obtains the explicit formula 3n − 3(n2 + 1)2n +
3(n2 + n+ 1) for words of length n ≥ 6 with the prescribed property.

44. A Motzkin path (other than the trivial path of length 0) can either start with a level step,
followed by an arbitrary Motzkin path, or with an “up” step, followed by a path that stays
above the line y = 1, followed by a “down” step (this is the first time that the x-axis is
reached again), followed by another (arbitrary) Motzkin path. This shows that we have

M = ϵ ∪ (→ M) ∪ (↗ M ↘ M) .

This translates to the functional equation

M(x) = 1 + xM(x) + x2M(x)2

for the generating function, which has the solution

M(x) =
1− x−

√
(1− x)2 − 4x2

2x2
=

1− x−
√
1− 2x− 3x2

2x2
.

We have to take the negative sign in order to ensure limx→0M(x) = 1.

45. Unary-binary trees can be recursively defined as

UB = {•} ∪ ({•} × UB) ∪ ({•} × UB × UB) .

If U(x) is the generating function, this translates to

U(x) = x(1 + U(x) + U(x)2).



Solving the quadratic equation for U(x) yields

U(x) =
1− x±

√
1− 2x− 3x2

2x
.

In order to have limx→0 U(x) = 0, one must choose the negative sign, so that

U(x) =
1− x−

√
1− 2x− 3x2

2x
.

Compare this generating function to the generating function for Motzkin paths above; the
coefficients in the expansion are known as Motzkin numbers.

46. The exponential generating function for cycles C is known to be − log(1−x); if we want to
exclude cycles of length 1, we have to subtract x to get − log(1−x)−x as the exponential
generating function for cycles C≥2 of length ≥ 2. Derangements D can be seen as sets of
such cycles:

D = Set(C≥2).

On the generating function level, this means

D(x) = exp(− log(1− x)− x) =
e−x

1− x
,

as desired. Now it only remains to extract coefficients:

n![xn]D(x) = n![xn]e−x · 1

1− x
= n![xn]

( ∞∑
k=0

(−1)kxk

k!

)( ∞∑
l=0

xl

)

= n!

n∑
k=0

(−1)k

k!
· 1 = n!

n∑
k=0

(−1)k

k!
.

47. (a) We assume that the person is walking on the real axis, starting at 0. Furthermore,
assume that the first step is a step to the right, the other case being symmetric. If
the first return to position 0 occurs after 2n + 2 steps, then the first step has to be
followed by 2n steps (n to the left, n to the right) during which the person remains
on the positive part of the axis. The final step is from 1 to 0. We can interpret the 2n
steps in the middle as a Dyck path of length 2n, and we know that there are 1

n+1

(
2n
n

)
such paths. Therefore, we obtain a total of 2 · 1

n+1

(
2n
n

)
sequences of steps that take

the person back to the origin for the first time after 2n+ 2 steps.

(b) The probability for any such sequence to occur is pn+1qn+1, since it consists of n+ 1
steps to the left and n + 1 steps to the right. Summing over all possible sequences,
we obtain the total probability

∞∑
n=0

2

n+ 1

(
2n

n

)
pn+1qn+1.

(c) The generating function of the Catalan numbers is
∑∞

n=0
1

n+1

(
2n
n

)
xn = 1−

√
1−4x
2x .



Therefore, we have

∞∑
n=0

2

n+ 1

(
2n

n

)
pn+1qn+1 = 2pq

∞∑
n=0

1

n+ 1

(
2n

n

)
(pq)n

= 2pq · 1−
√
1− 4pq

2pq
= 1−

√
1− 4pq

= 1−
√

1− 4p(1− p) = 1−
√
1− 4p+ 4p2

= 1−
√

(2p− 1)2 = 1− |2p− 1| = 1− |p− (1− p)|
= 1− |p− q|.

48. (a) If a permutation of {1, 2, . . . , n} has n−2 cycles, then there are two possibilities: one
cycle of length 3 or two cycles of length 2 (all other cycles must be 1-cycles). In the
former case, we have

(
n
3

)
choices for the three elements of the 3-cycle and two possible

orientations. In the latter case, we have
(
n
4

)
choices for the four elements that form

the 2-cycles and three possibilities to form two cycles. Therefore,[
n

n− 2

]
= 2

(
n

3

)
+ 3

(
n

4

)
.

