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Chapter 1

Elementary enumeration principles

Sequences

Theorem 1.1 There are nk different sequences of length k that can be formed from ele-
ments of a set X consisting of n elements (elements are allowed to occur several times in
a sequence).

Proof: For every element of the sequence, we have exactly n choices. Therefore, there are

n · n · . . . · n︸ ︷︷ ︸
k times

= nk

different possibilities. �

Example 1.1 Given an “alphabet” of n letters, there are exactly nk k-letter words. For
instance, there are 8 three-digit words (not necessarily meaningful) that can be formed
from the letters S and O:

SSS, SSO, SOS, OSS, SOO, OSO, OOS, OOO.

The number of 100-letter words over the alphabet A,C,G,T is 4100, which is a 61-digit
number; DNA strings as they occur in cells of living organisms are much longer, of course. . .

Permutations

Theorem 1.2 The number of possibilities to arrange n (distinguishable) objects in a row
(so-called permutations) is

n! = n · (n− 1) · . . . · 3 · 2 · 1.

Proof: There are obviously n choices for the first position, then n − 1 remaining choices
for the second position (as opposed to the previous theorem), n− 2 for the third position,
etc. Therefore, one obtains the stated formula. �
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Example 1.2 There are 6 possibilities to arrange the letters A,E,T in a row:

AET, ATE, EAT, ETA, TAE, TEA.

Remark: By definition, n! satisfies the equation n! = n · (n − 1)!, which remains true if
one defines 0! = 1 (informally, there is exactly one possibility to arrange 0 objects, and
that is to do nothing at all).

Example 1.3 In how many ways can eight rooks be placed on an 8×8-chessboard in such
a way that no horizontal or vertical row contains two rooks?

In order to solve this problem, let us assign coordinates (a-h and 1-8 respectively) to the
squares of the chessboard. A possible configuration would then be a3, b5, c1, d8, e6, f2,
g4, h7 (for instance). Generally, there must be exactly one rook on each vertical row (a-h),
and analogously one rook on each horizontal row (1-8). Each permutation of the numbers
1 to 8 corresponds to exactly one feasible configuration (in the above case, 3-5-1-8-6-2-4-7),
and so there are exactly 8! = 40320 possibilities.

Sequences without repetitions

Theorem 1.3 The number of sequences of length k whose elements are taken from a set
X comprising n elements is

nk = n · (n− 1) · (n− 2) · . . . (n− k + 1) =
n!

(n− k)!
.

Proof: The proof is essentially the same as for Theorem 1.2: for the first element, there
are n possible choices, then n− 1 for the second element, etc. For the last element, there
are n− k + 1 choices left. �
Remark: The case of permutations is clearly a special case of Theorem 1.3, corresponding
to k = n. nk is called a falling factorial (read: “n to the k falling”).

Choosing a subset

Theorem 1.4 The number of possibilities to choose a subset of k elements from a set of
n elements (the order being irrelevant) is(

n

k

)
=

n!

k!(n− k)!
.

Proof: Let x be the number of possibilities that we are looking for. Once the k elements
have been chosen (for which there are x possible ways), one has k! possibilities (by Theo-
rem 1.2) to arrange them in a sequence. Therefore, x · k! is exactly the number of possible
sequences of k distinct elements, for which we have the formula

x · k! = n!

(n− k)!
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by Theorem 1.3, so that x is obtained immediately. �
Remark: The difference between Theorem 1.3 and Theorem 1.4 lies in the fact that
the order plays a role in the former, which is does not in the latter. Each subset corre-
sponds to exactly k! sequences: for instance, the subset {A,E, T} of the set {A,B, . . . , Z}
corresponds to the sequences

AET, ATE, EAT, ETA, TAE, TEA.

The formula for the binomial coefficient only makes sense if 0 ≤ k ≤ n. This is also quite
intuitive as no subset can comprise more elements than the original set. It is often useful
to define

(
n
k

)
= 0 if either k < 0 or k > n. Later we will also give a more general definition

of the binomial coefficients.

Example 1.4 The number of six-element subsets of {1, 2, . . . , 49} (Lotto) is(
49

6

)
=

49!

6! · 43!
= 13983816.

Remark: An obvious property of
(
n
k

)
is the identity(

n

k

)
=

(
n

n− k

)
,

which follows immediately from the formula. However, it also has a combinatorial meaning:
choosing k elements is equivalent to not choosing n − k elements. The generalisation of
this principle leads us to the so-called multinomial coefficient.

Dividing a set into groups

Theorem 1.5 The number of possibilities to divide a set X into groups X1, X2, . . . , Xr

whose sizes are prescribed to be k1, k2, . . . , kr respectively (where k1 + k2 + . . . + kr = n)
is given by (

n

k1, k2, . . . , kr

)
=

n!

k1! · k2! · . . . · kr!
.

Proof: By induction on r; for r = 1, the statement is trivial. For r ≥ 2, one has
(
n
k1

)
choices for the elements of X1, and by the induction hypothesis,

(n− k1)!

k2!k3! . . . kr!

possible ways to divide the remaining n− k1 elements. Therefore, we have exactly(
n

k1

)
· (n− k1)!

k2!k3! . . . kr!
=

n!

k1!(n− k1)!
· (n− k1)!

k2!k3! . . . kr!
=

n!

k1! · k2! · . . . · kr!

possibilities, as claimed. �
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Choosing a multiset

Theorem 1.6 The number of ways to choose k elements from a set of n elements, repe-
titions allowed, is

(
n+k−1

k

)
.

Proof: Let X = {x1, x2, . . . , xn} be the set. A choice is characterised by the number
of times that each of the elements is selected. If li denotes the multiplicity of xi in our
collection, then the problem is equivalent to determining the number of solutions of

l1 + l2 + . . .+ ln = k,

where l1, l2, . . . , ln have to be non-negative integers. Equivalently, we can write mi = li+1
and ask for the number of positive integer solutions to the equation

m1 +m2 + . . .+mn = k + n. (1.1)

Let us imagine k + n dots in a row. Each solution to the equation (1.1) corresponds to
a way of separating the dots by inserting n − 1 bars at certain places (Figure 1.1). Since
there are n+ k − 1 positions for the bars, one has(

n+ k − 1

n− 1

)
=

(
n+ k − 1

k

)
possible ways to place the bars. �

• | • • • • | • • • | • | • •

Figure 1.1: Dots and bars.

Remark: A finite sequence m1,m2, . . . ,mk of positive integers summing to n (that is,
n = m1 + m2 + . . . + mk) is called a composition of n; the above argument (“dots and
bars”) shows that every positive integer n has exactly

(
n−1
k−1

)
compositions into k summands.



Chapter 2

A combinatorial view of binomial
coefficients

The identity
(
n
k

)
=
(

n
n−k

)
is one of many interesting properties of binomial coefficients,

many of which can also be interpreted combinatorially. In this chapter, some of these
properties are considered.

2.1 The recursion

Theorem 2.1 The binomial coefficients satisfy the recursive formula(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
(0 ≤ k ≤ n).

Proof: The formula can be verified easily by algebraic manipulations:(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!

=
k · (n− 1)!

k!(n− k)!
+

(n− k) · (n− 1)!

k!(n− k)!

=
n · (n− 1)!

k!(n− k)!
=

n!

k!(n− k)!
=

(
n

k

)
.

However, a (perhaps simpler) way is to argue as follows: let x be an element of an n-
element set X. If one wants to choose a subset of k elements, one can first decide whether
to include x or not. In the former case, there are

(
n−1
k−1

)
possibilities to choose the remaining

k − 1 elements. In the latter, we have
(
n−1
k

)
possible choices, which already completes the

proof. �
Remark: Note that the equation remains correct if one defines

(
n
k

)
to be 0 if either k < 0

or n > k. A classical way to illustrate the recursion for the binomial coefficients is Pascal’s
triangle: the n-th line contains the binomial coefficients

(
n
k

)
(0 ≤ k ≤ n).

5
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

It is apparent that each number is the sum of the two numbers above it. If one defines the
binomial coefficient

(
α
k

)
for arbitrary real (or even complex) numbers α by(
α

k

)
:=

α(α− 1)(α− 2) . . . (α− k + 1)

k!
,

Theorem 2.1 remains correct, even without the direct combinatorial interpretation. The
following lemma relates the case of negative α to the more familiar case that α is positive:

Lemma 2.2 For any real number α and any non-negative integer k, one has(
−α
k

)
= (−1)k

(
α + k − 1

k

)
.

Proof: (
−α
k

)
=
−α(−α− 1)(−α− 2) . . . (−α− k + 1)

k!

= (−1)k · α(α + 1)(α+ 2) . . . (α + k − 1)

k!
= (−1)k

(
α + k − 1

k

)
.

2.2 The binomial theorem revisited

The binomial theorem is certainly the most important theorem that involves the binomial
coefficients; it can be stated as follows:

Theorem 2.3 (Binomial Theorem) For any integer n ≥ 0, one has

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

Proof: The classical proof proceeds by induction. However, it can also be proven combi-
natorially: suppose that we expand the product

(x+ y)n = (x+ y)(x+ y) . . . (x+ y) = x · x . . . x+ y · x . . . x+ . . . .
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Each summand is obtained by choosing either x or y for each of the factors. Therefore, we
end up with summands of the form xkyn−k, and each of these summands occurs exactly(
n
k

)
times (which is the number of ways to select k out of n factors from which an x is

taken). This readily proves the theorem. �
Remark: It should be noted that one usually defines 00 = 1 in this context, so that the
binomial theorem remains correct even if y = 0 (and/or x = 0).

The binomial theorem has a generalisation to the case that n is not necessarily a positive
integer, which is known as the binomial series :

(1 + x)α =
∞∑
k=0

(
α

k

)
xk. (2.1)

Note that this is simply the Taylor series of (1 + x)α at x = 0. If α = n ≥ 0 is an integer,
then this formula reduces to the binomial theorem, since all terms in the infinite sum that
correspond to k > n are 0 by definition.

It is possible to deduce several interesting identities directly from the binomial theorem,
such as the following:

Theorem 2.4 One has the following relations:

n∑
k=0

(
n

k

)
=

(
n

0

)
+

(
n

1

)
+ . . .+

(
n

n

)
= 2n

for any integer n ≥ 0,

n∑
k=0

(−1)k
(
n

k

)
=

(
n

0

)
−
(
n

1

)
+ . . .+ (−1)n

(
n

n

)
= 0

for any integer n > 0,
n∑

k=0
k even

(
n

k

)
=

n∑
k=0
k odd

(
n

k

)
= 2n−1

for any integer n > 0.

Proof: The first equation is obtained by setting x = y = 1 in the binomial theorem,
the second equation for x = −1 and y = 1. The third equation is obtained by adding
(subtracting) the first two equations and noting that

1 + (−1)k =

{
2 k even

0 k odd
resp. 1− (−1)k =

{
0 k even

2 k odd

holds. �
Remark: Let us interpret these equations combinatorially: the sum in the first equation
is exactly the number of subsets of an n-element set (since

(
n
k

)
counts subsets of size k).

Therefore, one immediately ends up with the following result:
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Corollary 2.5 An n-element set has precisely 2n distinct subsets.

Example 2.1 The set {A,E,T} has 8 subsets:

∅ = {}, {A}, {E}, {T}, {A,E}, {A,T}, {E,T}, {A,E,T}.

Of course, this corollary can be obtained without depending on the binomial theorem: each
element can either be selected as a member of the subset or not, so that one has exactly
2 · 2 · . . . · 2 = 2n possible options. In this way, a subset of an n-element set corresponds
directly to a 0-1-sequence of length n.

On the other hand, it follows from Theorem 2.4 that any finite non-empty set has exactly
as many subsets of even cardinality as of odd cardinality. This is somewhat obvious if n
is even (note the symmetry in Pascal’s triangle!), but maybe a little more surprising if n
is odd. However, there is again a combinatorial proof: If we distinguish an element x of
the set, then one has a bijection between subsets of even cardinality and subsets of odd
cardinality: two subsets are associated to each other if their only difference is that one of
them contains x while the other one does not. In this way, we obtain 2n−1 pairs, each of
which contains exactly one subset of even cardinality and one subset of odd cardinality.

Instead of considering even or odd cardinalities, let us see what happens if we restrict the
cardinality of subsets to be divisible by 3:

Example 2.2 We prove the following equation for all positive integers n:

n∑
k=0

(
3n

3k

)
=

1

3

(
23n + 2 · (−1)n

)
.

In order to achieve this, we would like to use the same trick as before. Instead of plugging
in y = ±1, we consider the roots of unity

ζ1,2 =
−1± i

√
3

2
= e±2πi/3.

One has ζ31 = ζ32 = 1 as well as

ζ1 + ζ2 + 1 = 0, ζ21 = ζ2 and ζ22 = ζ1.

If we now take x = 1 and y = 1, y = ζ1 and y = ζ2 respectively in the binomial theorem
and add the resulting equations, we obtain

3n∑
l=0

(
3n

l

)(
1 + ζ l1 + ζ l2

)
= 23n + (1 + ζ1)

3n + (1 + ζ2)
3n.

Now if l = 3k is divisible by 3, then

1 + ζ l1 + ζ l2 = 1 + 1k + 1k = 3,
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if l = 3k + 1, then

1 + ζ l1 + ζ l2 = 1 + 1kζ1 + 1kζ2 = 1 + ζ1 + ζ2 = 0,

and if l = 3k + 2, then

1 + ζ l1 + ζ l2 = 1 + 1kζ2 + 1kζ1 = 1 + ζ2 + ζ1 = 0.

Therefore, we end up with

n∑
k=0

3

(
3n

3k

)
= 23n + (1 + ζ1)

3n + (1 + ζ2)
3n.

1+ ζ1,2 =
1±

√
3i

2
are sixth roots of unity: it is easy to check that (1+ ζ1,2)

3 = −1 (and thus
(1 + ζ1,2)

6 = 1). So it finally follows that

n∑
k=0

(
3n

3k

)
=

1

3

(
23n + 2 · (−1)n

)
.

This shows that the proportion of subsets whose cardinality is a multiple of 3 is approxi-
mately 1

3
(it tends to 1

3
as n→∞). Let us now have a look at another important identity

that involves the binomial coefficients.

