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Abstract. A segment of a tree T is a path whose end vertices have degree 1
or at least 3, while all internal vertices have degree 2. The lengths of all the

segments of T form its segment sequence, in analogy to the degree sequence.

We address a number of extremal problems for the class of all trees with a
given segment sequence. In particular, we determine the extremal trees for

the number of subtrees, the number of matchings and independent sets, the

graph energy, and spectral moments.

1. Introduction

So-called topological indices are graph invariants that map a graph to a real
number, usually serving as descriptors of the graph structure. Throughout the
years numerous topological indices have been introduced, motivated by various
applications. To give one example, the Wiener index of a graph G is defined as the
sum of all distances between pairs of vertices in G:

W (G) =
∑

{u,v}⊆V (G)

dG(u, v),

where dG(u, v) (or simply d(u, v) when there is no ambiguity) is the distance be-
tween u and v. Several further examples will be given later.

Particular attention has been given to extremal problems. Here, the general
question is: given a family of graphs, what can be said about the maximum and
minimum values of a given graph invariant and the graphs for which these are
attained? To give a simple example, it is known that the maximum and minimum of
the Wiener index are attained by the path and the star respectively (see [8, Equation
(3)]) if the family of all trees is considered.

A recent paper by Lin and Song [19] considered the family of all trees with a
given segment sequence, and this family will also be the main object of study in our
paper. Let us first define the concept of a segment sequence. We write P (v, w) for
the unique path between two vertices v and w of a tree T , and E(P (v, w)) for its
edge set. A segment of a tree T is a path P (v, w) in T with the property that each
of the ends (v and w) is either a leaf or a branching vertex (vertex whose degree
is at least 3) and that all internal vertices of the path have degree 2. The segment
sequence of T is the non-increasing sequence of the lengths of all segments of T , see
Figure 1 for an example. If (l1, l2, . . . , lm) is the segment sequence of a tree, then
the number of edges is l1 + l2 + . . .+ lm, and consequently the number of vertices
l1 + l2 + . . .+ lm + 1.

Segments can be thought of as building blocks of a tree, and there are, for
example, several formulas that allow for the efficient calculation of the Wiener index
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based on segment lengths, see [8, Section 5]. This was also one of the motivations
to study extremal problems for trees with given segment sequence.

Starlike trees play a special role in this context. For a given segment sequence
(l1, l2, . . . , lm), the starlike tree S(l1, l2, . . . , lm) is the tree with exactly one vertex
of degree ≥ 3 formed by identifying one end of each of the m segments. It was
shown in [19] that S(l1, l2, . . . , lm) minimizes the Wiener index among all trees
with segment sequence (l1, l2, . . . , lm).

To find the tree with segment sequence (l1, l2, . . . , lm) that maximizes the Wiener
index turns out to be somewhat more complicated, and it leads naturally to the
notion of quasi-caterpillars. A quasi-caterpillar is a tree with the property that all
its branching vertices (vertices of degree greater than 2) lie on a path, see Figure 1.
It was shown in [4] that the tree maximizing the Wiener index among all trees
with a given segment sequence is necessarily always a quasi-caterpillar, answering a
question that was posed in [19]. Some further properties of the maximizing quasi-
caterpillar were determined in [4] as well.

Figure 1. A quasi-caterpillar with segment sequence (5,5,3,3,2,2,2,2,1,1,1,1,1,1).

Similar questions on trees with given number of segments were also discussed
in [19]. It was shown that, among trees with m segments, the Wiener index is
minimized by the balanced starlike tree ST (n,m), defined as the unique starlike
tree S(l1, . . . , lm) of order n that satisfies |li − lj | ≤ 1 for all i, j ∈ {1, 2, . . . ,m}.

Again, the maximization problem is slightly more complicated and was settled in
[4]. For given n and m, we define trees O(n,m) (for odd m) and E(n,m) (for even
m) respectively. The graph O(n,m) is obtained from a path v0v1 . . . v` of length
` = n − m+1

2 by attaching a total of m−1
2 leaves to vertices v1, v2, . . . , vb(m−1)/4c

and v`−1, v`−2, . . . , v`−d(m−1)/4e, see Figure 2 (left) for the case n = 11, m = 7.
Note that O(n,m) has exactly m segments.

Likewise, E(n,m) is a tree with n vertices and m segments (m even) obtained
from a path v0v1 . . . v` of length ` = n− m

2 − 1 by attaching a total of m
2 leaves to

vertices v1, v2, . . . , vb(m−2)/4c and v`−1, v`−2, . . . , v`−d(m−2)/4e, where two leaves are
attached to vertex v1 (so that it becomes the only vertex of degree 4), see Figure 2
(right) for the case n = 11, m = 8.

Figure 2. The trees O(11, 7) and E(11, 8).

It was proven in [4] that O(n,m) (if m is odd) and E(n,m) (if m is even) always
have the greatest Wiener index among trees with n vertices and m segments.
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The main aim of this paper is to prove several similar results for other graph
invariants. The first of these invariants, and the one we will study most thoroughly,
is the number of subtrees of a tree T , denoted by F (T ). The study of extremal
problems involving F (T ) started in [23,24]. The star was found to have the greatest
number of subtrees, while the path has the least number of subtrees. Special
families of trees have been considered as well, notably trees with given degree
sequence [4,22,30,31], but also others (trees with given number of leaves, bipartition,
domination number, etc.) [16].

It is known that a not yet fully understood relation between F (T ) and the Wiener
index W (T ) exists. Indeed, for the family of all trees and many special families of
trees (e.g. trees with given degree sequence), it is known that the extremal structure
that minimizes F (T ) also maximizes W (T ) and/or vice versa. The correlation
between various graph invariants was studied in [25], and F (T ) and W (T ) were
found to be strongly negatively correlated.

Just like the number of subtrees, most of the other invariants we study in this
paper are also based on counting certain substructures. For a rooted tree B,
let m(B, k) be the number of matchings of B with cardinality k and M(B, x) =∑
k≥0 m(B, k)xk for any real x (the matching generating polynomial). The Hosoya

index Z(T ), which is simply the total number of matchings, is given by

Z(T ) = M(T, 1). (1)

The graph energy En(T ) is defined as the sum of the absolute values of the eigenval-
ues of a graph. It is strongly related to the Hosoya index by virtue of the remarkable
identity [17]

En(T ) =
2

π

∫ ∞
0

dx

x2
log M(T, x2). (2)

The Merrifield-Simmons index σ(G) is defined as the total number of indepen-
dent sets of G, in analogy to the Hosoya index. Indeed, the Merrifield-Simmons
index and the Hosoya index do not only have similar definitions, they are also
known to be correlated in a similar way as the Wiener index and the number of
subtrees [25].