(b) Using the same argument as in (a), we find{
n

n− 2

}
=

(
n

3

)
+ 3

(
n

4

)
.

The only difference lies in the fact that a 3-cycle can be oriented in two ways, while
a set of three elements has no orientation at all.

49. This problem can be interpreted as the number of surjections from the set {1, 2, . . . , 8} to
the set {red, blue, green, yellow}. The number of these surjections is

4! ·
{
8

4

}
= 40824.

50. Note that the bars that separate the runs are inserted precisely at the descents. Hence a
permutation with four runs is the same as a permutation with three descents, and so there
are

⟨
9
3

⟩
= 88234 such permutations.

51. There are precisely[
7

4

]
+

[
7

5

]
+

[
7

6

]
+

[
7

7

]
= 735 + 175 + 21 + 1 = 932

such permutations.

52. (a) The inversion table is 6, 1, 3, 2, 0, 1, 0.

(b) The permutation associated with this inversion table is 6743125.

53. We know that the rising factorials can be written in terms of the Stirling cycle numbers:

n∑
k=0

[
n

k

]
xk = xn = x(x+ 1)(x+ 2) . . . (x+ n− 1).



Replacing x by −x, we find

n∑
k=0

(−1)n−k

[
n

k

]
xk = (−1)n

n∑
k=0

[
n

k

]
(−x)k = (−1)n · (−x)(−x+ 1)(−x+ 2) . . . (−x+ n− 1)

= x(x− 1)(x− 2) . . . (x− n+ 1) = xn.

54. If the number 1 is in a cycle of length n+ 1− j, then we have
(

n
n−j

)
choices for the other

elements of this cycle and (n − j)! possible arrangements for these elements within the
cycle. The remaining j elements can form the remaining k cycles in

[
j
k

]
ways. Therefore,

we obtain [
n+ 1

k + 1

]
=

n∑
j=k

(
n

n− j

)
(n− j)!

[
j

k

]
=

n∑
j=k

n!

j!

[
j

k

]
.

55. If the number 1 is in a set of size n+1− j, then we have
(

n
n−j

)
=
(
n
j

)
choices for the other

elements of this set. The remaining j elements can be grouped into the remaining k sets
of the set partition in

{
j
k

}
ways. Therefore, we obtain{

n+ 1

k + 1

}
=

n∑
j=k

(
n

j

){
j

k

}
.

56. If the range is known to have cardinality k, then there are
(
m
k

)
possibilities for the elements

of the range. A function, restricted to its range, is always surjective. Therefore, there are
k!
{
n
k

}
functions whose range is a given set of k elements (the number of surjections to

that set). It follows that the total number of functions from {1, 2, . . . , n} to {1, 2, . . . ,m},
which is mn, is also equal to

m∑
k=1

(
m

k

)
k!

{
n

k

}
=

m∑
k=1

{
n

k

}
mk.

57. The number of permutations with an even number of cycles is given by

n∑
k=1

k even

[
n

k

]
=

n∑
k=1

1 + (−1)k

2

[
n

k

]
,

using the familiar fact that

1 + (−1)k =

{
2 if k is even,

0 otherwise.

Now recall that
n∑

k=1

[
n

k

]
uk = un = u(u+ 1)(u+ 2) . . . (u+ n− 1).

Therefore,
n∑

k=1

[
n

k

]
(−1)k = (−1) · 0 · 1 · · · (n− 2) = 0

and thus
n∑

k=1

1 + (−1)k

2

[
n

k

]
=

1

2

n∑
k=1

[
n

k

]
=

1

2
n!,

which is exactly half of the total number of permutations, proving the statement.



58. (a) The inverse of a permutation is obtained by reversing the directions of all the cycles,
hence the number of cycles stays the same.

(b) Only 1- and 2-cycles have the property that they remain the same if the direction
is reversed. Hence only permutations consisting entirely of 1- and 2-cycles can be
identical to their inverses.