2.3 The Vandermonde identity

Theorem 2.6 (Vandermonde identity) For integers N,M, n ≥ 0, one has

n∑
k=0

(
N

k

)(
M

n− k

)
=

(
N +M

n

)
.

Proof: Sums of the form
n∑

k=0

akbn−k

can be related to products of polynomials: indeed, if two polynomials A(x) =
∑N

k=0 akx
k

and B(x) =
∑M

l=0 blx
l are given, then the product of the two is

A(x) ·B(x) =
N∑
k=0

M∑
l=0

akblx
k+l.

The coefficient of xn is now obtained as the sum of those summands for which k + l = n,
or in other words l = n− k. Therefore this coefficient is equal to

n∑
k=0

akbn−k,
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where ak is taken to be 0 if the degree N of the polynomial A is less than k (and analogously
bl = 0, if l > M). Similar ideas will be used extensively in Chapter 5.

In this specific case, we apply the binomial theorem to the polynomial (1 + x)N+M that
can also be written as the product of (1 + x)N and (1 + x)M :

(1 + x)N+M = (1 + x)N · (1 + x)M =

(
N∑
k=0

(
N

k

)
xk

)(
M∑
l=0

(
M

l

)
xl

)

=
N∑
k=0

M∑
l=0

(
N

k

)(
M

l

)
xk+l =

N+M∑
n=0

n∑
k=0

(
N

k

)(
M

n− k

)
xn.

Comparing coefficients with

(1 + x)N+M =
N+M∑
n=0

(
N +M

n

)
xn,

we obtain the desired identity.

Once again it is possible to provide a proof by counting arguments as well: a set of N +M
elements is divided into two groups consisting of N and M elements respectively. Choosing
n elements from the set is equivalent to choosing k elements from the first group and the
remaining n − k elements from the second group, where k can be any integer between 0
and n. The number of possible choices for fixed k is clearly

(
N
k

)(
M
n−k

)
. Summing over all

k, we obtain the total number of choices, which is
(
N+M

n

)
. �

The following special case of the Vandermonde identity is quite remarkable:

Corollary 2.7
n∑

k=0

(
n

k

)2

=
n∑

k=0

(
n

k

)(
n

n− k

)
=

(
2n

n

)
.

In a similar vein, we can prove the following:

Theorem 2.8 For a non-negative integer n, one has

n∑
k=0

(−1)k
(
n

k

)2

=

{
(−1)n/2

(
n

n/2

)
n even,

0 n odd.

Proof: We use the same type of argument as before, comparing coefficients in the equation(
n∑

k=0

(
n

n− k

)
xn−k

)(
n∑

k=0

(−1)k
(
n

k

)
xk

)
= (1+x)n(1−x)n = (1−x2)n =

n∑
k=0

(
n

k

)
(−x2)k.
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The coefficient of xn on the right hand side is (−1)n/2
(

n
n/2

)
if n is even, and otherwise 0.

The coefficient on the left hand side obtained by expanding the product is

n∑
k=0

(
n

n− k

)
· (−1)k

(
n

k

)
=

n∑
k=0

(−1)k
(
n

k

)2

.

�



Chapter 3

The principle of inclusion and
exclusion

3.1 A simple example

A frequently occurring problem is to determine the size of the union or intersection of a
number of sets, as in the following example:

Example 3.1 All second-year science students may choose either mathematics, or physics,
or both. The mathematics course is attended by 50 students, the physics course by 30
students. 15 students attend both courses. How many second-year science students are
there?

Let M be the set of students taking mathematics and P the set of all students who take
physics. By our conditions, the set of all students is the union S = M ∪ P . If we add the
sizes of the two sets, all students who attend both courses are counted twice. Therefore,
we have to subtract the size of M ∩ P , which yields the formula

|S| = |M ∪ P | = |M |+ |P | − |M ∩ P |,

where |X| is the number of elements of a set X. Plugging in, we find that there are
50 + 30− 15 = 65 students.

This principle can be generalised to unions (or intersections) of an arbitrary number of
sets. Before we discuss the general formula, let us extend Example 3.1:

Example 3.2 Third-year science students also have the opportunity to attend chemistry,
but every student has to take at least one of the three courses. Altogether, there are
40 students in the mathematics class, 25 who attend physics, and 20 who attend chem-
istry. Furthermore, we know that 10 students do both mathematics and physics, 8 both
mathematics and chemistry, and 7 physics and chemistry. There are two particularly keen
students who attend all three courses. How many third-year science students are there?

12
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Let M,P,C denote the respective sets of students attending mathematics, physics and
chemistry. Once again, we are looking for the size of the union M ∪ P ∪ C. To this
end, we first add |M |, |P | and |C|. Students taking both mathematics and physics are
double-counted, so we have to subtract |M ∩P |. The same applies to |M ∩C| and |P ∩C|.
However, those two students that attend all the three courses are added three times and
subtracted three times as well. Hence we have to add |M ∩ P ∩ C| to make up for this.
Formally, we have

|M ∪ P ∪ C| = |M |+ |P |+ |C| − |M ∩ P | − |M ∩ C| − |P ∩ C|+ |M ∩ P ∩ C|.

This means that there are 40 + 25 + 20− 10− 8− 7 + 2 = 62 third-year students.

3.2 The general formula

The simple example presented in the previous section can be generalized to an arbitrary
number of sets as follows:

Theorem 3.1 (Inclusion-exclusion) Let X1, X2, . . . , Xk be arbitrary finite sets. For a
set I ⊆ {1, 2, . . . , k}, we denote the intersection of all sets Xi with i ∈ I by

∩
i∈I Xi. Then

the following formula holds:∣∣∣∣∣
k∪

i=1

Xi

∣∣∣∣∣ = ∑
I⊆{1,...,k}

I ̸=∅

(−1)|I|+1

∣∣∣∣∣∩
i∈I

Xi

∣∣∣∣∣ , (3.1)

where the sum is taken over all non-empty subsets of {1, 2, . . . , k}.

Remark: The cases k = 2 and k = 3 correspond to our two examples; for instance, the
formula

|X1 ∪X2 ∪X3| = |X1|+ |X2|+ |X3| − |X1 ∩X2| − |X1 ∩X3| − |X2 ∩X3|+ |X1 ∩X2 ∩X3|

is obtained for k = 3.

Proof: By induction on k. For k = 1, the formula reduces to the trivial identity |X1| = |X1|.
The induction step from k to k+ 1 makes use of the special case k = 2 that was discussed
in our first example:∣∣∣∣∣

k+1∪
i=1

Mi

∣∣∣∣∣ =
∣∣∣∣∣
(

k∪
i=1

Mi

)
∪Mk+1

∣∣∣∣∣
=

∣∣∣∣∣
k∪

i=1

Mi

∣∣∣∣∣+ |Mk+1| −

∣∣∣∣∣
(

k∪
i=1

Mi

)
∩Mk+1

∣∣∣∣∣
=

∣∣∣∣∣
k∪

i=1

Mi

∣∣∣∣∣+ |Mk+1| −

∣∣∣∣∣
k∪

i=1

(Mi ∩Mk+1)

∣∣∣∣∣
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=
∑

I⊆{1,...,k}
I ̸=∅

(−1)|I|+1

∣∣∣∣∣∩
i∈I

Mi

∣∣∣∣∣+ |Mk+1| −
∑

I⊆{1,...,k}
I ̸=∅

(−1)|I|+1

∣∣∣∣∣∩
i∈I

(Mi ∩Mk+1)

∣∣∣∣∣
=

∑
I⊆{1,...,k}

I ̸=∅

(−1)|I|+1

∣∣∣∣∣∩
i∈I

Mi

∣∣∣∣∣+ |Mk+1| −
∑

I⊆{1,...,k}
I ̸=∅

(−1)|I|+1

∣∣∣∣∣∣
∩

i∈I∪{k+1}

Mi

∣∣∣∣∣∣
=

∑
I⊆{1,...,k+1}
k+1̸∈I,I ̸=∅

(−1)|I|+1

∣∣∣∣∣∩
i∈I

Mi

∣∣∣∣∣+ ∑
I⊆{1,...,k+1}

k+1∈I

(−1)|I|+1

∣∣∣∣∣∩
i∈I

Mi

∣∣∣∣∣
=

∑
I⊆{1,...,k+1}

I ̸=∅

(−1)|I|+1

∣∣∣∣∣∩
i∈I

Mi

∣∣∣∣∣ .
This completes the induction. �
Remark: The same formula holds true if union and intersection are interchanged (the
proof being completely analogous):∣∣∣∣∣

k∩
i=1

Xi

∣∣∣∣∣ = ∑
I⊆{1,...,k}

I ̸=∅

(−1)|I|+1

∣∣∣∣∣∪
i∈I

Xi

∣∣∣∣∣ . (3.2)

Remark: A common interpretation of the inclusion-exclusion principle involves probabil-
ities: suppose that X1, X2, . . . , Xk are subsets of a set X of outcomes. Then P (Xi) =

|Xi|
|X|

is the probability that one of the events in Xi occurs. Dividing formulas (3.1) and (3.2) by
|X|, we obtain

P

(
k∪

i=1

Xi

)
=

∑
I⊆{1,...,k}

I ̸=∅

(−1)|I|+1P

(∩
i∈I

Xi

)

and

P

(
k∩

i=1

Xi

)
=

∑
I⊆{1,...,k}

I ̸=∅

(−1)|I|+1P

(∪
i∈I

Xi

)
.

Note that P
(∪k

i=1Xi

)
is the probability that at least one of the events associated to

X1, X2, . . . occurs, while P
(∩k

i=1Xi

)
is the probability that all of them occur.

Remark: If we take X1 = X2 = . . . = Xn = {x} in (3.1) or (3.2), then all intersections
and unions have size 1, so that we obtain another proof of the identity

n∑
k=0

(−1)k
(
n

k

)
=

(
n

0

)
−
(
n

1

)
+ . . .+ (−1)n

(
n

n

)
= 0,
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see Theorem 2.4.

Quite frequently, the sets Xi are subsets of some base set, and one is interested in the
number of elements that are contained in none of the Xi or not in all of the Xi. In the
former case, one has to determine the cardinality of X \ (X1 ∪X2 . . .∪Xk), which is equal
to

|X| −
∑

I⊆{1,...,k},I ̸=∅

(−1)|I|+1

∣∣∣∣∣∩
i∈I

Xi

∣∣∣∣∣ . (3.3)

The second problem amounts to determining the cardinality of X \ (X1 ∩ X2 . . . ∩ Xk),
which is given by

|X| −
∑

I⊆{1,...,k},I ̸=∅

(−1)|I|+1

∣∣∣∣∣∪
i∈I

Xi

∣∣∣∣∣ . (3.4)

Naturally, the sizes of the sets
∩

i∈I Xi are not always explicitly given as in our first two
examples. However, they are often easier to obtain than those that one is actually interested
in. In the following section, some applications are discussed.

3.3 Applications

Example 3.3 How many n-digit numbers are there that do not contain the digits 0, 1, 2,
but have to contain the three digits 3, 4, 5?

By the stated conditions, the digits have to be taken from the set {3, 4, . . . , 9}; let Mn(D)
be the number of all n-digit numbers whose digits are taken from the set D. Then the
set whose size we want to determine consists of all numbers in Mn({3, 4, . . . , 9}) that are
not contained in any of Mn({4, 5, . . . , 9}), Mn({3, 5, . . . , 9}) or Mn({3, 4, 6, . . . , 9}) (none
of the digits 3, 4, 5 may be missing). Note also that

Mn(D1) ∩Mn(D2) = Mn(D1 ∩D2).

By Theorem 1.1, we have |Mn(D)| = |D|n (if 0 ̸∈ D; otherwise, one would have to exclude
leading zeros). Therefore, the inclusion-exclusion principle yields

|Mn({3, 4, . . . , 9}) \ (Mn({4, 5, . . . , 9}) ∪Mn({3, 5, . . . , 9}) ∪Mn({3, 4, 6, . . . , 9}))|
= |Mn({3, 4, . . . , 9})| − |Mn({4, 5, . . . , 9})| − |Mn({3, 5, . . . , 9})| − |Mn({3, 4, 6, . . . , 9})|
+ |Mn({5, 6, . . . , 9})|+ |Mn({4, 6, . . . , 9})|+ |Mn({3, 6, . . . , 9})| − |Mn({6, 7, . . . , 9})|

= 7n − 3 · 6n + 3 · 5n − 4n.

Euler’s totient function

Example 3.4 A classical application of the inclusion-exclusion principle stems from num-
ber theory: Euler’s totient function ϕ(n) is defined as the number of integers x such that
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0 ≤ x < n and x and n do not have a common divisor (other than 1). If p1, p2, . . . , pk are
the prime factors of n, then this occurs precisely if x is not divisible by any of p1, p2, . . . , pk.
Note now that the number of integers 0 ≤ x < n that are divisible by a specific prime
factor pi is exactly n/pi. Likewise, if I is any subset of {1, 2, . . . , k}, then the number
of integers 0 ≤ x < n that are divisible by all pi with i ∈ I (and thus by their product∏

i∈I pi) is exactly n/
∏

i∈I pi. Therefore, formula (3.3) yields

ϕ(n) = n−
∑

I⊆{1,...,k},I ̸=∅

(−1)|I|+1 n∏
i∈I pi

= n

1 +
∑

I⊆{1,...,k},I ̸=∅

(−1)|I|
∏
i∈I

1

pi


= n

k∏
i=1

(
1− 1

pi

)
The last step follows from the fact that the term

∏
i∈I

1
pi

occurs in the expansion of(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pk

)
with a coefficient of (−1)|I|. Generally, the product

k∏
i=1

(1− xi) = (1− x1)(1− x2) . . . (1− xk)

expands to ∑
I⊆{1,...,k}

(−1)|I|
∏
i∈I

xi,

where the product over the empty set is taken to be 1, while the product

k∏
i=1

(1 + xi) = (1 + x1)(1 + x2) . . . (1 + xk)

is simply ∑
I⊆{1,...,k}

∏
i∈I

xi.