Extremal problems for the Merrifield-Simmons index and the Hosoya index have
been studied vigorously; see [27] for a survey on such questions. Specificlally, several
families of trees have been studied in this regard. It is fairly easy to see that the
star and the path are extremal again, and extremal structures are also known for
instance for trees with given diameter [5, 15, 18, 20, 21], number of leaves [20, 28],
maximum degree [12, 26] and degree sequence [2]. The same can be said of the
graph energy, see the recent book [17] and the references therein.

Our last section will be concerned with the number of walks, which is connected
to the spectrum. For a graph G on n vertices with eigenvalues λ1, . . . , λn, the k-th
spectral moment is defined as

C(k,G) =

n∑
i=1

λki ,

which is also equal to the trace of the k-th power of the adjacency matrix. It is
well known [6] that it coincides with the number of closed walks of length k. If G
is a tree (or any other bipartite graph), then C(2k + 1, G) = 0 for every integer k.
Finally, the Estrada index of G is defined as

EE(G) =

n∑
i=1

eλi ,
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which can be rewritten as

EE(G) =
∑
k≥0

C(k,G)

k!
(3)

by expanding the exponential function into a power series. See [10] for a survey
on the Estrada index. Recent extremal results on the Estrada index of trees under
various side conditions can be found in [9, 14, 29]. The approach to the Estrada
index via the number of closed walks was recently used in [3] to study trees with
given degree sequence, and it will be important in this paper as well.

Before we start with the presentation of our results, let us give a brief outline
of this paper. First, we consider subtrees of trees. In Section 2, we first show
that the starlike trees maximize the number of subtrees of any order, a rather
strong statement that implies the same result for the total number of subtrees.
By comparing extremal starlike trees associated with different segment sequences
(analogous to what has been done for degree sequences), we show that, among trees
with a given number of vertices and segments, the number of subtrees of any given
order is maximized when the Wiener index is minimized. In Section 3, we consider
the corresponding minimization problem. We will show that the extremal trees,
given the segment sequence, are always quasi-caterpillars. Moreover, we prove that
E(n,m) and O(m,n) minimize the number of subtrees among trees with a given
number of vertices and segments. These results further confirm the interesting
negative correlation between the number of subtrees and the Wiener index that
was also observed in several other papers.

Thereafter, we focus on the Merrifield-Simmons index (number of independent
sets) and the Hosoya index (number of matchings). Once again, starlike trees are
found to be extremal. The graph energy, although defined in terms of eigenvalues,
is closely related to the Hosoya index in view of the relation (2), hence it is discussed
together with those two invariants.

In our final section, we study walks in trees with a given segment sequence or
number of segments, and obtain further analogous results. Since walks are closely
related to the graph spectrum, we will be able to deduce some results on invariants
such as the Estrada index, which are defined in terms of the spectrum, as corollaries.

2. Maximum number of subtrees

In this section, we consider the general question of maximizing the number of
subtrees of any given order among trees on n vertices with given segment sequence
or number of segments. For a positive integer k, let nk(T ) denote the number of
subtrees of order k in T , and let nk(T, v) denote the number of subtrees of order k
in T containing vertex v. We first establish the following lemma.

Lemma 2.1. Let v and w be vertices of a tree T , such that each internal vertex of
the unique path Pv,w joining v to w has degree 2 as a vertex of T . Let w1, w2, . . . , wl
be the neighbors of w that are not on the path Pv,w. Define

T ′ = T − ww1 − ww2 − · · · − wwl + vw1 + vw2 + · · ·+ vwl,

as in Figure 3. Then
nk(T ′) ≥ nk(T )

for every positive integer k ≤ |T |, with equality if and only if v or w is a leaf of T
(in which case T and T ′ are isomorphic) or k ∈ {1, 2, |T |}.

Proof. Let Tv and Tw be the connected components of T −E(Pv,w) that contain v
and w respectively. All subtrees that contain no edge in Tv or no edge in Tw are
preserved by the operation that yields T ′. A subtree S of T that contains edges of
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v wPv,w

Tv Tw v wPv,w

T ′T

Tv

Tw

Figure 3. Generating T ′ from T .

both Tv and Tw has to contain the entire path Pv,w, including v and w. It is clear
that the vertices of S still induce a tree in T ′. Thus the desired inequality follows
immediately.

Conversely, if k is greater than 2 but less than |T |, then there are subtrees of
T ′ with k vertices that contain v and edges of both Tv and Tw, but not w. These
subtrees have no corresponding subtrees in T , so the inequality is strict for these
values of k. �

Theorem 2.2 below is an immediate consequence of Lemma 2.1.

Theorem 2.2. Among all trees with segment sequence (l1, . . . , lm), the number of
subtrees of order k is maximized by the starlike tree S(l1, . . . , lm). The starlike tree
is the unique tree with this property for k /∈ {1, 2, l1 + l2 + · · ·+ lm + 1}.

Proof. If k ∈ {1, 2, l1 + l2 + · · · + lm + 1}, then there is nothing to show, since all
possible trees have the same number of subtrees with k vertices. Hence assume that
2 < k < l1 + l2 + · · ·+ lm + 1. Let T be a tree with segment sequence (l1, . . . , lm)
that maximizes nk(T ). It suffices to show that T has exactly one branching vertex
(if m ≥ 3).

Otherwise, let v and w be any two branching vertices with no branching vertex
on the path Pv,w. Applying Lemma 2.1 immediately yields a contradiction. �

As a next step, we compare the extremal trees for different segment sequences.

Definition 1. Given two non-increasing sequences τ = (l1, · · · , lm) and τ ′ =
(l′1, · · · , l′m), τ ′ is said to majorize τ , denoted τ / τ ′, if

k∑
i=0

li ≤
k∑
i=0

l′i for k ∈ {1, 2, . . . ,m− 1}, and

m∑
i=0

li =

m∑
i=0

l′i.

We extend the definition to sequences that are not necessarily of the same length
by assuming that the shorter sequence is padded with zeros at the end.

Let us first formulate and prove a technical lemma on subtrees of paths, which
in turn implies a second lemma on trees obtained from merging a given tree with a
path.