(c) If all cycles in a permutation of n elements are 1-or 2-cycles, then there have to be at
least n/2 cycles (since the total number of elements in the cycles has to be n). Thus,
by (b), if k < n/2, any permutation of n elements with k cycles cannot be equal to
its own inverse. This means that we can group all such permutations into pairs (each
permutation is paired with its inverse). This can only be possible if their number,
which is the Stirling cycle number

[
n
k

]
, is even.

59. If we number the levels 1, 2, 3, . . . and assign a label to each node that is exactly the number
of its level, then we see that Joyce trees are nothing else but binary increasing trees (see
p.58 in your notes). Therefore, the number of Joyce trees with 2n+1 nodes is exactly the
tangent number t2n+1.

60. The Lagrange inversion formula, applied to the functional equation

A(x) =
x

(1−A(x))2
= x(1−A(x))−2,

yields

an = [xn]A(x) =
1

n
[tn−1](1− t)−2n =

1

n
(−1)n−1

(
−2n

n− 1

)
=

1

n

(
3n− 2

n− 1

)
.

61. Since
∑∞

n=0
Bn
n! x

n = x
ex−1 , we have

∞∑
n=0

(−1)n/2−1(4n − 2n)Bn

n!
xn = −

∞∑
n=0

Bn

n!
(−1)n/24nxn +

∞∑
n=0

Bn

n!
(−1)n/22nxn

= −
∞∑
n=0

Bn

n!
(4ix)n +

∞∑
n=0

Bn

n!
(2ix)n

= − 4ix

e4ix − 1
+

2ix

e2ix − 1
= − 4ix

e4ix − 1
+

2ix(e2ix + 1)

e4ix − 1

=
2ix

e4ix − 1

(
−2 + e2ix + 1

)
=

2ix(e2ix − 1)

e4ix − 1
=

2ix

e2ix + 1

= ix+ ix

(
2

e2ix + 1
− 1

)
= ix+ ix · 1− e2ix

e2ix + 1

= ix− ix · e
2ix − 1

e2ix + 1
= ix− ix · e

ix − e−ix

eix + e−ix

= ix+ x · (e
ix − e−ix)/(2i)

(eix + e−ix)/2
= ix+ x · sinx

cosx

= ix+ x tanx.

Now we compare the coefficients of xn: since x tanx =
∑∞

k=0
tk
k!x

k+1 =
∑∞

k=0
ktk

(k+1)!x
k+1,

the coefficient of xn in the expansion of ix+ x tanx is ntn−1

n! for n > 1, which shows that

(−1)n/2−1(4n − 2n)Bn = ntn−1



or
Bn = (−1)n/2−1 n

4n − 2n
tn−1

for all even n > 1.

62. The conjugate partition is 11 + 8 + 7 + 6 + 4 + 4 + 1 + 1, see the figure.

63. The generating function is given by

1

1− x
· 1

1− x2
,

which has the partial fraction decomposition

1

1− x
· 1

1− x2
=

1

4(1− x)
+

1

4(1 + x)
+

1

2(1− x)2
.

Now we can expand into a series:

1

4(1− x)
+

1

4(1 + x)
+

1

2(1− x)2
=

1

4

∞∑
n=0

xn +
1

4

∞∑
n=0

(−x)n +
1

2

∞∑
n=0

(
−2

n

)
xn

=
1

4

∞∑
n=0

xn +
1

4

∞∑
n=0

(−1)nxn +
1

2

∞∑
n=0

(
n+ 1

n

)
xn

=
∞∑
n=0

(
1

4
+

1

4
(−1)n +

n+ 1

2

)
xn

=
∞∑
n=0

2n+ 3 + (−1)n

4
· xn.

It follows that the number of possibilities is

2n+ 3 + (−1)n

4
=

{
n
2 + 1 n even,
n+1
2 n odd.

64. (a) The generating function is

(1 + x2 + x4 + · · · )(1− x3)−1(1− x4)−1 · · ·



(b) The generating function is

(1− x2)−1(1− x3)−1(1− x4)−1 · · ·

Since

1 + x2 + x4 + . . . =
1

1− x2
,

the two are equal.