Derangements

Example 3.5 A derangement is a permutation of {1, 2, . . . , n} without fixed points; that
is, the number i does not occur in position i (1 ≤ i ≤ n). For instance, 34251 is a derange-
ment, but 32451 is not (since 2 occurs in second position). The number of derangements
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can be determined by the inclusion-exclusion principle: for a subset I of {1, 2, . . . , n}, let
pn(I) be the number of permutations for which all elements of I (and possible others) are
fixed points, i.e., they occur in their respective positions. Then, we are looking for the
number of permutations that belong to none of pn({1}), pn({2}), . . .. The size of pn(I) is
clearly (n−|I|)! (the n−|I| remaining elements can be arranged in any order), so that (3.3)
yields the following formula for the number of derangements:

n!−
∑

I⊆{1,...,n},I ̸=∅

(−1)|I|+1pn(I).

There are exactly
(
n
k

)
subsets I of size |I| = k, and so this reduces to

n! +
n∑

k=1

(−1)k
(
n

k

)
(n− k)! = n! +

n∑
k=1

(−1)kn!
k!

= n! ·
n∑

k=0

(−1)k 1
k!
.

Therefore, the probability that a randomly selected permutation of {1, 2, . . . , n} is a de-
rangement is

n∑
k=0

(−1)k 1
k!

= 1− 1 +
1

2
− 1

6
+ . . .± 1

n!
.

As n→∞, this value approaches the infinite sum

∞∑
k=0

(−1)k 1
k!

=
1

e
= 0.367879.



Chapter 4

Counting by recursion

Many counting problems can be solved by setting up recursions and solving them. We have
already encountered the recursive relation that is satisfied by the binomial coefficients. In
the following, we discuss three examples that exhibit the basic idea. The following chapter
provides a general method to solve recursions as they occur in the study of enumeration
problems.

Example 4.1 We draw n lines in the plane in such a way that there are no parallel lines
and no intersections of three or more lines. These lines divide the plane into several regions;
how many such regions are there?

Let us first discuss some trivial cases: if there is no line (n = 0), then there is precisely
one region; for n = 1, there are two regions; for n = 2 and n = 3 we obtain four and seven
regions, respectively. One might conjecture now that the number of regions increases by
n+1 if we add a line to n existing lines. Indeed, this is the case, as the following argument
shows.

If we add an additional line to n lines in the plane, then we obtain exactly n new points of
intersection that divide the new line into n+1 segments. Each of these segments divides one
of the old regions into two new regions, while all other regions remain the same. Therefore,
if an denotes the total number of regions, we have the recursion

an+1 = an + (n+ 1).

An explicit form can be deduced immediately:

an = an−1 + n = an−2 + n+ (n− 1) = an−2 + n+ (n− 1) + (n− 2) = . . .

= a0 + n+ (n− 1) + (n− 2) + . . .+ 1 = a0 +
n(n+ 1)

2
=

n2 + n+ 2

2

by the well-known formula for the sum 1 + 2 + . . .+ n, which solves the problem.

Example 4.2 Tom gets an allowance of R100 every month, which he spends entirely on
ice cream (R5), chocolate (R10) or cookies (R10). Every day, he buys exactly one of these

18
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until he runs out of money. In how many possible ways can Tom spend his money? His
older brother Phil gets an allowance of R150, which he also spends on ice cream, chocolate
and cookies only. How many possible ways does he have?

We study a more general problem: if the allowance is 5n (n any positive integer; note that
the prices are all divisible by R5), how many ways are there? Let this number be denoted
by an; then it is easy to see that a1 = 1 and a2 = 3. Next we deduce a recursion for an: the
first thing that Tom buys can be either ice cream (so that he is left with 5(n− 1) and has
an−1 possibilities for the rest) or chocolate or cookies (in each of these cases, the remaining
amount is 5(n− 2), so that he is left with an−2 possibilities). This shows that

an = an−1 + 2an−2

holds. Note that this even remains true if we set a0 = 1 (without money, there is only one
option, which is to buy nothing at all). One obtains the following sequence:

n 1 2 3 4 5 6 7 8 9 10
an 1 3 5 11 21 43 85 171 341 683

An explicit formula is given by

an = 1
3

(
2n+1 + (−1)n

)
,

which can be proven by means of induction. A method to determine such an explicit
formula from a recursion will be discussed in the following chapter. Plugging in n = 20
and n = 30 respectively, we find that Tom has 699051 options, while Phil has 715827883
different ways to spend his money.

Our final example leads to the famous Fibonacci numbers :

Example 4.3 All the houses on one side of a certain street are to be painted either yellow
or red. In how many ways can this be done if there are n houses and there may not be
two red houses next to each other?

Let an be the number that we want to determine. We distinguish two cases:

• If the first house is painted yellow, then the remaining houses can be painted in any
of the feasible an−1 ways, the first house can be neglected.

• If the first house is painted red, then the second house must be painted yellow. Using
the same argument as before, we see that there are an−2 possibilities for the remaining
houses.

Hence we have the recursion
an = an−1 + an−2

with initial values a1 = 2 and a2 = 3. This yields the sequence 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .
of so-called Fibonacci numbers. They are usually defined by f0 = 0, f1 = 1 and fn =
fn−1 + fn−2; it is easy to see that an = fn+2 in our example. There is also an explicit
formula for the Fibonacci numbers, see the following chapter.



Chapter 5

Generating functions

5.1 Solving recursions

Generating functions provide a method to solve recursions, but they are actually much
more versatile, as we will see later. We associate a power series

A(x) =
∞∑
n=0

anx
n

to any sequence a0, a1, . . . of real (or complex) numbers; in the context of combinatorics,
the coefficients an are typically integers. The n-th coefficient of such a power series A(x) is
also written as an = [xn]A(x). For now, we do not care too much about convergence and
mostly regard generating functions as formal objects. A typical example of a generating
function is the geometric series

1

1− qx
=

∞∑
n=0

qnxn,

which is the generating function of a geometric sequence 1, q, q2, q3, . . .. In particular,
the generating function of 1, 1, 1, . . . is 1

1−x
. As a first example of the use of generating

functions, let us discuss the recursion

an = an−1 + 2an−2

with initial vales a0 = a1 = 1 that we encountered in the previous chapter. If A(x) denotes
the associated generating function, then we obtain

A(x) =
∞∑
n=0

anx
n = a0 + a1x+

∞∑
n=2

(an−1 + 2an−2)x
n

= 1 + x+
∞∑
n=2

an−1x
n + 2

∞∑
n=2

an−2x
n

20
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= 1 + x+
∞∑
n=1

anx
n+1 + 2

∞∑
n=0

anx
n+2

= 1 + x+ x(A(x)− a0) + 2x2A(x).

Solving for A(x), we find

A(x) =
1

1− x− 2x2
,

which can also be written as

A(x) =
2/3

1− 2x
+

1/3

1 + x
,

making use of partial fractions. We expand the two summands into geometric series to
obtain

A(x) =
2

3

∞∑
n=0

2nxn +
1

3

∞∑
n=0

(−1)nxn =
∞∑
n=0

2n+1 + (−1)n

3
· xn,

so that we can simply read off the coefficients: an = [xn]A(x) = 2n+1+(−1)n

3
, as claimed. In

the very same style, one finds Binet’s formula for the Fibonacci numbers, whose generating
function is x

1−x−x2 :

fn =
1√
5

((
1 +
√
5

2

)n

−

(
1−
√
5

2

)n)
(5.1)

for any n ≥ 0. The method can actually be generalised to the entire class of linear
recursions, whose general form is

an = c1an−1 + c2an−2 + . . .+ cran−r.

To see how such a recursion can be solved for arbitrary coefficients c1, c2, . . . , cr, we need
the following lemma:

Lemma 5.1 The power series associated to the function 1
(1−qx)k

is given by

1

(1− qx)k
=

∞∑
n=0

(
n+ k − 1

k − 1

)
qnxn.

Proof: Combine the binomial series (2.1) with Lemma 2.2 to obtain

1

(1− qx)k
=

∞∑
n=0

(
−k
n

)
(−qx)n =

∞∑
n=0

(−1)n
(
n+ k − 1

n

)
(−qx)n =

∞∑
n=0

(
n+ k − 1

k − 1

)
qnxn.

Note that for fixed k,
(
n+k−1

k

)
is a polynomial (in n) of degree k − 1:(

n+ k − 1

k − 1

)
=

(n+ k − 1)(n+ k − 2) . . . (n+ 1)

(k − 1)!
,
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for instance(
n+ 1

1

)
= n+ 1,

(
n+ 2

2

)
=

(n+ 2)(n+ 1)

2
=

n2

2
+

3n

2
+ 1, . . .

Now we are ready to prove the following theorem:

Theorem 5.2 The general solution of a linear recursion of the form

an = c1an−1 + c2an−2 + . . .+ cran−r

is given by

an =
s∑

i=1

Pi(n)q
n
i ,

where q1, q2, . . . , qs are the (possibly complex) solutions of the characteristic equation qr =
c1q

r−1 + c2q
r−2 + . . . + cr and P1(n), P2(n), . . . , Ps(n) are polynomials. The degree of

Pi is strictly less than the multiplicity of qi as a solution of the characteristic equation
(that is, the number of times the factor q− qi occurs in the factorisation of the polynomial
qr − c1q

r−1 − c2q
r−2 − . . .− cr).

Proof: Let A(x) =
∑∞

n=0 anx
n be the generating function of the sequence a0, a1, . . .. Then

we have

A(x) =
r−1∑
n=0

anx
n +

∞∑
n=r

anx
n

=
r−1∑
n=0

anx
n +

∞∑
n=r

(c1an−1 + c2an−2 + . . .+ cran−r)x
n

=
r−1∑
n=0

anx
n +

r∑
j=1

cj

∞∑
n=r

an−jx
n

=
r−1∑
n=0

anx
n +

r∑
j=1

cj

∞∑
n=r−j

anx
n+j

=
r−1∑
n=0

anx
n +

r∑
j=1

cj

(
∞∑
n=0

anx
n+j −

r−j−1∑
n=0

anx
n+j

)

=
r−1∑
n=0

anx
n +

r∑
j=1

cjx
jA(x)−

r∑
j=1

cj

r−j−1∑
n=0

anx
n+j.

Now write

N(x) =
r−1∑
n=0

anx
n −

r∑
j=1

cj

r−j−1∑
n=0

anx
n+j
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and

D(x) = 1−
r∑

j=1

cjx
j.

Both N(x) and D(x) are polynomials; solving the equation for A(x) gives A(x) = N(x)
D(x)

, so

that A(x) is invariably a rational function. Now factor the denominator:

D(x) = (1− q1x)
ℓ1(1− q2x)

ℓ2 . . . (1− qsx)
ℓs

Note that a factor (1− qix)
ℓi in the factorisation occurs if and only if D( 1

qi
) = 0, which is

equivalent to

0 = 1−
r∑

j=1

cjq
−j
i = q−r

(
qr −

r∑
j=1

cjq
r−j
i

)
,

i.e., qi is a solution of the characteristic equation. The multiplicity of qi as a solution is
precisely the exponent ℓi. Now expand the generating function A(x) into partial fractions:

∞∑
n=0

anx
n = A(x) =

s∑
i=1

ℓi∑
j=1

Kij

(1− qix)j
.

We can apply Lemma 5.1 to each of the summands to obtain

∞∑
n=0

anx
n =

s∑
i=1

ℓi∑
j=1

Kij

∞∑
n=0

(
n+ j − 1

j − 1

)
qni x

n,

and comparing coefficients yields

an =
s∑

i=1

(
ℓi∑

j=1

Kij

(
n+ j − 1

j − 1

))
qni =

s∑
i=1

Pi(n)q
n
i

for certain polynomials Pi whose degree is less than ℓi (the highest degree that occurs is
that of

(
n+ℓi−1
ℓi−1

)
, which is ℓi − 1). This proves the theorem. �

Knowing the general form of a solution, one can solve a recursion by means of the method
of undetermined coefficients without translating it to the world of generating functions;
this is exhibited in the following example:

Example 5.1 Suppose we want to determine an explicit formula for the sequence that is
defined by

an = 5an−1 − 3an−2 − 9an−3

with initial values a0 = −1, a1 = 1 and a2 = 5.
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The characteristic equation is q3 − 5q2 + 3q + 9 = (q − 3)2(q + 1) = 0, so that q1 = 3 and
q2 = −1, the multiplicities being 2 and 1 respectively. Therefore, Theorem 5.2 shows that
the solution must have the form

an = (An+B)3n + C(−1)n.

Plugging in n = 0, 1, 2 yields the system of equations

B + C = −1,
3A + 3B − C = 1,
18A + 9B + C = 5,

which leads to the solution A = 1
2
, B = −3

8
, C = −5

8
, so that finally

an =
4A− 3

8
· 3n − 5(−1)n

8
.

Theorem 5.2 actually only treats the homogeneous case; the method can be extended to
non-homogeneous recursions of the form

an = c1an−1 + c2an−2 + . . .+ cran−r + bn,

the only difference being the non-homogeneous term bn. If B(x) =
∑∞

n=0 bnx
n is the

generating function of bn, then one obtains

A(x) =
N(x) +B(x)

D(x)

as in the proof of Theorem 5.2. If the non-homogenous term is of the form Q(n)qn for a
polynomial Q, then one can deduce an explicit formula for an once again (the proof being
similar to that of Theorem 5.2):

Theorem 5.3 Suppose that bn = Q(n)qn, where Q is a polynomial of degree d. If q is not
a solution of the characteristic equation, then the solution of the linear recursion

an = c1an−1 + c2an−2 + . . .+ cran−r + bn

is of the form

an =
s∑

i=1

Pi(n)q
n
i + P ∗(n)qn,

where q1, q2, . . . , qs are the (possibly complex) solutions of the characteristic equation qr =
c1q

r−1 + c2q
r−2 + . . .+ cr and P1(n), P2(n), . . . , Ps(n), P

∗(n) are polynomials. The degree
of Pi is strictly less than the multiplicity of qi as a solution of the characteristic equation,
and the degree of P ∗(n) is d.
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If, on the other hand, q is a solution of the characteristic equation (without loss of generality,
q = q1), then the solution has the form

an =
s∑

i=1

Pi(n)q
n
i ,

q1, q2, . . . , qs and P1(n), P2(n), . . . , Ps(n) as before, except for the degree of P1, which is
equal to the multiplicity of q1 plus the degree of Q.