Lemma 2.3. Let v1, v2, . . . , vn be the vertices of a path Pn (in this order). For
every positive integer k ≤ n, we have

nk(Pn, v1) ≤ nk(Pn, v2) ≤ · · · ≤ nk(Pn, vdn/2e).
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Proof. Note that every subtree of a path is again a path; if it has k vertices, then
it consists of vertices vi, vi+1, . . . , vi+k−1 for some i. It follows easily that

nk(Pn, vj) =


j j < k,

k k ≤ j ≤ n− k + 1,

n− j + 1 j > n− k + 1,

if k ≤ n
2 , and

nk(Pn, vj) =


j j < n− k + 1,

n− k + 1 n− k + 1 ≤ j ≤ k,
n− j + 1 j > k,

if k > n
2 . The stated inequalities follow in both cases. �

Lemma 2.4. Let T be a tree and v one of its vertices. Let P (n, `, T, v) denote
the graph obtained by identifying v with the `-th vertex of an n-vertex path (` ∈
{1, 2, . . . , n}), see Figure 4. The following inequalities hold for all positive integers
k:

nk(P (n, 1, T, v)) ≤ nk(P (n, 2, T, v)) ≤ · · · ≤ nk(P (n, dn2 e, T, v)). (4)

T

v1 v` = v vn

Figure 4. Illustration of Lemma 2.4.

Proof. Note that the number of k-vertex subtrees using only edges of the path or
only edges of T is the same for all trees of the form P (n, `, T, v). Thus it remains
to consider those subtrees that use edges of both T and the path, whose vertices we
denote by v1, v2, . . . , vn as in the previous lemma. The number of k-vertex subtrees
of P (n, `, T, v) that contain edges of the path and T is given by

k−1∑
r=2

nr(Pn, v`)nk+1−r(T, v),

so the claim follows immediately from Lemma 2.3. �

Theorem 2.5. Given two segment sequences τ and τ ′ such that τ ′ / τ , we have

nk(S(τ)) ≤ nk(S(τ ′))

for every positive integer k.

Proof. The inequality is trivial for k ∈ {1, 2}. Hence we assume that k ≥ 3 for the
rest of the proof. We also assume that the two sequences have the same length,
padding the shorter sequence with zeros if necessary.

For any two segment sequences τ and τ ′ with τ ′ / τ , there exists a sequence of

segment sequences τ (i) = (l
(i)
1 , . . . , l

(i)
n ) for 1 ≤ i ≤ r, with

τ ′ = τ (1) / τ (2) / · · · / τ (r−1) / τ (r) = τ,

where two consecutive sequences τ (i) and τ (i+1) differ at exactly two entries, say

the j-th and k-th entry, with j < k, in such a way that l
(i+1)
j = l

(i)
j + 1 and
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l
(i+1)
k = l

(i)
k − 1. One possibility to construct such a sequence of segment sequences

is as follows: to get from τ ′ = τ (1) to τ (2), we can take j and k to be the first and
last index where τ and τ ′ differ; then we repeat the procedure with τ (2) and τ , etc.

Hence we may assume that τ ′ and τ only differ in two entries, and that the
difference is 1 for both of them. Suppose that the segment lengths in τ that are
replaced to obtain τ ′ are p and q respectively, where p ≥ q + 2. The new segment
lengths in τ ′ are p− 1 and q+ 1. Together, two segments of length p and q in S(τ)
form a path of p+q+1 vertices. The starlike graph obtained from S(τ) by removing
the two segments is denoted by S, and the center vertex by v. Note that S(τ) and
S(τ ′) are isomorphic to P (p+ q + 1, q + 1, S, v) and P (p+ q + 1, q + 2, S, v) in the
notation of Lemma 2.4, so the desired inequality is in fact a special case of (4). �

It is easy to see that among all segment sequences of at most m segment lengths
with fixed sum of lengths, the unique segment sequence (l1, . . . , lm) with |li−lj | ≤ 1
for all 1 ≤ i, j ≤ m is majorized by every other segment sequence. From Theo-
rems 2.2 and 2.5, we immediately obtain the following:

Corollary 2.6. Among all trees of order n with at most m segments, the number
of subtrees of any fixed order is maximized by the balanced starlike tree ST (n,m).

Likewise, among all segment sequences with maximum segment length L, the
sequence (L, 1, 1, . . . , 1) is clearly majorized by any other segment sequence, which
gives us another corollary. Let us write B(n,L) = S(L, 1, 1 . . . , 1) for the “broom”,
the starlike tree of order n with one segment of length L and n − L − 1 segments
of length 1.

Corollary 2.7. Among all trees of order n whose longest segment consists of L
edges, the broom B(n,L) has the greatest number of subtrees of any fixed order.

3. Minimum number of subtrees

In this section, we consider the minimization problem for the number of subtrees.
The results we obtain parallel those for the Wiener index in [4] and are slightly less
precise than those in the previous section.

We will only consider the total number of subtrees, denoted by F (T ), rather than
the number for each fixed order k. We start with the following technical lemma,
which is a slight variation of Lemma 3.3 of [24], but follows from exactly the same
arguments. It provides some information on how the number of subtrees behaves
as branches are moved. In order to formulate it, we have to define one additional
quantity: FT (v) is the number of subtrees of T that contain the vertex v.

Lemma 3.1. Given a tree R with vertices x and y, and two rooted trees X and Y
(with roots x′ and y′, respectively), let T be obtained by identifying the root of X
with x and the root of Y with y, and let T ′ be obtained by identifying the root of X
with y and the root of Y with x. If

FR(x) > FR(y) and FX(x′) > FY (y′),

then

F (T ′) < F (T ).

Proof. Note that the number of single-vertex subtrees and the number of subtrees
that only contain edges of R, only edges of X, or only edges of Y is the same in
both trees; likewise, the number of subtrees that contain edges of both X and Y
(thus necessarily also edges of R) is the same in both trees. We have to compare
the numbers of other subtrees.
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R R

T T ′

X

Y

X

Y
x = x′

y = y′ x = y′

y = x′

Figure 5. Illustration of Lemma 3.1.

• Subtrees that contain edges of X and R, but no edges of Y : such subtrees
necessarily contain x′, so their number is (Fx(R)−1)(Fx′(X)−1) in T and
(Fy(R)− 1)(Fx′(X)− 1) in T ′.

• Subtrees that contain edges of Y and R, but no edges of X: such subtrees
necessarily contain y′, so their number is (Fy(R)− 1)(Fy′(Y )− 1) in T and
(Fx(R)− 1)(Fy′(Y )− 1) in T ′.

So we find that the difference between F (T ) and F (T ′) is

F (T )− F (T ′) = (Fx(R)− Fy(R))(Fx′(X)− 1) + (Fy(R)− Fx(R))(Fy′(Y )− 1)

= (Fx(R)− Fy(R))(Fx′(X)− Fy′(Y )),

which is positive by our assumptions. This completes the proof. �

3.1. Trees with given segment sequence. Let us first show that the minimum
number of subtrees among all trees with a given segment sequence is always attained
by a quasi-caterpillar. Some further properties of such extremal quasi-caterpillars
will be provided before the analogous problem is considered for trees with a given
number of segments.