65. If every term is only allowed to occur at most twice, then the resulting generating function
is

∞∏
j=1

(1 + xj + x2j) = (1 + x+ x2)(1 + x2 + x4) · · ·

Now we use the fact that 1 + xj + x2j = 1−x3j

1−xj to rewrite this generating function:

∞∏
j=1

(1 + xj + x2j) =

∞∏
j=1

1− x3j

1− xj

=
(1− x3)(1− x6)(1− x9) · · ·

(1− x)(1− x2)(1− x3)(1− x4) · · ·
.

All factors 1− xj for which j is a multiple of 3 cancel, and we are left with

1

1− x
· 1

1− x2
· 1

1− x4
· 1

1− x5
· 1

1− x7
· · · ,

which is exactly the generating function for partitions into parts that are not divisible by
3.

66. We write the right hand side of the equation with a common denominator:

[
n

k

]
q

+ qn+1−k

[
n

k − 1

]
q

=
(1− q)(1− q2) . . . (1− qn)

(1− q)(1− q2) . . . (1− qk) · (1− q)(1− q2) . . . (1− qn−k)

+ qn+1−k (1− q)(1− q2) . . . (1− qn)

(1− q)(1− q2) . . . (1− qk−1) · (1− q)(1− q2) . . . (1− qn−k+1)

=
(1− q)(1− q2) . . . (1− qn)

(1− q)(1− q2) . . . (1− qk) · (1− q)(1− q2) . . . (1− qn−k+1)

·
(
1− qn−k+1 + qn+1−k(1− qk)

)
=

(1− q)(1− q2) . . . (1− qn)

(1− q)(1− q2) . . . (1− qk) · (1− q)(1− q2) . . . (1− qn−k+1)
· (1− qn+1)

=
(1− q)(1− q2) . . . (1− qn)(1− qn+1)

(1− q)(1− q2) . . . (1− qk) · (1− q)(1− q2) . . . (1− qn−k+1)

=

[
n+ 1

k

]
q

,

which proves the recursion.



67. We use induction on n: for n = 1, we have

1∏
j=1

(1 + qjx) = 1 + qx =
1∑

k=0

[
1

k

]
q

xkqk(k+1)/2

since
[
1
0

]
q
=
[
1
1

]
q
= 1. Now assume that the identity holds for a certain n. We multiply by

1 + qn+1x and make use of the previous problem to obtain

n+1∏
j=1

(1 + qjx) = (1 + qn+1x) ·
n∑

k=0

[
n

k

]
q

xkqk(k+1)/2

=
n∑

k=0

[
n

k

]
q

xkqk(k+1)/2 + qn+1x
n∑

k=0

[
n

k

]
q

xkqk(k+1)/2

=
n∑

k=0

[
n

k

]
q

xkqk(k+1)/2 +
n∑

k=0

[
n

k

]
q

xk+1qn+1+k(k+1)/2

=
n∑

k=0

[
n

k

]
q

xkqk(k+1)/2 +
n+1∑
k=1

[
n

k − 1

]
q

xkqn+1+k(k−1)/2

=

[
n

0

]
q

+
n∑

k=1

([
n

k

]
q

+ qn+1−k

[
n

k − 1

]
q

)
xkqk(k+1)/2 +

[
n

n

]
q

xn+1q(n+1)(n+2)/2

=

[
n+ 1

0

]
q

+
n∑

k=1

[
n+ 1

k

]
q

xkqk(k+1)/2 +

[
n+ 1

n+ 1

]
q

xn+1q(n+1)(n+2)/2

=
n+1∑
k=0

[
n+ 1

k

]
q

xkqk(k+1)/2,

which completes the induction. Note that we may replace
[
n
0

]
q
and

[
n
n

]
q
by
[
n+1
0

]
q
and[

n+1
n+1

]
q
, since they are all equal to 1.

68. As indicated in the figure, one can split any self-conjugate partition into “hooks” whose
sizes must be odd by symmetry, and all distinct since the hooks have to fit inside each other.
In this way, one can construct a partition into distinct odd parts from any self-conjugate
partition, and vice versa, which proves the claim.