A sum of non-homogeneous terms of this form gives rise to a sum in the solution; let us
discuss a modified version of Example 5.1 to exhibit the method:

Example 5.2 Suppose we want to determine an explicit formula for the sequence that is
defined by

an = 5an−1 − 3an−2 − 9an−3 − 4 · 3n + 4n+ 4

with initial values a0 = −1, a1 = 1 and a2 = 5.

The summand 4n + 4 can be interpreted as (4n + 4) · 1n and gives rise to a linear term
An+B in the solution; since 3 is a double solution of the characteristic equation and −4·3n
occurs in the non-homogeneous term, we must have a summand (Cn2 + Dn + E) · 3n in
the solution; finally, −1 is a solution of the characteristic equation, so that we end up with

an = An+B + (Cn2 +Dn+ E) · 3n + F (−1)n.

Plugging into the recursion yields

An+B+(Cn2 +Dn+ E) · 3n + F (−1)n

= 5
(
A(n− 1) +B + (C(n− 1)2 +D(n− 1) + E) · 3n−1 + F (−1)n−1

)
− 3

(
A(n− 2) +B + (C(n− 2)2 +D(n− 2) + E) · 3n−2 + F (−1)n−2

)
− 9

(
A(n− 3) +B + (C(n− 3)2 +D(n− 3) + E) · 3n−3 + F (−1)n−3

)
− 4 · 3n + 4n+ 4

and after collecting terms(
8

3
C + 4

)
· 3n + (8A− 4)n+ (−28A+ 8B − 4) = 0.

Therefore, we have A = 1
2
, B = 9

4
and C = −3

2
. Finally, the initial values can be used to

determine D,E, F , and the solution is found to be

an =

(
n

2
+

9

4

)
+

(
−3n2

2
+ 5n− 31

8

)
· 3n + 5

8
(−1)n.
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Remark: The parts that belong to a solution of the homogeneous equation can be left out
in the first step (in the example above, this means that one simply plugs in An+B+Cn23n

into the recursion formula, since the other parts have to cancel anyway). This principle
can be stated as follows: the general solution of a non-homogeneous recursion is the sum
of a particular solution and the solution to the homogeneous equation (compare this to
linear differential equations!).

5.2 General rules for generating functions

Before we turn to more advanced applications of generating functions, let us describe the
effect that certain operations on sequences have on the generating function level.

Theorem 5.4 If {an} and {bn} (n ≥ 0) are sequences and A(x) and B(x) their associated
generating functions, then

1. the sequence cn = an + bn has generating function C(x) = A(x) + B(x),

2. the sequence cn =
n∑

k=0

akbn−k has generating function C(x) = A(x) ·B(x),

3. the sequence cn = αan has generating function C(x) = αA(x) (α any constant),

4. the sequence

cn =

{
an−m n ≥ m,

0 otherwise,

has generating function C(x) = xmA(x),

5. the sequence cn = an+m has generating function C(x) =
A(x)−

∑m−1
n=0 anx

n

xm
,

6. the sequence cn = nan has generating function C(x) = xA′(x),

7. the sequence

cn =

{
an
n

n > 0,

0 otherwise,

has generating function C(x) =

∫ x

0

A(t)− a0
t

dt,

8. the sequence cn =
n∑

k=0

ak has generating function C(x) =
A(x)

1− x
.

Proof: Each of the statements can be obtained by simple arithmetic:
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1.

C(x) =
∞∑
n=0

(an + bn)x
n =

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n = A(x) +B(x).

2.

C(x) =
∞∑
n=0

n∑
k=0

akbn−kx
n =

∞∑
k=0

∞∑
n=k

akbn−kx
n =

∞∑
k=0

∞∑
n=k

akx
kbn−kx

n−k

=
∞∑
k=0

∞∑
l=0

akx
kblx

l =

(
∞∑
k=0

akx
k

)(
∞∑
l=0

blx
l

)
= A(x) ·B(x).

3.

C(x) =
∞∑
n=0

αanx
n = α

∞∑
n=0

anx
n = αA(x).

4.

C(x) =
∞∑

n=m

an−mx
n =

∞∑
n=0

anx
n+m = xm

∞∑
n=0

anx
n = xmA(x).

5.

C(x) =
∞∑
n=0

an+mx
n =

∞∑
n=m

anx
n−m = x−m

∞∑
n=m

anx
n =

A(x)−
∑m−1

n=0 anx
n

xm
.

6.

C(x) =
∞∑
n=0

nanx
n = x

∞∑
n=0

nanx
n−1 = x

∞∑
n=0

an
d

dx
xn = x

d

dx

∞∑
n=0

anx
n = xA′(x).

7.

C(x) =
∞∑
n=1

an
n
xn =

∞∑
n=1

an

∫ x

0

tn−1 dt =

∫ x

0

∞∑
n=1

ant
n−1 dt =

∫ x

0

A(x)− a0
t

dt.

8.

C(x) =
∞∑
n=0

n∑
k=0

akx
n =

∞∑
k=0

∞∑
n=k

akx
n =

∞∑
k=0

ak

∞∑
n=0

xn+k

=
∞∑
k=0

akx
k

∞∑
n=0

xn =
∞∑
k=0

akx
k · 1

1− x
=

A(x)

1− x
.
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Remark: Generating functions can be regarded as formal objects without considering
convergence. The sum, difference, product or quotient of two power series is a power series
again (for the quotient, one has to assume that the denominator has a non-zero constant
coefficient). For instance, one can formally multiply

(a0+a1x+a2x
2+. . .)(b0+b1x+b2x

2+. . .) = a0b0+(a1b0+a0b1)x+(a0b2+a1b1+a2b0)x
2+. . .

or divide
a0 + a1x+ a2x

2 + . . .

b0 + b1x+ b2x2 + . . .
= c0 + c1x+ c2x

2 + . . . ,

where the coefficients c0, c1, c2, . . . can be found by comparing coefficients in the identity

(b0 + b1x+ b2x
2 + . . .)(c0 + c1x+ c2x

2 + . . .) = a0 + a1x+ a2x
2 + . . . ,

so that c0 =
a0
b0
, c1 =

a1b0−a0b1
b20

, etc.

An application of rule 2. for products of generating functions was given in Section 2.3
(Vandermonde identity); let us now discuss an application of the last rule for cumulative
sums, which is an extension of Example 4.2:

Example 5.3 Tom decides that he might not spend his entire allowance of R100 and
perhaps save some part of it instead. How many ways does he have now to spend his
money?

In this setting, Tom can spend nothing, or R5, R10, . . . , R100. Generally, if his allowance
is 5n (n any non-negative integer), then the amount that he spends is of the form 5k,
0 ≤ k ≤ n; if an denotes the number of ways to spend exactly 5n Rand, then the number
of ways to spend at most 5n is exactly

cn =
n∑

k=0

ak.

Recall that the generating function of an is A(x) = 1
1−x−2x2 . Therefore, Theorem 5.4 shows

that the generating function of cn is C(x) = 1
(1−x)(1−x−x2)

= 1
(1−x)(1+x)(1−2x)

. Making use of
partial fractions once again, we find

C(x) =
4

3(1− 2x)
− 1

2(1− x)
+

1

6(1 + x)

and thus cn = [xn]C(x) = 4
3
· 2n − 1

2
+ 1

6
(−1)n. In particular, if n = 20 (which corresponds

to an amount of R100), then this number is 1398101.
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5.3 Nonlinear recursions

While linear recursions are usually solved more quickly by means of the method of undeter-
mined coefficients, generating functions are actually far more versatile and can be applied
to many non-linear recursions as well (which the method of undetermined coefficients can
not). In this section, we treat two such examples.

Example 5.4 We want to count the number of stacks that can be formed from contiguous
rows of coins in such a way that (from the second row on) every coin touches the two coins
below it, where the number of coins in the first row is n (see Figure 5.1, which illustrates
the case n = 3).

Figure 5.1: Different stacks in the case n = 3.

Let an denote the number of configurations with n coins in the bottom row. Each such
configuration that is not just a single row of coins is obtained by placing a configuration
whose bottom row consists of k coins in any of n − k possible positions (there are n − 1
available positions for coins altogether, so the first of the k coins can be in either the first,
or the second, . . . , or the (n−k)-th of these positions), where k can be any number between
1 and n− 1. This results in the recursion

an = 1 +
n−1∑
k=1

(n− k)ak

for n > 1 (with the initial value a1 = 1). For convenience, we set a0 = 0 and rewrite this
recursion as

an = 1 +
n∑

k=0

(n− k)ak.

Let A(x) be the generating function of the sequence an; note that
∑n

k=0(n − k)ak is the
n-th coefficient in the product of A(x) and

∞∑
n=0

nxn = x
d

dx

∞∑
n=0

xn = x
d

dx

1

1− x
=

x

(1− x)2
.
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Therefore, we obtain the equation

A(x) =
∞∑
n=1

xn +
x

(1− x)2
· A(x) = x

1− x
+

x

(1− x)2
· A(x).

Solving for A(x), we find

A(x) =
x(1− x)

1− 3x+ x2
.

If one computes the first few elements of the sequence, one finds a2 = 2, a3 = 5, a4 = 13,
a6 = 34, . . . . One notices that all of these numbers are Fibonacci numbers. Indeed, one
can show that an = f2n−1, where fn denotes the n-th Fibonacci number as in Example 4.3:
f0 = 0, f1 = 1, . . . . One possibility to prove the identity is to determine an explicit
formula for an from the generating function (by means of partial fractions) and compare it
to Binet’s formula (5.1). However, we will go another way: if F (x) =

∑∞
n=0 fnx

n = x
1−x−x2

denotes the generating function for the Fibonacci numbers, then we find the generating
function for the odd-indexed Fibonacci numbers by the same method that was also applied
in the proof of Theorem 2.4:

∞∑
n=0
n odd

fnx
n =

∞∑
n=0

1n − (−1)n

2
fnx

n =
1

2

(
∞∑
n=0

fnx
n −

∞∑
n=0

fn(−x)n
)

=
F (x)− F (−x)

2
,

which shows that

∞∑
n=1

f2n−1x
2n−1 =

1

2

(
x

1− x− x2
− −x

1 + x− x2

)
=

x(1− x2)

1− 3x2 + x4
,

thus
∞∑
n=1

f2n−1x
2n =

x2(1− x2)

1− 3x2 + x4

and finally
∞∑
n=1

f2n−1x
n =

x(1− x)

1− 3x+ x2

upon replacing x2 by x, which is exactly the generating function A(x) that we found before.

The following example introduces the Catalan numbers, which will be treated in more
detail in Section 7.1.

Example 5.5 Consider 2n points on a circle. How many ways are there to connect them
by n lines such that there are no points of intersection (and each point is connected to
exactly one other point)? Figure 5.2 shows all configurations in the case n = 3 (think of
2n people shaking hands).
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Figure 5.2: Connecting six points on a circle.

Let the points be numbered from 1 to 2n. If point 1 is connected to point k, this leaves
two groups of sizes k − 2 and n− k that cannot be connected any more; therefore, k = 2l
must be even. Now each of the two groups can be treated separately. If an denotes the
number of possibilities, then we obtain the recursion

an =
n∑

l=1

al−1an−l,

the initial value being a0 = 1. Once again, we want to translate this to a functional
equation for the generating function A(x). Note that

n∑
l=1

al−1an−l =
n−1∑
m=0

aman−m−1

is exactly the coefficient of xn−1 in A(x)2, which is the coefficient of xn in xA(x)2. Therefore,

A(x) = xA(x)2 + 1,

where the last summand takes the initial value into account. Solving the quadratic equa-
tion, we find

A(x) =
1−
√
1− 4x

2x
.

The negative sign has to be chosen to make sure that A(0) = a0 = 1, as it should be. How
can this be turned into a formula for the coefficients an? Recall the binomial series (2.1)
that we can apply now (in the specific case α = 1

2
):

A(x) =
1−
√
1− 4x

2x
=

1

2x
− 1

2x
(1− 4x)1/2 =

1

2x
− 1

2x

∞∑
n=0

(
1/2

n

)
(−4x)n
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= − 1

2x

∞∑
n=1

(
1/2

n

)
(−4x)n = −1

2

∞∑
n=1

(
1/2

n

)
(−4)nxn−1

= −1

2

∞∑
m=0

(
1/2

m+ 1

)
(−4)m+1xm,

which shows that an = [xn]A(x) = −1
2

(
1/2
n+1

)
(−4)n+1; however, this can be simplified as

follows:

−1

2

(
1/2

n+ 1

)
(−4)n+1 = −1

2
· (1/2) · (−1/2) · (−3/2) · · · (1/2− n− 1)

(n+ 1)!
· (−4)n+1

= −1

2
· 2

−n−1(−1)n · 1 · 3 · · · (2n− 1)

(n+ 1)!
· (−4)n+1

= 2n · 1 · 3 · · · (2n− 1)

(n+ 1)!
= 2n · (2n)!

(n+ 1)! · 2 · 4 . . . (2n)

= 2n · (2n)!

(n+ 1)! · 2n · 1 · 2 · · ·n
=

(2n)!

(n+ 1)!n!
=

1

n+ 1

(
2n

n

)
.

The numbers 1
n+1

(
2n
n

)
are known as Catalan numbers; the first few elements of the sequence

are a1 = 1, a2 = 2, a3 = 5, a4 = 14.



Chapter 6

The symbolic method

The detour via recursions is often not necessary if one wants to obtain the generating
function for a certain family of combinatorial objects; the symbolic method that will be
presented in this chapter works for many important combinatorial structures, such as
words, permutations, compositions, trees, and many others, that also play a frequent role
in computer science and other sciences.

6.1 Unlabelled structures

We consider combinatorial structures that are made up of certain atoms. The size of such
an object is defined as the number of its atoms. For instance, the atoms of a word over
a given alphabet are its letters, and the size is its length. For a tree (a common data
structure, see Figure 6.1), a node is an atom, and the size is the number of nodes, and
there are many other examples. If there are an elements of size n in a certain family A of
combinatorial objects, then the associated generating function is A(x) =

∑∞
n=0 anx

n.