Theorem 3.2. If a tree T minimizes the number of subtrees among all trees with
the same segment sequence, then it must be a quasi-caterpillar.

Proof. Let T be such an optimal tree (i.e., T minimizes the number of subtrees),
and let P be a path with the greatest possible number of segments on it. Clearly,
the two ends of P have to be leaves; we will denote the ends of P by v0 and vk
and the branching vertices on P by v1, v2, . . . , vk−1 (in the order of their distances
from v0). For each i (1 ≤ i ≤ k − 1), let the neighbors of vi that do not lie on P
be vi1, . . . , vili , and let Tij (1 ≤ j ≤ li) denote the component containing vij after
removing the edge between vi and vij .

In each of the subtrees Tij , consider the branching vertex (or leaf if there is
no branching vertex) closest to vi and call it uij . Finally, we write Sij for the
component containing uij in T − E(P (vi, uij)) (Figure 6).

If Sij is a single vertex for every i and j, then T is a quasi-caterpillar, and we
are done.

Otherwise, let S = Si0j0 be such that FSi0j0
(ui0j0) is maximal, i.e.

FSi0j0
(ui0j0) ≥ FSij

(uij)

for every pair (i, j) with 1 ≤ i ≤ k − 1, 1 ≤ j ≤ li.
Let T≤i0 and T>i0 denote the components of T −E(P (vi0 , vi0+1)) containing vi0

and vi0+1 respectively. The subtrees T<i0 and T≥i0 are defined analogously; note
that T≤i0 = T<i0+1 and T>i0 = T≥i0+1. Suppose, without loss of generality (which
is possible by symmetry), that

FT<i0
(vi0−1) ≥ FT>i0

(vi0+1). (5)
8



v0 vkvi

vi2

ui2

Si2

Ti2

ui1

Si1

uili

Sili
. . .

Figure 6. The labeling of T .

Moreover, we can assume that FS(ui0j0) > FSij
(uij) for all i > i0 and all j. Other-

wise we can simply consider, instead of S, a subtree Sij with FSij
(uij) = FS(ui0j0)

for which the index i is maximal; note that (5) still holds in this case.
By our choice of the path P = P (v0, vk) as a path with the greatest possible

number of segments on it, i0 6= k − 1, i.e., vi0 cannot be the last branching vertex
(since then there would be a path through ui0j0 rather than vk that contains more
segments). Thus vi0+1 is still a branching vertex, not a leaf.

v0 vi0

p

ui0j0

S

Ti0j0

vkvi0+1

p′

ui0+1,1

S′

Ti0+1,1

Figure 7. The branches that are switched.

Hence we can consider the subtree Ti0+1,1 consisting of the path from vi0+1,1

to ui0+1,1 and the subtree S′ = Si0+1,1 (Figure 7). We distinguish two cases,
depending on the lengths of the paths P (vi0 , ui0j0) and P (vi0+1, ui0+1,1), which we
denote by p and p′ respectively:

(1) If p ≥ p′, let T ′ be obtained from T by switching Ti0j0 and Ti0+1,1.
(2) If p < p′, let T ′ be obtained from T by switching S and S′.

It is easy to see that in either case T ′ has the same segment sequence as T .

• In the first case, let R be the tree obtained from T by removing Ti0j0 and
Ti0+1,1. The number of subtrees of R that contain vi0 , but not vi0+1, is
FR≤i0

(vi0) · d(vi0 , vi0+1), since any subtree of R≤i0 containing vi0 can be

augmented by up to d(vi0 , vi0+1)− 1 vertices on the path between vi0 and
vi0+1. Similarly, the number of subtrees of R that contain vi0+1, but not
vi0 , is FR≥i0+1

(vi0+1) · d(vi0 , vi0+1). Since we have

FR≤i0
(vi0) > FR<i0

(vi0−1) = FT<i0
(vi0−1) ≥ FT>i0

(vi0+1) > FR≥i0+1
(vi0+1)

by our assumption (5), it follows that

FR(vi0) > FR(vi0+1).
9



Likewise, let X be the tree obtained from Ti0j0 by adding the vertex vi0
and the edge connecting it to vi0j0 , and let Y be the tree obtained from
Ti0+1,1 by adding the vertex vi0+1 and the edge connecting it to vi0+1,1.
We have

FX(vi0) = p+ FS(ui0j0) > p′ + FS′(ui0+1,1) = FY (vi0+1).

Now Lemma 3.1 implies that F (T ′) < F (T ), a contradiction.
• In the second case, we apply a similar argument, now to the tree R′ that

is obtained from T by removing Si0j0 and Si0+1,1, except for the vertices
ui0j0 and ui0+1,1. A similar argument as before shows that

FR′(ui0j0) > FR′(ui0+1,1).

Together with the inequality FS(ui0j0) > FS′(ui0+1,1), Lemma 3.1 implies
again that F (T ′) < F (T ), and we reach the same contradiction as before.

In both cases, we see that T cannot be optimal, which completes our proof. �

3.2. Further characterization of the optimal quasi-caterpillar. Let the lon-
gest path of a quasi-caterpillar containing all the branching vertices be called the
backbone; all segments that do not lie on the backbone (and thus connect a leaf
with a branching vertex) are called “pendant segments”. Let a segment sequence
(l1, l2, . . . , lm) be given; we know from Theorem 3.2 that the minimum of the number
of subtrees can only be attained for a quasi-caterpillar. In the following we present
some further characteristics of extremal quasi-caterpillars.

Theorem 3.3. A quasi-caterpillar T that minimizes the number of subtrees among
trees with segment sequence (l1, l2, . . . , lm) must satisfy the following:

(1) If the number of segments is odd, all branching vertices have degree exactly
3. If the number of segments is even, all but one of the branching vertices
have degree 3. The only exception must be a branching vertex of degree 4,
which must be the first (or last) branching vertex on the backbone. This also
means that the number of segments on the backbone is k = b(m+1)/2c, the
number of pendant segments is k′ = d(m− 1)/2e.

(2) The lengths of the segments on the backbone, listed from one end to the
other, form a unimodal sequence r1, r2, . . . , rk, i.e.,

r1 ≤ r2 ≤ · · · ≤ rj ≥ · · · ≥ rk
for some j ∈ {1, 2, . . . , k}.

(3) The lengths of the pendant segments, starting from one end of the back-
bone towards the other (ordered in the same direction as the ri’s), form a
sequence of values s1, s2, . . . , sk−1 such that

r1 ≥ s1 ≥ s2 ≥ · · · ≥ sh ≤ · · · ≤ sk′ ≤ rk
for some h ∈ {1, 2, . . . , k′}.