Figure 6.1: A simple binary tree.

33
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Example 6.1 Let us start with a trivial example: piles of coins. The atoms are the coins,
and the size of a pile is its height (the number of coins); if the coins are indistinguishable,
then there is exactly one pile of every non-negative integer size (if we consider the empty
pile of size 0 as well), so that the family P of piles can be described as

P = {∅, •, • •, • • •, . . .},

where • denotes an atom (a single coin), and the associated generating function is P (x) =∑∞
n=0 x

n = 1
1−x

.

There are certain natural transformations that can be performed on families of combina-
torial objects:

Unions

If A and B are disjoint families of combinatorial objects, then their union A ∪ B consists
of all objects that are elements of either A or B, and it is obvious that the associated
generating function is A(x) +B(x). The empty family (that does not contain anything at
all) has associated generating function 0 and acts as the neutral element in this regard.

Pairs

If A and B are families of combinatorial objects (not necessarily disjoint), then we can
form pairs (A,B) of objects A ∈ A and B ∈ B. The family of all such pairs is typically
denoted by A× B (Cartesian product of sets). The size of a pair (A,B) is the sum of the
sizes of A and B, so if a pair (A,B) is to have size n, then the sizes of A and B have to
be k and n− k respectively, where k is any integer between 0 and n. Therefore, if an (bn)
denotes the number of elements in A (B, respectively) whose size is n, and cn denotes the
number of pairs of size n, we find

cn =
n∑

k=0

akbn−k,

which is exactly the coefficient of xn in the product of the associated generating functions.
Therefore, the generating function for the family A×B is exactly A(x) ·B(x). Of course,
this principle can be generalised to triples, quadruples, etc. The family E that only contains
one object ϵ (of size 0) has generating function 1 and acts as the neutral element.

Sequences

This builds on the ideas of the previous construction; if A is any family, then A×A is the
family of pairs, A × A × A the family of triples, etc. altogether, we obtain the set of all
finite sequences of elements of A. If we include the empty sequence ϵ as an element of size
0, then we obtain the specification for sequences Seq(A) as follows:

B = Seq(A) = {ϵ} ∪ A ∪ (A×A) ∪ (A×A×A) ∪ . . .
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This translates to the world of generating functions as follows:

B(x) = 1 + A(x) + A(x)2 + A(x)3 + . . . =
1

1− A(x)
.

Here, A itself must be assumed not to contain elements of size 0 to avoid redundancies.
One can also consider restricted sequences: for instance, A(x)k is the generating function
for sequences of length k (for which we write Seqk),

1 + A(x) + A(x)2 + A(x)3 + . . .+ A(x)k =
1− A(x)k+1

1− A(x)

is the generating function for sequences of size at most k (denoted Seq≤k), and

A(x)k + A(x)k+1 + A(x)k+2 + . . . =
A(x)k

1− A(x)

is the generating function for sequences of size at least k (denoted Seq≥k).

Example 6.2 Recall from Chapter 1 that a composition of n is a finite sequence of positive
integers adding up to n, such as 3+ 1+4+1, which is a composition of 9. The generating
function for positive integers I is obviously

x+ x2 + x3 + . . . =
x

1− x
,

and so the generating function for compositions C = Seq(I) is

C(x) =
1

1− x
1−x

=
1− x

1− 2x

Now we can make use of the geometric series once again:

1− x

1− 2x
=

1

2

(
1 +

1

1− 2x

)
=

1

2

(
1 +

∞∑
n=0

2nxn

)
=

1

2
+

∞∑
n=0

2n−1xn,

which shows that there are exactly 2n−1 compositions of n if n ≥ 1, a result that can also
obtained by the “dots and bars” argument. If we are interested in compositions of length
k, then we find the generating function to be(

x

1− x

)k

=
xk

(1− x)k
= xk

∞∑
n=0

(
−k
n

)
xn =

∞∑
n=0

(
n+ k − 1

n

)
xn+k =

∞∑
n=k

(
n− 1

n− k

)
xn

by virtue of Lemma 2.2. Therefore, the number of compositions of length k of a positive
integer n is given by

(
n−1
n−k

)
=
(
n−1
k−1

)
, compare Theorem 1.6 and the remark thereafter.

Compositions into restricted sets of integers can be considered as well: for instance, if only
summands 1 and 2 are allowed, then the associated family is Seq({1, 2}), and the generating
function is 1

1−x−x2 , which yields yet another interpretation of the Fibonacci numbers.
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Example 6.3 Consider words over the simple alphabet A = {a, b}. Then we can regard
a and b as our atoms, so that the generating function is simply A(x) = 2x. The family W
of words over A is now specified by

W = Seq(A) = Seq({a, b}),

so that the generating function is W (x) = 1
1−2x

(in accordance with the fact that there
are 2n words of length n, see Theorem 1.1). For a general finite alphabet of size k, the
associated generating function for words is 1

1−kx
.

Let us now consider a restricted family of words: only a-b-words that do not contain two
adjacent letters b are allowed. Such a word starts with an arbitrary (possibly empty)
sequence of a’s, followed by a b, followed by a non-empty sequence of a’s, followed by a b,
followed by another non-empty sequence of a’s, etc. After the last sequence of a’s, we may
attach either one more b or nothing at all. This leads to the specification

Seq({a})× Seq({b} × Seq≥1({a}))× {ϵ, b},

where ϵ denotes an empty word (of length 0). This can be translated to the generating
function

1

1− x
· 1

1− x2

1−x

· (1 + x) =
1 + x

1− x− x2
,

and we find that the number of such words is a Fibonacci number (note that this example
is essentially equivalent to Example 4.3).

Example 6.4 How many different ways are there to put 50 tennis balls into 5 boxes, if
the first box can only hold at most 9 balls and the second box at most 7 balls?

While the inclusion-exclusion principle could be used for this purpose, generating functions
are somewhat faster. If • stands for a single ball, then our situation is equivalent to the
specification

Seq≤9({•})× Seq≤7({•})× Seq({•})× Seq({•})× Seq({•}),

for which the generating function is

1− x10

1− x
· 1− x8

1− x
·
(

1

1− x

)3

=
1− x8 − x10 + x18

(1− x)5

we are interested in the coefficient of x50, which is

[x50]
1− x8 − x10 + x18

(1− x)5
= [x50]

1

(1− x)5
− [x50]

x8

(1− x)5
− [x50]

x10

(1− x)5
+ [x50]

x18

(1− x)5

= [x50]
1

(1− x)5
− [x42]

1

(1− x)5
− [x40]

1

(1− x)5
+ [x32]

1

(1− x)5
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in view of Theorem 5.4. Now, Lemma 2.2 can be applied to find that this number is(
−5
50

)
−
(
−5
42

)
−
(
−5
40

)
+

(
−5
32

)
=

(
54

50

)
−
(
46

42

)
−
(
44

40

)
+

(
36

32

)
=

(
54

4

)
−
(
46

4

)
−
(
44

4

)
+

(
36

4

)
= 76220.

The following constructions are somewhat more advanced, but they often prove useful as
well:

Powersets

The powerset PSet(A) of A consists of all subsets of A; if the size of a subset is the sum
of the sizes of all its elements (as in the case of sequences), then we find that

PSet(A) =
⊗
A∈A

{A, ϵ},

since every element A can either be present or not; if an is the number of elements in A of
size n (assume that a0 = 0), then we find that the generating function of B = PSet(A) is

B(x) =
∞∏
n=1

(1 + zn)an = exp

(
∞∑
n=1

an log(1 + zn)

)

= exp

(
∞∑
n=1

an

∞∑
m=1

(−1)m−1

m
zmn

)
= exp

(
∞∑

m=1

(−1)m−1

m

∞∑
n=1

anz
mn

)

= exp

(
∞∑

m=1

(−1)m−1

m
A(zm)

)
= exp

(
A(x)− A(x2)

2
+

A(x3)

3
− . . .

)
,

making use of the Taylor series for the logarithm.

Multisets

Multisets MSet(A) are closely related to the powerset construction; we consider collections
of elements of A, where each element is allowed to occur more than once as well. This is
equivalent to the formal expression

MSet(A) =
⊗
A∈A

Seq({A}),

which leads to the following generating function for B = MSet(A):

B(x) =
∞∏
n=1

(1− zn)−an = exp

(
−

∞∑
n=1

an log(1− zn)

)
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= exp

(
∞∑
n=1

an

∞∑
m=1

1

m
zmn

)
= exp

(
∞∑

m=1

1

m

∞∑
n=1

anz
mn

)

= exp

(
∞∑

m=1

1

m
A(zm)

)
= exp

(
A(x) +

A(x2)

2
+

A(x3)

3
+ . . .

)
Example 6.5 Formally, a language is a collection of distinct words (this notion of a lan-
guage plays a role in computer science). If an alphabet A of k letters is given, how many
languages are there that contain a total number of n letters? The according specification
is

L = PSet(Seq≥1(A)),

giving rise to the generating function

L(x) = exp

(
∞∑

m=1

(−1)m−1

m
· kxm

1− kxm

)
=

∞∏
n=1

(1 + xn)k
n

.

While one cannot derive a closed formula from this generating function, it can be used to
determine the first few coefficients (the sequence starts l1 = 2, l2 = 5, l3 = 16, l4 = 42,
. . . in the case k = 2), and further information about the coefficients (in particular, their
growth) can be extracted by means of analytic methods (which are beyond the scope of
this course).

6.2 Labelled structures

In many instances, one is interested in structures where the atoms are labelled : if a structure
consists of n atoms, then these atoms receive distinct labels from 1 to n. The most typical
example are permutations : a permutation of n can be regarded as a sequence of atoms
bearing labels from 1 to n; the 6 = 3! permutations of {1, 2, 3} (see Theorem 1.2) are
thus { ⃝1 ⃝2 ⃝3 , ⃝1 ⃝3 ⃝2 , ⃝2 ⃝1 ⃝3 , ⃝2 ⃝3 ⃝1 , ⃝3 ⃝1 ⃝2 , ⃝3 ⃝2 ⃝1 }. In the context of labelled
structures, it is useful to work with exponential generating functions : if an is a sequence,
then its exponential generating function is defined by

A(x) =
∞∑
n=0

an
n!

xn.

The exponential generating function associated to permutations is thus

∞∑
n=0

n!

n!
xn =

∞∑
n=0

xn =
1

1− x
,

since there are n! permutations of {1, 2, . . . , n}. Note that, on the other hand, the ordinary
generating function

∑∞
n=0 n!x

n is not an elementary function, and it is even divergent for
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all x ̸= 0. The name “exponential” is due to the fact that the exponential generating
function of the sequence 1, 1, . . . is ex (the associated structure is sometimes called “urns”:
an urn is merely a collection of atoms labelled 1 to n (think of balls marked with these
labels) without additional structure.

Example 6.6 In how many ways can one form cycles of the numbers 1, 2, . . . , n? Fig-
ure 6.2 shows all possibilities in the case n = 4; generally, if one starts at 1, then there are
(n− 1)! possible orders for the remaining numbers. Therefore, the associated exponential
generating function is

∞∑
n=0

(n− 1)!

n!
xn =

∞∑
n=0

xn

n
= − log(1− x).

1 1 1

1 1 1

2 2 3

3 4 4

4 3 4

2 2 3

4 3 2

3 4 2

Figure 6.2: All cycles of length 4.

For instance, one can think of these cycles as necklaces made of four beads in different
colours.

Again, there are several useful transformations on families of labelled objects:

Unions

As in the case of unlabelled structures, one can define the union of two disjoint families
A and B, and the associated generating function is exactly the sum of the generating
functions of A and B.

Pairs

The situation is slightly different to the unlabelled case, since an ordinary pair of labelled
objects does not constitute a proper labelled object again (since labels are duplicated). If
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one combines two labelled object A and B of sizes k and n− k respectively to form a new
object of size n, then one first has to distribute the labels among the two objects, which
can be done in

(
n
k

)
ways (choose the k labels that are given to A). Therefore, if two families

A and B with exponential generating functions A(x) =
∑∞

n=0
an
n!

and B(x) =
∑∞

n=0
bn
n!

are
given, then the number of pairs of size n that can be formed in this way is

cn =
n∑

k=0

(
n

k

)
akbn−k =

n∑
k=0

n!

k!(n− k)!
akbn−k,

which can be rewritten as
cn
n!

=
n∑

k=0

ak
k!
· bn−k

(n− k)!
.

Note that this is exactly the coefficient of xn in the product A(x) · B(x), so that the
generating function of the family C = A × B of pairs is exactly A(x) · B(x). This fact is
one of the main reasons why exponential generating functions are used in this context.

Sequences

As in the case of unlabelled structure, one can extend the above reasoning to triples,
quadruples, etc. Generally, sequences of length k of elements from a family A with expo-
nential generating function A(x) have exponential generating function A(x)k (we denote
this family by Seqk(A)), and the exponential generating functions for sequences Seq≤k(A)
of length at most k and sequences Seq≥k(A) of length at least k are

1− A(x)k+1

1− A(x)
and

A(x)k

1− A(x)

respectively. Arbitrary sequences Seq(A) have exponential generating function 1
1−A(x)

.

Example 6.7 Words over an alphabet of size k can also be regarded as labelled objects,
namely sequences of urns (the i-th urn records the positions in the word where the i-th
letter occurs) of length k. Therefore, the exponential generating function is

(ex)k = ekx =
∞∑
n=0

kn

n!
xn,

in agreement with the fact that there are kn words of length n.

Sets

Sets of elements from a family A of combinatorial objects are somewhat easier to handle
in the labelled case than in the unlabelled one. This is due to the fact that objects are
now distinguishable by their labels: to every set of k objects (among which the labels 1
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to n are distributed), there are exactly k! sequences (since a sequence is nothing but an

ordered set); therefore, the exponential generating function for Setk(A) is simply A(x)k

k!
, and

summing over all k yields the exponential generating function for B = Set(A) (arbitrary
sizes):

B(x) =
∞∑
k=0

A(x)k

k!
= exp(A(x)).

Various examples will be discussed in the following section.



Chapter 7

Special numbers

7.1 Catalan numbers

We have already encountered the Catalan numbers in Example 5.5. However, there are
many other intuitive counting problems that lead to the sequence 1, 2, 5, 14, 42, . . . of Cata-
lan numbers. In this section, a few more examples are treated.

Binary trees

A binary tree is a tree with the property that all its nodes have either two children (internal
node) or no children (external node). Figure 6.1 shows a binary tree with four internal and
five external nodes. Such trees provide an important data structure in computer science.
It is easy to show, by means of induction, that there is always exactly one external node
more than internal nodes (so that the total number of nodes is necessarily odd). Making
use of the symbolic method, we can almost effortlessly determine a generating function for
the number of binary trees: if B is the family of binary trees, then

B = {•} ∪ ({•} × B × B) .

(A binary tree is either a single node or a root with two binary trees attached.) This
translates to the functional equation

B(x) = x+ xB(x)2,

with the solution

B(x) =
1−
√
1− 4x2

2x
.

Note the similarity with Example 5.5; using the same method as in that example, we find
a formula for the number of binary trees with a prescribed number of nodes:

Theorem 7.1 The number of binary trees with 2n + 1 nodes (n ≥ 0) is the Catalan
number Cn = 1

n+1

(
2n
n

)
.

42
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Alternatively, one can consider pruned binary trees, which are obtained by leaving out all
external nodes. In such a case, the remaining nodes can either have two children, or only
a left child, or only a right child, or no children at all, see Figure 7.1.

Figure 7.1: A pruned binary tree.

Pruned binary trees can be defined symbolically by

PB = {•} ∪ ({•} × PB) ∪ (PB × {•}) ∪ (PB × {•} × PB)

to the effect that the generating function satisfies

PB(x) = x+ 2xPB(x) + xPB(x)2 = x(1 + PB(x))2,

and thus

PB(x) =
1− 2x−

√
1− 4x

2x
,

in accordance with the fact that the number of pruned binary trees with n > 0 nodes is
exactly the number of binary trees with 2n+ 1 nodes.

Plane trees

In contrast to binary trees, the nodes of a plane tree can have any number of children, see
Figure 7.2 for an example.
Their construction can be written symbolically as

P = {•} × Seq(P)

(a plane tree consists of a root to which a sequence, possibly empty, of plane trees is
attached). Therefore, we have the following equation for the generating function:

P (x) = x · 1

1− P (x)
,
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Figure 7.2: A plane tree.

which leads to a quadratic equation whose solution is

P (x) =
1−
√
1− 4x

2
.

Again, we have to choose the minus sign in order to have P (0) = 0. Therefore, the following
theorem holds:

Theorem 7.2 The number of plane trees with n nodes (n ≥ 1) is the Catalan number
Cn−1 =

1
n

(
2n−2
n−1

)
.

There is a simple combinatorial explanation to the fact that the number of plane trees with
n > 1 nodes is exactly the number of pruned binary trees with n− 1 nodes. This so-called
rotation correspondence is exhibited in Figure 7.3.

Figure 7.3: The rotation correspondence.
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In order to obtain a pruned binary tree from a plane tree, remove the root and all connec-
tions to children that are not leftmost children. Instead, connect siblings. Now perform a
45 degrees rotation, so that siblings become right children. This process can be reversed,
which means that there is a direct 1− 1 correspondence between pruned binary trees and
plane trees.

Dyck paths

A Dyck path is a path consisting of “up” and “down” steps that start and end on the x-axis
(say, at (0, 0) and (2n, 0) respectively) and have the property that they never go below the
x-axis (see Figure 7.4).

Figure 7.4: An example of a Dyck path.

What is the number of such paths? One way to determine this number is to decompose
Dyck paths: each such path (that is not the trivial path of length 0) consists of an initial
“up” step, followed by a path that stays above the line y = 1, followed by a “down” step
(this is the first time that the x-axis is reached again), followed by another (arbitrary)
Dyck path. This shows that we have

D = ϵ ∪ ({↗} × D × {↘} ×D) ,

where ϵ denotes the path of length 0. This translates to the functional equation

D(x) = 1 + x2D(x)2

for the generating function; compare this to the functional equation obtained for binary
trees. One obtains the following theorem:

Theorem 7.3 The number of Dyck paths of length 2n (n ≥ 0) is the Catalan number
Cn = 1

n+1

(
2n
n

)
.

This theorem can also be obtained by means of a simple correspondence between plane
trees and Dyck paths; if one moves along the edges of a tree, the path traced exactly
describes a Dyck path (see Figure 7.5); this process (that is also easy to reverse) is known
as the glove bijection.
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Figure 7.5: The glove bijection: the plane tree that is shown corresponds to the Dyck path
in Figure 7.4.

There is a clever proof (called André’s reflection principle) that yields the formula for the
Catalan numbers directly from the definition of Dyck paths; first note that we need exactly
n ↗ steps and n ↘ steps, for which there are a priori

(
2n
n

)
possible arrangements (ways

to choose the n positions for the ↗ steps); we have to exclude those that contain a part
below the x-axis. For any such path, consider the first time that the level −1 is reached. If
we reflect the entire path up to this point about the line y = −1, we obtain a path between
(0,−2) and (2n, 0) that consists of n+ 1 ↗ steps and n− 1 ↘ steps (Figure 7.6).

Figure 7.6: The reflection principle.

This process can be reversed: given any such path between (0,−2) and (2n, 0), consider
the first time that the level −1 is reached (it must be, by continuity), and reflect the path
up to this point. Therefore, the number of paths to be excluded is also exactly the number
of paths between (0,−2) and (2n, 0) consisting of n+ 1 ↗ steps and n− 1 ↘ steps. The
number of such paths is

(
2n
n+1

)
(by the same argument as before), so that we obtain the
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formula for the Catalan numbers once again:

Cn =

(
2n

n

)
−
(

2n

n+ 1

)
=

(2n)!

n!n!
− (2n)!

(n+ 1)!(n− 1)!

=
(n+ 1)(2n)!

(n+ 1)!n!
− n(2n)!

(n+ 1)!n!
=

(2n)!

(n+ 1)!n!
=

1

n+ 1

(
2n

n

)
.

This idea can even be generalised: the so-called Ballot problem can be stated as follows:
suppose that two candidates (Alice and Bob) at an election receive n and m votes, respec-
tively, where n ≥ m. Altogether, the counting (that is done vote by vote) can thus proceed
in
(
n+m
n

)
ways, and each of them corresponds to a path that consists of n ↗ steps and m

↘ steps that connects (0, 0) and (n+m,n−m). In this setting, the y-coordinate describes
Alice’s current lead. How many of these paths stay above the x-axis (so that Bob never
leads throughout the counting procedure)? The argument that was used for Dyck paths is
applicable again, to the effect that one obtains the Ballot number

Bn,m =

(
n+m

n

)
−
(
n+m

n+ 1

)
=

(n+m)!

n!m!
− (n+m)!

(n+ 1)!(m− 1)!

=
(n+ 1)(n+m)!

(n+ 1)!m!
− m(n+m)!

(n+ 1)!m!
=

(n−m+ 1)(n+m)!

(n+ 1)!m!
=

n−m+ 1

n+ 1

(
n+m

n

)
.

The Catalan number Cn arises as the special case m = n. The fraction n−m+1
n+1

can be
interpreted as the probability that Alice leads all the way through.

7.2 Stirling cycle numbers

Permutations can be regarded as functions from {1, 2, . . . , n} to itself. For instance, the
permutation 3 9 4 7 5 2 8 1 6 can be seen as a function with σ(1) = 3, σ(2) = 9, σ(3) = 4,
. . . . Representing the permutation by arrows pointing from k to σ(k), one ends up with
a natural decomposition into cycles (see Figure 7.7) that is particularly useful if the set
of permutations of {1, 2, . . . , n} is regarded as a group (the so-called symmetric group) in
the sense of abstract algebra. Permutations are often written as a collection of cycles; for
instance, the partition shown in Figure 7.7 is written as (13478)(296)(5).
Note that derangements (as discussed in Example 3.5) are precisely those permutations
that do not have cycles of length 1. If C is the family of cycles and P the family of
permutations, then this decomposition means that

P = Set(C).

Recall that the exponential generating functions for cycles (Example 6.6) and permutations
are C(x) = − log(1−x) and P (x) = 1

1−x
, respectively, in agreement with the fact that one

must have P (x) = exp(C(x)) by the above correspondence. Let us now ask the following
question: how many permutations of 1, 2, . . . , n have exactly k cycles? This number is
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1

3

4

78

2

96

5

Figure 7.7: The cycle representation.

known as the Stirling cycle number or (unsigned) Stirling number of the first kind and is
denoted by

[
n
k

]
. Consider the case n = 3:

123, 132, 213, 231, 312, 321.

The number of cycles is 3, 2, 2, 1, 1 and 2 respectively. Therefore,
[
3
1

]
= 2,

[
3
2

]
= 3 and[

3
3

]
= 1. Let us collect a few properties:

Theorem 7.4 The Stirling cycle numbers
[
n
k

]
satisfy the following properties:

1.

[
n

1

]
= (n− 1)!,

[
n

n

]
= 1 and

[
n

n− 1

]
=

(
n

2

)
for any n ≥ 1,

2.
n∑

k=1

[
n

k

]
= n!,

3.

[
n

k

]
= (n− 1)

[
n− 1

k

]
+

[
n− 1

k − 1

]
.

Proof:

1. The first formula follows from the discussion in Example 6.6. If there are n cycles,
then each of the numbers 1, 2, . . . , n must be a fixed point (that is, it is mapped to
itself), so that there is only one possible permutation; this implies

[
n
n

]
= 1. Finally,

n−1 cycles are only possible if there are n−2 fixed points and one cycle of length 2.
Therefore,

[
n

n−1

]
=
(
n
2

)
, which is exactly the number of choices for the two elements

that form the 2-cycle.

2. The sum of all the
[
n
k

]
must obviously be the total number of permutations, which is

n!.

3. A permutation of 1, 2, . . . , n can be obtained from a permutation of 1, 2, . . . , n− 1 in
two different ways:
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• By inserting n into one of the cycles. A cycle of length r has r possible places
of insertion. Since the sum of the cycle lengths must be the total number
of elements (which is n − 1), there are n − 1 possible positions where n can
be inserted; the number of cycles remains the same, so this gives rise to the
summand (n− 1)

[
n−1
k

]
.

• By adding n as a single cycle of length 1; this increases the number of cycles by
1, which explains the summand

[
n−1
k−1

]
.

Summing the two contributions, one obtains the formula. �
The recursion for the Stirling cycle numbers can be used to produce a table in analogy to
Pascal’s triangle:

1
1 1

2 3 1
6 11 6 1

24 50 35 10 1
120 274 225 85 15 1

720 1764 1624 735 175 21 1

The Stirling cycle numbers have an interesting generating function that can also be derived
from the recursion or by means of the symbolic method: the cycle decomposition implies
that permutations with exactly k cycles can be specified by

Pk = Setk(C).

Therefore, the associated exponential generating function is

∞∑
n=0

[
n

k

]
xn

n!
=

1

k!
(− log(1− x))k. (7.1)

Now consider the bivariate generating function

∞∑
k=0

∞∑
n=0

[
n

k

]
ukxn

n!
=

∞∑
k=0

1

k!
uk(− log(1− x))k = e−u log(1−x) = (1− x)−u,

where we set [
n

0

]
=

{
1 n = 0,

0 otherwise.

for convenience, so that (7.1) remains correct for k = 0. This shows that in the expansion
of the bivariate function (1− x)−u, the coefficient of ukxn is the Stirling cycle number

[
n
k

]
.

If we extract the coefficient of xn (making use of the binomial series), we obtain

n∑
k=0

[
n

k

]
uk = n![xn](1− x)−u = n! · (−1)n

(
−u
n

)
= n! ·

(
n+ u− 1

n

)
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= n! · (n+ u− 1)(n+ u− 2) . . . u

n!
= u(u+ 1) . . . (u+ n− 1) = un,

which is called the rising factorial of u (read: “u to the n rising”). Check, for instance,
that

u(u+ 1)(u+ 2)(u+ 3) = 6u+ 11u2 + 6u3 + u4,

in agreement with the table above.

7.3 Stirling partition numbers and Bell numbers

The Stirling partition numbers stem from a different yet related question: in how many
ways can the numbers 1, 2, . . . , n (or any other set of size n) be partitioned into k groups?
This number is called the Stirling partition number (or Stirling number of the second kind){
n
k

}
. For instance, there are 7 ways to split the numbers 1, 2, 3, 4 into 2 groups (this is

known as a set partition):

{1}, {2, 3, 4}; {2}, {1, 3, 4}; {3}, {1, 2, 4}; {4}, {1, 2, 3};
{1, 2}, {3, 4}; {1, 3}, {2, 4}; {1, 4}, {2, 3}.

Hence,
{
4
2

}
= 7. The following theorem collects some of the important properties of the

Stirling partition numbers:

Theorem 7.5 The Stirling partition numbers
{
n
k

}
satisfy the following properties:

1.

{
n

1

}
=

{
n

n

}
= 1 and

{
n

n− 1

}
=

(
n

2

)
for any n ≥ 1,

2.

{
n

k

}
= k

{
n− 1

k

}
+

{
n− 1

k − 1

}
.

Proof: The proofs are very similar to those for Theorem 7.4.

1. The first formula is obvious, since we don’t have any choice if either k = 1 (all
elements belong to one group) or k = n (each group is a singleton). Furthermore,{

n
n−1

}
=
(
n
2

)
, since there are

(
n
2

)
ways to choose the two elements that form the group

of size 2 (all others being singletons, compare the proof of Theorem 7.4).

2. A set partition of 1, 2, . . . , n can be obtained from a set partition of 1, 2, . . . , n− 1 in
two different ways:

• By adding n to one of the existing groups; this does not change the number of
groups, so that we obtain the summand k

{
n−1
k

}
(there are k groups to add the

element n to, hence the factor k).