Proof. (1) Let the backbone be the path P (v0, vk) between leaves v0 and vk with
branching vertices v1, v2, . . . , vk−1 (in the order of their distances from v0). We also
define T<j , T>j , T≤j , T≥j in the same way as before.

First we claim that there is no branching vertex of degree greater than 4. Oth-
erwise, let vi be a vertex of degree at least 5 with neighbors vi1, vi2, vi3, . . . not
on P (v0, vk). Finally, let Ti1, Ti2, Ti3 be the pendant segments at vi containing
vi1, vi2, vi3 respectively.

Suppose, without loss of generality, that

FT<i(vi−1) ≥ FT>i(vi+1).
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It follows that

FT≤i−Ti1−Ti2
(vi) > FT>i

(vi+1), (6)

since for every subtree of T<i that contains vi−1, there is a corresponding subtree
of T≤i − Ti1 − Ti2 that contains vi, obtained by adding the segment between vi−1
and vi.

Let T ′ be obtained from T by detaching Ti1 and Ti2 from vi and reattaching
them to vi+1. Note that T ′ has the same segment sequence as T , even if i = k− 1.
Let R be obtained from T by removing Ti1 and Ti2. It follows from (6) that

FR(vi) > FR(vi+1),

by a similar argument as in the proof of the previous theorem. Thus we can apply
Lemma 3.1, where we take X to be the tree consisting of Ti1, Ti2 and vi, and Y to
be a single vertex. We find that the tree T ′ has a smaller number of subtrees than
T , which contradicts our assumption on T .

Now we know that all branching vertices are of degree 3 or 4. We can repeat the
same argument as before with a vertex vi of degree 4 (moving only one segment
instead of two) to obtain a contradiction, unless vi = v1 or vi = vk−1 (in which case
we would have to move a single segment to the end of the backbone, which changes
the segment sequence). Thus the only branching vertices that could possibly have
degree 4 are v1 and vk−1.

Now assume that both v1 and vk−1 are vertices of degree 4. Let S and S′ be two
segments attached to v1 and vk−1 respectively, other than those connecting them
to other backbone vertices. Moreover, let R be obtained from T by removing S and
S′ (Figure 8). Suppose, without loss of generality, that

FR(v1) ≤ FR(vk−1).

v0 v1

S

vkvk−1

S′

R

Figure 8. The segments S and S′ and the rest of the tree (denoted R).

Let the lengths of S and S′ be s and s′ respectively, let x be the length of the
segment between v0 and v1 (note that x ≥ s by definition, since the path from v0
to vk was assumed to be longest possible), and let finally R′ be obtained from R
by removing the segment from v0 to v1. Once again, we construct a tree T ′ with
the same segment sequence as T , but fewer subtrees: this tree T ′ is obtained from
T by removing both S and S′ and attaching them to v0. Clearly, T ′ and T have
the same segment sequence.

Now we determine the change in the number of subtrees. Note that the subtrees
that lie entirely in R or one of the segments S and S′ (excluding their endpoints in
R) remain the same. In T , the number of subtrees containing vertices of R as well
as either S or S′ (but not both) is

s · FR(v1) + s′ · FR(vk−1).
11



In T ′, this number is

(s+ s′) · FR(v0).

The number of subtrees of T that contain vertices of R, S and S′ is

s · s′ · FR(v1, vk−1),

where FR(v1, vk−1) is the number of subtrees of R containing both v1 and vk−1,
thus the entire path P (v1, vk−1). On the other hand, the number of such subtrees
in T ′ is

s · s′ · FR(v0).

Finally, observe that FR(v0) = x+ FR′(v1) and FR(v1) = (x+ 1)FR′(v1). Putting
everything together, we see that

F (T )− F (T ′) = s · FR(v1) + s′ · FR(vk−1)− (s+ s′) · FR(v0)

+ s · s′ · FR(v1, vk−1)− s · s′ · FR(v0)

≥ (s+ s′)FR(v1)− (s+ s′)FR(v0)− ss′FR(v0)

= (s+ s′)(x+ 1)FR′(v1)− (ss′ + s+ s′)(x+ FR′(v1))

= (sx+ s′x− ss′)FR′(v1)− x(ss′ + s+ s′).

Recall that x ≥ s. Moreover, one can easily obtain a lower bound for FR′(v1):
every subpath of the path from v1 to vk that starts at v1 is counted by FR′(v1).
The length of this path is at least 1+d(vk−1, vk), which is greater or equal to 1+s′

by the same argument that gave us the inequality x ≥ s. Thus there are at least
2 + s′ such subpaths. Since v1 was assumed to have degree 4, it also has at least
one more neighbor that neither lies on the backbone nor on S. It can be combined
with any of the aforementioned subpaths of P (v1, vk) to yield a subtree of R′ that
contains v1. Consequently, we have FR′(v1) ≥ 2(2 + s′) and thus

F (T )− F (T ′) ≥ (sx+ s′x− ss′)FR′(v1)− x(ss′ + s+ s′)

≥ sxFR′(v1)− x(ss′ + s+ s′)

≥ 2sx(2 + s′)− x(ss′ + s+ s′)

= x(ss′ + 3s− s′) ≥ 3sx > 0.

We see that F (T ) > F (T ′), so we have a contradiction once again. Thus there is
at most one vertex of degree 4, and it has to be either v1 or vk−1, if there is such
a vertex at all. This happens if and only if the number of segments is even, since
the total number of segments is 2k − 1 if all branching vertices have degree 3, and
2k if there is a single vertex of degree 4.

(2) Consider the segments P (v0, v1), P (v1, v2), . . . , P (vk−1, vk) on the backbone, let
r1, r2, . . . , rk be the lengths of these segments, and let M be the maximum length
of a backbone segment. Let j be the smallest index such that rj = d(vj−1, vj) =
M > rj+1 = d(vj , vj+1). Such an index always exists (if necessary, after reversing
the backbone) unless all segments on the backbone have the same length. In this
case, however, there is nothing to prove.

Moreover, let T≤j−1, Tj and T≥j+1 denote the components containing vj−1, vj
and vj+1 respectively in T − E(P (vj−1, vj+1)) (Figure 9). Consider the tree R
consisting of the path from vj−1 to vj+1 and the tree Tj . We have

FR(vj−1) = rj + (1 + rj+1)FTj
(vj) < rj+1 + (1 + rj)FTj

(vj) = FR(vj+1),

and it follows that

FT≤j−1
(vj−1) ≥ FT≥j+1

(vj+1),

for otherwise interchanging T≤j−1 and T≥j+1 will decrease the number of subtrees
(by Lemma 3.1).

12



vjvj−1T≤j−1
vj+1 T≥j+1

Tj

Figure 9. The subtrees T≤j−1, Tj and T≥j+1.

Consequently, we must also have

FT≤i−1
(vi−1) > FT≤j−1

(vj−1) ≥ FT≥j+1
(vj+1) > FT≥i+1

(vi+1)

for any i > j, implying that ri ≥ ri+1 by the same argument. It follows that
rj > rj+1 ≥ · · · ≥ rk. Similarly, one can show that r1 ≤ · · · ≤ rj .
(3) The two inequalities r1 ≥ s1 and sk−1 ≤ rk follow from the definition of the
backbone as longest path.

For the rest of the proof, we only consider the case that all branching vertices
have degree 3, the other case being similar. Let Si denote the pendant segment at
vi, and si its length. T≤i and T≥i are defined in the same way as before, and U≤i
and U≥i are obtained from them by removing segment Si (excluding vi).

Let µ be the minimum length of all pendant segments, and let h be the smallest
index such that sh = µ < sh+1 (again, such an index exists, if necessary after
reversing the backbone, unless all pendant segments have the same length).

In the tree R obtained by removing Sh and Sh+1 from T , we have

FR(vh)− FR(vh+1) = rh+1FU≤h
(vh)− rh+1FU≥h+1

(vh+1).

Thus FU≤h
(vh) ≥ FU≥h+1

(vh+1), for otherwise FR(vh) < FR(vh+1), and interchang-
ing Sh and Sh+1 would decrease the number of subtrees by Lemma 3.1. Thus, for
any i > h,

FU≤i
(vi) ≥ FT≤h

(vh) > FU≤h
(vh) ≥ FU≥h+1

(vh+1) ≥ FT≥i+1
(vi+1) > FU≥i+1

(vi+1),

which implies that si+1 ≥ si by the same argument. It follows that sh < sh+1 ≤
· · · ≤ sk−1. Similarly, one can show that s1 ≥ · · · ≥ sh. �

3.3. Trees with a given number of segments.

Theorem 3.4. Among all trees of order n with m segments, O(n,m) (E(n,m))
minimizes the number of subtrees if m is odd (even).

Proof. We only consider the case of odd m, the other case is similar. Let T be an
optimal tree, given the number of vertices and segments.

From Theorems 3.2 and 3.3, it is clear that T has to be a quasi-caterpillar, and
that every branching vertex has degree 3. Let the backbone be the path P (v0, vk),
and let v1, v2, . . . , vk−1 be the branching vertices on the backbone. Note that the
total number of segments is m = 2k − 1. Moreover, let a and b be the lengths
of P (v0, v1) and the other pendant segment ending at v1, and let R be the path
formed by these two segments. Finally, X is obtained from T by removing the two
segments (except for the vertex v1).

Suppose that min{a, b} > 1, and let w be a vertex in R that is adjacent to a
leaf. We have

FR(v1) = (a+ 1)(b+ 1) > 2(a+ b) = FR(w),

so by Lemma 3.1 the number of subtrees decreases if we move X from v1 to w
(which amounts to replacing the two segments by segments of length 1 and a+b−1
respectively). This contradicts our choice of T , so min{a, b} = 1. By the results
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of the previous section, we know more specifically that the pendant segment at v1
(and by the same argument, the pendant segment at vk−1) has to have length 1,
and by statement (3) of Theorem 3.3, all pendant segments have length 1. In other
words, T is a caterpillar.

From the (partial) characterization of trees with given degree sequence that
minimize the number of subtrees (see [30]), we also know that the degrees of the
internal vertices along the backbone have to be decreasing at first, then increasing,
i.e., the sequence of degrees has to be of the form 3, 3, . . . , 3, 2, 2, . . . , 2, 2, 3, 3, . . . , 3.
It only remains to show that the number of vertices of degree 3 on the two sides
is as equal as possible (difference at most 1). Let us rename the vertices on the
backbone as follows: u0 = v0, u1, u2, . . . , un−k = vk; this includes all vertices, not
just the branching vertices. Assume that there is a leaf attached to u1, u2, . . . , ux
and un−k−1, un−k−2, . . . , un−k−y, where x + y = k − 1. If k − 1 = n − k − 1
(equivalently, n = 2k = m + 1), there is nothing to prove, as there is only one
possibility left for T : all vertices on the backbone have to have degree 3. Otherwise,
assume that |x− y| > 1; without loss of generality, x > y + 1. If we move the one
leaf from ux to un−k−y−1, the number of subtrees decreases by a simple application
of Lemma 3.1 (taking R to be the path formed by ux, ux+1, . . . , un−k−y−1 and the
leaf adjacent to ux), so we reach yet another contradiction. Thus |x−y| ≤ 1, which
means that T is isomorphic to O(n,m). �

4. Energy, Hosoya index and related graph invariants

In this section, we focus on two invariants based on counting independent sets
(Merrifield-Simmons index) and matchings (Hosoya index). In view of the connec-
tion (2) between energy and matchings of trees, we can treat the energy along with
these two. As it turns out, the starlike trees encountered in Section 2 are extremal
again: they maximize the number of independent sets and minimize the number of
matchings as well as the energy.

We first require the following lemma, a modified weaker version of the exchange
lemma that can be found in [12,13].

Lemma 4.1 (cf. [12, 13]). Suppose that a tree T can be decomposed as follows:

w1

w

ws

w′

v1

vv′

Rtvt

T0

L1

Ls

R1

where s, t ≥ 1. Define the trees Tv and Tw as follows:

Tv = T − ww1 − ww2 − · · · − wws + vw1 + vw2 + · · ·+ vws

and

Tw = T − vv1 − vv2 − · · · − vvt + wv1 + wv2 + · · ·+ wvt.

Then we have

σ(T ) < max{σ(Tv), σ(Tw)}
and

M(T, x) > min{M(Tv, x),M(Tw, x)} (7)

for every positive real number x.
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We observe that analogous statements hold for the matching number ν and
the independence number α. Recall that the matching number is the greatest
cardinality of a matching, and the independence number is the greatest cardinality
of an independent set.