• By adding n as a single group of length 1; this increases the number of groups
by 1, which explains the summand

{
n−1
k−1

}
.
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Summing the two contributions, one obtains the formula. �
Again, one can conveniently compute the numbers in a triangular scheme:

1
1 1

1 3 1
1 7 6 1

1 15 25 10 1
1 31 90 65 15 1

1 63 301 350 140 21 1

The horizontal row sums 1, 2, 5, 15, 52, 203, 877, . . . are known as the Bell numbers. The
Bell number Sn gives the total number of set partitions of a set of n elements. Its generating
function can be determined quite easily by the symbolic method: a set partition is a set of
non-empty sets; hence, if ⊙ stands for a single labelled atom, one has

S = Set(Set≥1(⊙))

for the family S of set partitions. This yields the exponential generating function

S(x) =
∞∑
n=0

Snx
n

n!
= ee

x−1

Here, S0 is defined to be 1 for convenience. The generating function can be used to
determine a recursion for the Bell numbers: differentiate with respect to x to obtain

S ′(x) =
∞∑
n=1

Snx
n−1

(n− 1)!
= ex · eex−1.

Some manipulations yield

S ′(x) =
∞∑
n=0

Sn+1x
n

n!
=

(
∞∑
k=0

xk

k!

)(
∞∑

m=0

Smx
m

m!

)

=
∞∑
n=0

(
n∑

k=0

Sn−k

k!(n− k)!

)
xn.

Comparing coefficients, we find

Sn+1 =
n∑

k=0

(
n

k

)
Sn−k =

n∑
k=0

(
n

k

)
Sk.

This can be interpreted as follows: in order to produce a set partition of 1, 2, . . . , (n+ 1),
choose the k elements (0 ≤ k ≤ n) that form a group with the element 1. The remaining
n− k form a set partition of their own.

Alternatively, Bell numbers can also be computed from Dobinski’s formula:
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Theorem 7.6 The Bell number Sn is given by

Sn =
1

e

∞∑
k=0

kn

k!
.

Proof: Making use of the exponential generating function once again, we find

Sn = n![xn]ee
x−1 =

n!

e
[xn]ee

x

=
n!

e
[xn]

∞∑
k=0

ekx

k!
=

n!

e

∞∑
k=0

[xn]
ekx

k!

=
n!

e

∞∑
k=0

kn

n!k!
=

1

e

∞∑
k=0

kn

k!
.

This proves the formula. �
Let us return to the Stirling partition numbers again. If we restrict ourselves to the class
Sk of set partitions composed of exactly k subsets, we have

Sk = Setk(Set≥1(⊙)),

so that
∞∑
n=0

{
n

k

}
xn

n!
=

1

k!
(ex − 1)k. (7.2)

This can be used to derive an explicit formula for the Stirling partition numbers:

Theorem 7.7 The Stirling partition number
{
n
k

}
is given by{

n

k

}
=

1

k!

k∑
m=0

(−1)k−m

(
k

m

)
mn.

Proof: Expand the right hand side of (7.2) by means of the binomial theorem:{
n

k

}
= n![xn]

1

k!
(ex − 1)k =

n!

k!
[xn]

k∑
m=0

(
k

m

)
emx(−1)k−m

=
n!

k!

k∑
m=0

(−1)k−m

(
k

m

)
[xn]emx =

n!

k!

k∑
m=0

(−1)k−m

(
k

m

)
mn

n!

=
1

k!

k∑
m=0

(−1)k−m

(
k

m

)
mn,

which proves the claim. �
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The Stirling partition numbers also have a simple bivariate generating function (compare
the analogous considerations for Stirling cycle numbers):

∞∑
k=0

∞∑
n=0

{
n

k

}
ukxn

n!
=

∞∑
k=0

1

k!
uk(ex − 1)k = eu(e

x−1),

where we define {
n

0

}
=

{
1 n = 0

0 otherwise

once again for convenience, so that (7.2) remains correct for k = 0. Just like the Stirling
cycle numbers, the Stirling partition numbers also occur in an interesting relation between
powers and factorials:

Theorem 7.8 The Stirling partition numbers satisfy the identity

n∑
k=0

{
n

k

}
xk = xn

for n ≥ 0 and arbitrary x.

Proof: By induction on n. The statement is trivial for n = 0 or n = 1. Now suppose that

n−1∑
k=0

{
n− 1

k

}
xk = xn−1.

Then we have

n∑
k=0

{
n

k

}
xk =

n∑
k=0

(
k

{
n− 1

k

}
+

{
n− 1

k − 1

})
xk

=
n−1∑
k=0

k

{
n− 1

k

}
xk +

n∑
k=1

{
n− 1

k − 1

}
xk

=
n−1∑
k=0

k

{
n− 1

k

}
xk +

n−1∑
k=0

{
n− 1

k

}
xk+1

=
n−1∑
k=0

{
n− 1

k

}(
kxk + xk+1

)
=

n−1∑
k=0

{
n− 1

k

}(
kxk + (x− k)xk

)
= x

n−1∑
k=0

{
n− 1

k

}
xk
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= x · xn−1 = xn,

which completes the induction. �
Let us finally mention that Stirling partition numbers also arise in the counting of surjec-
tions : a surjection is a function from a set X to a set Y that is onto, i.e., every value y ∈ Y
is taken on at least once. One has the following theorem:

Theorem 7.9 The number of surjections from a set X of size n to a set Y of size k is
k!
{
n
k

}
.

Proof: Assume, without loss of generality, that Y = {1, 2, . . . , k}, and consider a surjection
f . The sets X1, X2, . . . , Xk that are defined by

Xi = {x ∈ X : f(x) = i}

induce a set partition on X. To each set partition, one has k! corresponding surjections
(since the k subsets can be arranged in any order). This correspondence can be reversed
(an ordered set partition corresponds to a surjection in a unique way), so that the number
of surjections from X to Y has to be the same as the number of ordered set partitions
comprising k subsets. �
Remark: This theorem complements Theorem 1.3, which counts injections, i.e., one-to-
one functions (every value is taken on at most once).

7.4 Eulerian numbers

If we regard a permutation of 1, 2, . . . , n as a sequence x1, x2, . . . , xn, then we can ask how
many times this sequence goes up (a so-called “ascent”, xj > xj−1) and how many times
it goes down (a “descent”, xj < xj−1). The number of permutations of 1, 2, . . . , n with
exactly k ascents is the Eulerian number that is denoted by

⟨
n
k

⟩
. Consider the following

list of permutations of 1, 2, 3:

123, 132, 213, 231, 312, 321.

The number of ascents is, respectively, 2, 1, 1, 1, 1, and 0. Therefore, we have
⟨
3
0

⟩
=
⟨
3
2

⟩
= 1

and
⟨
3
1

⟩
= 4. The following theorem summarizes some of the elementary properties of

Eulerian numbers:

Theorem 7.10 The Eulerian numbers
⟨
n
k

⟩
satisfy the following properties:

1.

⟨
n

0

⟩
=

⟨
n

n− 1

⟩
= 1,

2.

⟨
n

k

⟩
=

⟨
n

n− 1− k

⟩
for any 0 ≤ k ≤ n− 1,
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3.
n−1∑
k=0

⟨
n

k

⟩
= n!,

4.

⟨
n

k

⟩
= (k + 1)

⟨
n− 1

k

⟩
+ (n− k)

⟨
n− 1

k − 1

⟩
.

Proof:

1. If there are are no ascents or only ascents (and no descents), then there is only one
possibility: the permutation has to be 12 . . . n (n . . . 21, respectively).

2. Reversing a permutation with k ascents, we obtain a permutation with k descents
(and thus n− 1− k ascents), which proves the formula.

3. The sum of all the
⟨
n
k

⟩
must be the total number of permutations of 1, 2, . . . , n, which

is n!.

4. This is the trickiest part of the theorem: a permutation of 1, 2, . . . , n is obtained by
inserting the number n at some position in a permutation of 1, 2, . . . , n − 1. If it
is not inserted in first position, it gives rise to exactly one ascent and one descent.
Therefore, a permutation with k ascents can be obtained in two ways:

• Given a permutation of 1, 2, . . . , n− 1 with k ascents, insert n at the beginning
or at one of the k ascents, or

• given a permutation of 1, 2, . . . , n− 1 with k − 1 ascents, insert n at the end or
at one of the n− k − 1 descents.

This yields the stated formula. �
The recursive formula in 4. can be used to determine

⟨
n
k

⟩
for small values of n and k, as

shown in the following configuration (called Euler’s triangle in analogy to Pascal’s triangle):

1
1 1

1 4 1
1 11 11 1

1 26 66 26 1
1 57 302 302 57 1

1 120 1191 2416 1191 120 1

One important property of the Eulerian numbers is the fact that they occur in the gener-
ating function of n-th powers:

Theorem 7.11 The generating function of n-th powers is given by

∞∑
m=0

mnxm = (1− x)−n−1

n−1∑
k=0

⟨
n

k

⟩
xk+1.
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Proof: Consider the polynomial

Pn(x) =
n−1∑
k=0

⟨
n

k

⟩
xk+1.

By means of the recursion for the Eulerian numbers, we find

Pn(x) =
n−1∑
k=0

(
(k + 1)

⟨
n− 1

k

⟩
+ (n− k)

⟨
n− 1

k − 1

⟩)
xk+1

=
n−2∑
k=0

(k + 1)

⟨
n− 1

k

⟩
xk+1 +

n−1∑
k=1

(n− k)

⟨
n− 1

k − 1

⟩
xk+1

=
n−2∑
k=0

(k + 1)

⟨
n− 1

k

⟩
xk+1 +

n−2∑
k=0

(n− k − 1)

⟨
n− 1

k

⟩
xk+2

= (x− x2)
n−2∑
k=0

⟨
n− 1

k

⟩
(k + 1)xk + nx

n−2∑
k=0

⟨
n− 1

k

⟩
xk+1

= (x− x2)
d

dx

(
n−2∑
k=0

⟨
n− 1

k

⟩
xk+1

)
+ nxPn−1(x)

= x(1− x)P ′
n−1(x) + nxPn−1(x).

Now divide by (1− x)n+1:

Pn(x)

(1− x)n+1
=

xP ′
n−1(x)

(1− x)n
+

nxPn−1(x)

(1− x)n+1
= x

d

dx

Pn−1(x)

(1− x)n
(7.3)

by virtue of the product rule. The rest is an easy induction: If we set P0(x) = x for
convenience, (7.3) remains true for n = 1, and we have

P0(x)

1− x
=

x

1− x
=

∞∑
m=1

xn =
∞∑

m=1

m0xm

since this is just a geometric series. Assuming that Theorem 7.11 holds for n− 1, we now
deduce that

Pn(x)

(1− x)n+1
= x

d

dx

Pn−1(x)

(1− x)n+1
= x

d

dx

∞∑
m=1

mnxm = x

∞∑
m=1

mn ·mxm−1 =
∞∑

m=1

mn+1xm,

which completes the induction. �

Corollary 7.12 The Eulerian numbers can be determined by means of the explicit formula⟨
n

k

⟩
=

k∑
l=0

(−1)l
(
n+ 1

l

)
(k + 1− l)n.
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Proof: By Theorem 7.11,
⟨
n
k

⟩
is the coefficient of xk+1 in (1− x)n+1

∑∞
m=1m

nxm, which is
precisely

k∑
l=0

(−1)l
(
n+ 1

l

)
(k + 1− l)n,

making use of the coefficient formula for the product of two power series (in this case,
(1− x)n+1 =

∑n+1
l=0

(
n+1
l

)
(−x)l and

∑∞
m=1m

nxm), see Theorem 5.4. �

7.5 Zigzag numbers

Let us now consider a special class of permutations that are known as alternating per-
mutations or zigzag permutations : such a permutation has the property that ascents and
descents are alternating, as in

9 5 7 1 8 4 6 2 3,

which is an alternating permutation of {1, 2, . . . , 9}. How many such permutations are
there? Without loss of generality, we may assume that an alternating permutation starts
with a descent (clearly, the number of alternating permutations starting with an ascent
is exactly the same as the number of alternating permutations starting with a descent).
Now we can decompose these permutations: to the left of the number 1, there must be
an alternating permutation of odd length (in fact, it can be any alternating permutation,
since the element 1 automatically guarantees a descent followed by an ascent), while there
can be any alternating permutation (starting with a descent) to the right of the element
1, and the length of this permutation is even or odd according to the length of the entire
permutation:

9 5 7 1 8 4 6 2 3 7→ (9 5 7)⃝1 (8 4 6 2 3)

Let us write sn for the number of alternating permutations of even length n and tn for the
number of alternating functions of odd length (sn = 0 if n is odd, and tn = 0 if n is even).
Then the decomposition argument presented above shows that

sn =
n−1∑
k=0

(
n− 1

k

)
tksn−1−k,

where the summation index k is the number of elements to the left of the number 1 (so
that

(
n−1
k

)
is exactly the number of ways to distribute the numbers 2, 3, . . . , n accordingly).

Here, one has to define s0 = 1. Analogously,

tn =
n−1∑
k=0

(
n− 1

k

)
tktn−1−k

for n > 1 and t1 = 1. If S(x) and T (x) are the exponential generating functions of sn and
tn, then this translates to

sn = (n− 1)![xn−1]S(x)T (x)
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and
tn = (n− 1)![xn−1]T (x)2

for n > 1. This is in agreement with the fact that we are forming pairs of alternating per-
mutations whose combined size is n−1; compare the discussion of products of exponential
generating functions in Section 6.2. Now note that

S ′(x) =
d

dx

∞∑
n=0

sn
n!
xn =

∞∑
n=1

sn
(n− 1)!

xn−1,

so that the coefficient of xn−1 in S ′ is exactly the coefficient of S(x)T (x), implying S ′(x) =
S(x)T (x) and analogously T ′(x) = 1 + T (x)2 (in this case, we have to take account of the
fact that the equation for tn only holds for n > 1). The differential equation

T ′ = 1 + T 2

is separable: one finds ∫
dT

1 + T 2
=

∫
1 dx

or
arctanT = x+ C

and finally T (x) = tanx (the integration constant C has to be zero since T (0) = t0 = 0).
Now S(x) = sec x follows in very much the same way. The coefficients in the Taylor
expansion of tan x at x = 0,

tanx = x+
2x3

3!
+

16x5

5!
+

272x7

7!
+

7936x9

9!
+ . . . ,

which count alternating permutations of odd length, are known as the tangent numbers or
zag numbers ; for instance, there are 7936 alternating permutations of length 9. Accordingly,
the coefficients in the expansion

secx = 1 +
x2

2!
+

5x4

4!
+

61x6

6!
+

1385x8

8!
+ . . .

are the secant numbers or zig numbers. These numbers also arise in other combinatorial
problems: for instance, the study of binary increasing trees leads to these numbers; a
binary increasing tree is a binary tree (all nodes have either two or no children) whose
nodes are labelled from 1 to n in such a way that labels are increasing as one moves down
from the root, see Figure 7.8.
Trees of this form occur in computer science in the analysis of algorithms (such as “Quick-
sort”). The decomposition (left subtree)-root-(right subtree) is immediate and provides
a correspondence between binary increasing trees and alternating permutations; the tree
shown in Figure 7.8 corresponds to the alternating permutation 9 5 7 1 8 4 6 2 3.
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1

2

34

5

6

7

8

9

Figure 7.8: An increasing binary tree.