Lemma 4.2. For T, Tv, Tw as in Lemma 4.1, we have

ν(T ) ≥ min{ν(Tv), ν(Tw)} (8)

and
α(T ) ≤ max{α(Tv), α(Tw)}. (9)

Proof. First, (8) is actually a consequence of the previous lemma. If ν(T ) < ν(Tv)
and ν(T ) < ν(Tw), then

lim
x→∞

M(T, x)

M(Tv, x)
= lim
x→∞

m(T, ν(T ))xν(T )

m(Tv, ν(Tv))xν(Tv)
= 0

and analogously

lim
x→∞

M(T, x)

M(Tw, x)
= 0,

contradicting (7).
To prove (9), we observe that every independent set of T is either an independent

set of Tv or an independent set of Tw: if v is not contained in it, it is an independent
set of Tv, and if w is not contained in it, it is an independent set of Tw. If both v
and w are contained in it, it is an independent set of both Tv and Tw. �

Remark 1. By the König-Egerváry theorem, the sum α(T ) + ν(T ) only depends
on the number of vertices of T , so the two statements of the lemma are actually
equivalent.

If a tree T has two vertices of degree at least 3, then we can apply Lemma 4.1 to
obtain a new tree T ′ (either Tv or Tw) with the same segment sequence and more
independent sets. The same is true for the number of matchings, and by Lemma 4.2
also for the independence number and matching number (in the latter cases not
necessarily with strict inequality). Iterating the argument, we necessarily arrive at
a tree that has only one vertex of degree 3 or greater, since the number of such
vertices decreases with each step. For any given segment sequence, there is only
one such tree, namely the starlike tree S(l1, . . . , lm). Thus we have:

Theorem 4.3. If T is a tree with segment sequence (l1, . . . , lm), then

σ(S(l1, . . . , lm)) ≥ σ(T ), α(S(l1, . . . , lm)) ≥ α(T ), and ν(S(l1, . . . , lm)) ≤ ν(T ),

and M(S(l1, . . . , lm), x) ≤ M(T, x) for every positive real number x.

Since the Hosoya index Z(T ) equals M(T, 1) and the energy En(T ) is equal to
the integral in (2), we obtain the following corollary immediately:

Corollary 4.4. If T is a tree with segment sequence (l1, . . . , lm), then

Z(S(l1, . . . , lm)) ≤ Z(T )

and
En(S(l1, . . . , lm)) ≤ En(T ).

Unfortunately, there is no majorization result analogous to Theorem 2.5 for
independent sets and matchings. Given segment sequences L = (l1, . . . , lm) and
H = (h1, . . . , hm) such that L majorizes H, it is not always true that M(S(L), x) ≤
M(S(H), x), nor is it always true that M(S(L), x) ≥ M(S(H), x). The same applies
to the Merrifield-Simmons index σ, see for instance the following examples:

σ(S(2, 2, 4)) < σ(S(2, 3, 3)) and σ(S(1, 2, 3)) > σ(S(2, 2, 2)),
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M(S(2, 2, 4), x) > M(S(2, 3, 3), x) and M(S(1, 2, 3), x) < M(S(2, 2, 2), x).

Nevertheless, the extremal tree with given number of segments can be determined
using established tools: it is no longer the balanced starlike tree, but rather the
broom, which consists of a star and a path attached to the center. The following
classical lemma, which parallels Lemma 2.4, is needed for this purpose:

Lemma 4.5 ([11, 26, 32]). Let G be a connected graph with at least two vertices,
and v ∈ V (G). Let P (n, k,G, v) denote the graph obtained by identifying v with the
k-th vertex of an n-vertex path (k ∈ {1, 2, . . . , n}), as in Lemma 2.4. The following
inequalities hold:

M(P (n, 1, G, v), x) > M(P (n, 3, G, v), x) > · · · > M(P (n, 2bn−24 c+ 1, G, v), x)

> M(P (n, 2bn4 c, G, v), x) > · · · > M(P (n, 4, G, v), x) > M(P (n, 2, G, v), x)

for all positive real numbers x, and

σ(P (n, 1, G, v), x) < σ(P (n, 3, G, v), x) < · · · < σ(P (n, 2bn−24 c+ 1, G, v), x)

< σ(P (n, 2bn4 c, G, v), x) < · · · < σ(P (n, 4, G, v), x) < σ(P (n, 2, G, v), x).

Remark 2. The first inequality even holds for all coefficients of M(., x) (albeit not
necessarily with strict inequality), as shown in [11].

Suppose that a starlike tree S(l1, l2, . . . , lm) with m segments has at least two
segments whose lengths are greater than 1, and let us denote these lengths by a
and b. Replacing them by segments of length 1 and a + b − 1 amounts to moving
the graph formed by the remaining segments along a path of length a + b, as in
Lemma 4.5. As the lemma shows, M(., x) is decreased by this move for every
positive x, while σ is increased. The following result is therefore immediate:

Theorem 4.6. If T is a tree with exactly m segments and n vertices, then we have

M(T, x) ≥ M(S(n−m, 1, 1, . . . , 1), x)

for all positive real x, and

σ(T ) ≤ σ(S(n−m, 1, 1, . . . , 1)).

Remark 3. Lemma 4.5 also shows that M(S(n−m, 1, 1, . . . , 1), x) is decreasing in
m, while σ(S(n−m, 1, 1, . . . , 1)) is increasing in m. One can therefore also replace
“exactly m segments” by “at most m segments” in the formulation of the theorem.

Finally, we also have the following corollary, in analogy to Corollary 4.4:

Corollary 4.7. If T is a tree with at most m segments and n vertices, then

Z(T ) ≥ Z(S(n−m, 1, 1, . . . , 1))

and

En(T ) ≥ En(S(n−m, 1, 1, . . . , 1)).

5. Maximum spectral moment and Estrada index

We follow similar ideas as in [7] to show that starlike trees also maximize the
spectral moments. The approach is based on walk enumeration. Let Cw(k;T )
denote the set of closed walks of length k in T which start from w. Since there is
no closed walk of odd length in a tree, we only need to consider even lengths.

Lemma 5.1. Suppose that a graph H contains a path P whose endpoints are a
vertex w of degree 1 and an arbitrary vertex v, and whose internal vertices all have
degree 2. In other words, H is of the following form:
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v
w

P

Then there is an injection

ξ : Cw(2k;H) −→ Cv(2k;H)

for any integer k ≥ 0.

Proof. Let the vertices on the path P be u0, u1, . . . , ul, where u0 = v and ul = w.
To any walk W = uj0 , uj1 , . . . , ujr of length r that only uses vertices of P , we
associate the “mirrored” walk

ξP (W ) = ul−j0 , ul−j1 , . . . , ul−jr .

The map ξP is clearly an involution on the set of walks in P that bijectively maps
walks starting at w to walks starting at v. Moreover, it maps closed walks to closed
walks.

Now let us define a map ξ : Cw(2k;H) −→ Cv(2k;H):

• For a walk W ∈ Cw(2k;P − v) (i.e., a closed walk of length 2k starting at
w that never reaches v), we set ξ(W ) = ξP (W ).

• Now let W = z0, z1, . . . , z2k ∈ Cw(2k;H) be a closed walk starting at w
that reaches v at some point. Let i be the smallest index such that zi = v.
Then we set

ξ(W ) = zi, zi+1, . . . , z2k−1, ξP (zi, zi−1, . . . , z0).

In words, we remove the initial part up to the first time that v is reached,
reverse its direction (turning it into a walk from v to w that does not visit
v again), then take its mirror image (which yields a walk from w to v that
never visits w again) and append it at the end, which is possible since
z2k = w.

It is easy to see that ξ is indeed injective: if W ′ = ξ(W ) lies entirely in P and never
visits w, then we have W = ξ−1(W ′) = ξ−1P (W ′) = ξP (W ′), i.e., the preimage
is obtained by reflection. Otherwise, W ′ = ξ(W ) = z′0, z

′
1, . . . , z

′
2k has to visit w

at least once, and we can consider the largest index j such that z′j = w. The
walk z′j , z

′
j+1, . . . , z

′
2k must be the final part that is appended at the end of the

construction of ξ. The original walk W must therefore be

ξP (z′2k, z
′
2k−1, . . . , z

′
j)z
′
1, z
′
2, . . . , z

′
j .

�

Next we provide a generalization of Lemma 2 in [7], which parallels our Lemma 2.1.

Lemma 5.2. Let v and w be vertices of a graph G that consists of two connected
graphs Gv and Gw and a path Pv,w joining two vertices v and w in Gv and Gw
respectively. Let w1, w2, . . . , wl be the neighbors of w that are not on the path Pv,w,
and define

G′ = G− ww1 − ww2 − · · · − wwl + vw1 + vw2 + · · ·+ vwl,

as in Lemma 2.1, cf. Figure 3. Then

C(2k,G) ≤ C(2k,G′)

for every integer k ≥ 0. The inequality is strict if k ≥ 2 and both Gv and Gw
consist of more than one vertex.
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Proof. Let H be obtained from G by removing Gw, except for the vertex w. Note
that H has the required shape for Lemma 5.1. Define ξ as in that lemma; with
some minor abuse of notation, we suppress the dependence of ξ on k.

We only have to compare the number of walks using edges of both Gv and
Gw. Let the set of closed walks of length 2k with this property in G be denoted by
C′(2k,G); C′(2k,G′) is defined analogously. We define an injection η : C′(2k,G) −→
C′(2k,G′) as follows.

Given a walk

W = w0, w1, . . . , w2k,

split it into walks that alternatingly lie entirely in Gw and H. Those pieces that
lie in Gw are kept the same, while the pieces in H are closed walks starting and
ending at w; they are mapped by ξ to walks starting and ending at v that take
their place in η(W ). The only possible exception are the first and last piece; if they
lie in Gw, they are kept as well. If however they lie in H, we have to combine them
to a closed walk first: let these pieces be w0, w1, . . . , wj0 and wj1 , wj1+1, . . . , w2k

respectively, where necessarily wj0 = wj1 = w. The walk

wj1 , wj1+1, . . . , w2k = w0, w1, . . . , wj0

must then be an element of Cw(j0 + 2k − j1, H), so ξ maps it to a closed walk

zj1 , zj1+1, . . . , z2k = z0, z1, . . . , zj0−1, zj0

with zj0 = zj1 = v. Now we split it into the two walks zj1 , zj1+1, . . . , z2k and
z0, z1, . . . , zj0−1, zj0 and replace w1, w2, . . . , wj0 and wj1 , wj1+1, . . . , w2k by them to
complete the construction of η(W ).

Since ξ as constructed in Lemma 5.1 is injective, so is η, which proves the desired
inequality. The inequality is strict if k ≥ 2 and both Gv and Gw contain at least
one edge, because then C′(2k,G′) contains walks that do not use edges of Pv,w while
η(W ) uses at least one edge of the path Pv,w for any given W . �

Now we obtain the main theorem of this section:

Theorem 5.3. If T is a tree with segment sequence (l1, . . . , lm), then

C(2k, S(l1, . . . , lm)) ≥ C(2k, T )

for any integer k ≥ 0.
Furthermore, the inequality is strict if T 6= S(l1, . . . , lm) and k ≥ 2.

Proof. This follows from Lemma 5.2 in exactly the same way as Theorem 2.2 fol-
lowed from Lemma 2.1. �

In view of the formula (3) that relates the Estrada index to spectral moments,
it follows immediately that the same conclusion holds for the Estrada index:

Corollary 5.4. If T is a tree with segment sequence (l1, . . . , lm), then

EE(S(l1, . . . , lm)) ≥ EE(T ).

Furthermore, the inequality is strict if T 6= S(l1, . . . , lm).

In order to compare trees with different segment sequences, we make use of the
following lemma taken from [1], which is analogous to Lemma 2.4 and Lemma 4.5.

Lemma 5.5. Let T be a tree and v one of its vertices. Let P (n, `, T, v) denote
the graph obtained by identifying v with the `-th vertex of an n-vertex path (` ∈
{1, 2, . . . , n}), as in Lemma 2.4. The following inequalities hold for all k ≥ 1:

C(2k, P (n, 1, T, v)) ≤ C(2k, P (n, 2, T, v)) ≤ · · · ≤ C(2k, P (n, dn2 e, T, v)). (10)
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The following majorization theorem now follows in exactly the same way from Lemma 5.5
as Theorem 2.5 followed from Lemma 2.4.

Theorem 5.6. Given two segment sequences τ and τ ′ such that τ ′ / τ , we have

C(2k, S(τ)) ≤ C(2k, S(τ ′))

for every integer k ≥ 0.

Once again, we obtain a number of corollaries. It was already shown in [1] that
the balanced starlike trees ST (n,m) maximize all even spectral moments and thus
the Estrada index among all starlike trees with a given center degree (equivalently,
number of segments). Combining Theorem 5.3 and Theorem 5.6, we get the fol-
lowing (in analogy to Corollary 2.6):

Corollary 5.7. If T is a tree with at most m segments and n vertices, then

C(2k, T ) ≤ C(2k, ST (n,m))

for every integer k ≥ 0, and hence

EE(T ) ≤ EE(ST (n,m)).

Similarly, the analog of Corollary 2.7 reads as follows:

Corollary 5.8. If T is a tree of order n whose longest segment consists of L edges,
then

C(2k, T ) ≤ C(2k,B(n,L))

for every integer k ≥ 0, and hence

EE(T ) ≤ EE(B(n,L)).
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