Let us finally describe an efficient way to compute the zigzag numbers: If sn,r and tn,r
denote alternating permutations of even and odd length respectively whose last element is
r. For odd n (with an ascent at the end), the permutation that remains if the last element
r is dropped can have any number between 1 and r− 1 at the end. This yields the formula

tn,r =
r−1∑
k=1

sn−1,k.

The same argument for even n shows that

sn,r =
n−1∑
k=r

tn−1,k.

Subtracting the formulas for tn,r and tn,r−1 yields

tn,r = tn,r−1 + sn−1,r−1

with initial value tn,1 = 0 unless n = 1. Likewise,

sn,r = sn,r+1 + tn−1,r

with initial value sn,n = 0. Now the numbers sn,r and tn,r (and thus also sn and tn) can be
determined from the following triangular scheme:

1
1 ← 0

0 → 1 → 1
2 ← 2 ← 1 ← 0

0 → 2 → 4 → 5 → 5
16 ← 16 ← 14 ← 10 ← 5 ← 0

0 → 16 → 32 → 46 → 56 → 61 → 61
272 ← 272 ← 256 ← 224 ← 178 ← 122 ← 61 ← 0
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7.6 Bernoulli numbers

The Bernoulli numbers are typically defined by their exponential generating function

∞∑
n=0

Bn

n!
xn =

x

ex − 1
.

Their importance lies in the fact that they occur in various formulas in analysis, one of
which is treated here. First of all, let us note that a recursion for the Bernoulli numbers
can be found by multiplying by ex − 1 =

∑∞
n=1

xn

n!
and comparing coefficients:(

∞∑
n=1

xn

n!

)(
∞∑
n=0

Bn

n!
xn

)
= x

and thus
n∑

k=1

(
n

k

)
Bn−k =

{
1 n = 1,

0 otherwise.

(Recall the rule for multiplication of exponential generating functions, see Section 6.2).
Since

(
n
k

)
=
(

n
n−k

)
, we can rewrite the formula above (interchange k and n− k) as

n−1∑
k=0

(
n

k

)
Bk =

n−1∑
k=0

(
n

n− k

)
Bk =

{
1 n = 1,

0 otherwise.
(7.4)

This can be used to determine the Bernoulli numbers recursively: n = 1 in the above
formula yields B0 = 1, then n = 2 yields B0+2B1 = 0 so that B1 = −1

2
, etc. The first few

values are

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B3 = 0, B4 = −

1

30
, B5 = 0, . . .

All odd-indexed Bernoulli numbers, except for B1, are actually 0. This is due to the fact
that

x

ex − 1
+

x

2
=

x

2
· e

x + 1

ex − 1
=

x

2
· e

x/2 + e−x/2

ex/2 − e−x/2
=

x

2
coth

x

2

is an even function. This identity also shows that the Bernoulli numbers occur in the power
series of the cotangent.

Consider now the sum sm(n) =
∑n

k=1 k
m; it is well known that s1(n) = n(n+1)

2
, s2(n) =

n(n+1)(2n+1)
6

, and s3(n) =
n2(n+1)2

4
. Is there always an explicit formula for sm(n), regardless

of the value of m? The following shows that this is indeed the case:

Theorem 7.13 The sum of the first n− 1 m-th powers (m ≥ 1), sm(n − 1) =
∑n−1

k=1 k
m,

can be determined by means of the formula

sm(n− 1) =
1

m+ 1

(
m∑
k=0

(
m+ 1

k

)
Bkn

m+1−k

)
.
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Remark: The polynomial Bm(y) =
∑m

k=0

(
m
k

)
Bky

m−k is known as the m-th Bernoulli
polynomial. It satisfies Bm(0) = Bm (by definition) as well as

Bm(1) =

{
Bm + 1 m = 1,

Bm otherwise,

by equation (7.4). Theorem 7.13 can now be written as sm(n − 1) = Bm+1(n)−Bm+1

m+1
. Of

course, sm(n) = sm(n− 1) + nm, so there is also a closed formula for sm(n).

Proof: Consider the exponential generating function of sm(n− 1):

S(x) =
∞∑

m=0

sm(n− 1)

m!
xm =

∞∑
m=0

n−1∑
k=1

kmxm

m!

Interchanging the order of summation, we find

S(x) =
n−1∑
k=1

∞∑
m=0

kmxm

m!
=

n−1∑
k=1

ekx =
enx − ex

ex − 1

by means of the formula for a finite geometric series. Compare this to the exponential
generating function for Bernoulli polynomials:

∞∑
m=0

Bm(y)

m!
xm =

∞∑
m=0

m∑
k=0

1

m!

(
m

k

)
Bky

m−kxm =
∞∑
k=0

∞∑
m=k

1

k!(m− k)!
Bky

m−kxm

=
∞∑
k=0

Bkx
k

k!

∞∑
m=k

1

(m− k)!
ym−kxm−k =

∞∑
k=0

Bkx
k

k!

∞∑
m=0

1

m!
ymxm

=
∞∑
k=0

Bkx
k

k!
exy =

xexy

ex − 1
.

Now we can extract the m-th coefficient from S(x):

sm(n− 1) = m![xm]S(x) = m![xm]
enx − ex

ex − 1
= m![xm+1]

x(enx − ex)

ex − 1

= m!

(
[xm+1]

xenx

ex − 1
− [xm+1]

xex

ex − 1

)
= m!

(
Bm+1(n)

(m+ 1)!
− Bm+1(1)

(m+ 1)!

)
=

Bm+1(n)−Bm+1

m+ 1
,

which proves the theorem. �

Example 7.1 For m = 5, we find the formula

s5(n) = n5 + s5(n− 1) = n5 +
1

6

(
5∑

k=0

(
6

k

)
Bkn

6−k

)
= n5 +

1

6

(
n6 − 3n5 +

5

2
n4 − 1

2
n2

)
=

2n6 + 6n5 + 5n4 − n2

12
=

n2(n+ 1)2(2n2 + 2n− 1)

12
.
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Remark: Let us only mention one more application of the Bernoulli numbers: the series∑∞
n=1 n

−s is known to converge for any s > 1; this function is known as the zeta function
ζ(s). For even positive integers, there is an explicit formula for the zeta function, namely

ζ(2n) =
(−1)n−1(2π)2nB2n

2(2n)!
.

In particular, ζ(2) = π2

6
, ζ(4) = π4

90
, ζ(6) = π6

945
, etc. Furthermore, they are related to the

tangent numbers defined in Section 7.5 by the formula

Bn = (−1)n/2−1 n

4n − 2n
tn−1

for even n > 0.



Chapter 8

Trees and Lagrange inversion

Binary trees and plane trees, as encountered in Section 7.1, have the common property
that their construction can be recursively defined as “root + some sequence of subtrees”.
This is a very general principle that holds for other interesting families of trees as well.
Let us consider two more, namely d-ary trees and Cayley trees (labelled trees).

d-ary trees

A straightforward generalisation of binary trees is to consider d-ary trees, defined by the
property that every vertex has either d children or no children at all (see Figure 8.1 for an
example in the case d = 4). The same arguments that led to the functional equation for
the generating function of binary trees now yield

T (x) = x+ xT (x)d = x(1 + T (x)d),

if T (x) is the generating function for d-ary trees. For general d, this equation does not
have an explicit solution any more. However, it is still possible to determine the coefficients
from such a functional equation, as we will see.

Figure 8.1: A 4-ary tree.

63
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One can also consider pruned d-ary trees (children can be attached to nodes in any of d
different positions, see Figure 8.2 for an example in the case d = 3). This gives rise to a
functional equation of the form

T (x) = x(1 + T (x))d

for the generating function T (x).

Figure 8.2: A pruned ternary tree.

Cayley trees

Cayley trees are rooted trees whose nodes are labelled, see Figure 8.3. The order of children
does not matter in this context, one can think of the children as freely dangling from their
parent node in space, in no particular order. In the language of Section 6.2, this can be
described as

T = ⊙× Set(T ),

where T is the family of Cayley trees (such a tree consists of a root ⊙ and a set of subtrees).
Translating to the exponential generating function T (x), we find

T (x) = xeT (x).

Note that the generating function T (x) of any of the classes of trees (d-ary, pruned d-ary,
plane, Cayley) that we considered satisfies a functional equation of the type

T (x) = xΦ(T (x))

for some function Φ. The coefficients of such a generating function can be determined by
means of a procedure that is known as Lagrange inversion.
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Figure 8.3: A Cayley tree.

Theorem 8.1 (Lagrange inversion formula) The coefficient of xn in an implicitly de-
fined function T (x) = xΦ(T (x)) is given by

[xn]T (x) =
1

n
[tn−1]Φ(t)n

if Φ(t) has a power series expansion Φ(t) =
∑∞

k=0 akt
k with a0 ̸= 0. More generally,

[xn]T (x)k =
k

n
[tn−k]Φ(t)n.

Proof: In the following, we will work with power series that are allowed to contain negative
powers:

b(t) =
∞∑

n=−c

bnt
n

for some c ≥ 0. Note that the coefficient of t−1 in the derivative of such a power series is
always zero, since

b′(t) =
∞∑

n=−c

nbnt
n−1,

so that the coefficient of t−1 is exactly 0 · b0 = 0. This is exploited in the following
calculations: first of all, let the power series expansion of T (x)k be

T (x)k =
∞∑

m=k

smx
m.

Note that, since T (x) = a0x+ . . . by definition, the first non-zero coefficient is that of xk.

Since x = F (T (x)) = T (x)
Φ(T (x))

, we have

tk =
∞∑

m=k

smF (t)m,



CHAPTER 8. TREES AND LAGRANGE INVERSION 66

substituting t for T (x). Differentiate both sides to obtain

ktk−1 =
∞∑

m=k

msmF (t)m−1F ′(t),

and divide by F (t)n:

ktk−1

F (t)n
=

∞∑
m=k

msmF (t)m−n−1F ′(t).

Now we would like to take the coefficients of t−1 on both sides: since

F (t)m−n−1F ′(t) =
d

dt

(
1

m− n
F (t)m−n

)
for m ̸= n, this coefficient must be zero by the above considerations for all summands
except for the one that corresponds to m = n. Therefore, we have

[t−1]
ktk−1

F (t)n
= [t−1]

∞∑
m=k

msmF (t)m−n−1F ′(t) = [t−1]nsn
F ′(t)

F (t)
. (8.1)

Now note that

F ′(t)

F (t)
=

(t/Φ(t))′

t/Φ(t)
=

1/Φ(t)− tΦ′(t)/Φ(t)2

t/Φ(t)
=

1

t
− Φ′(t)

Φ(t)
.

By our assumptions, Φ′(t)
Φ(t)

is just an ordinary power series without negative coefficients

(since Φ(0) = a0 ̸= 0); therefore, the coefficient of t−1 in F ′(t)
F (t)

is exactly 1. Now (8.1) yields

[t−1]
ktk−1

F (t)n
= nsn

or

sn =
1

n
[t−1]

ktk−1

F (t)n
=

1

n
[t−1]ktk−n−1Φ(t)n =

k

n
[tn−k]Φ(t)n,

which is what we wanted to prove. �
Remark: The second formula in Theorem 8.1 for powers of T (x) is known as the Lagrange-
Bürmann formula. It can be further extended to functions of the form h(T (x)), where h(t)
can be any function with a power series expansion h(t) =

∑∞
k=0 hkt

k:

[xn]h(T (x)) = [xn]
∞∑
k=0

hkT (x)
k =

∞∑
k=0

khk

n
[tn−k]Φ(t)n

=
∞∑
k=0

khk

n
[tn−1]tk−1Φ(t)n =

1

n
[tn−1]

(
∞∑
k=0

khkt
k−1

)
Φ(t)n

=
1

n
[tn−1]h′(t)Φ(t)n.

Let us apply the Lagrange inversion formula to the various families of trees now. We have
the following theorem:
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Theorem 8.2 The number of d-ary trees with dn + 1 nodes (n ≥ 0) is the generalised
Catalan number

1

(d− 1)n+ 1

(
dn

n

)
,

which is also the number of pruned d-ary trees with n vertices (n ≥ 1). Furthermore, the
number of Cayley trees with n nodes is nn−1 (n ≥ 1).

Proof: The number of nodes in a d-ary tree must be of the form dn+1 (a proof by induction
is not difficult), so that only this case needs to be considered. Since the generating function
T (x) satisfies T (x) = x(1 + T (x)d), the Lagrange inversion formula yields

[xdn+1]T (x) =
1

dn+ 1
[tdn](1 + td)dn+1 =

1

dn+ 1
[tn](1 + t)dn+1 =

1

dn+ 1

(
dn+ 1

n

)
=

1

dn+ 1
· (dn+ 1)!

n!((d− 1)n+ 1)!
=

(dn)!

n!((d− 1)n+ 1)!

=
1

(d− 1)n+ 1
· (dn)!

n!((d− 1)n)!
=

1

(d− 1)n+ 1

(
dn

n

)
.

Likewise, the functional equation T (x) = (1 + T (x))d for pruned d-ary trees yields

[xn]T (x) =
1

n
[tn−1](1 + t)dn =

1

n

(
dn

n− 1

)
=

1

n
· (dn)!

(n− 1)!((d− 1)n+ 1)!

=
(dn)!

n!((d− 1)n+ 1)!
=

1

(d− 1)n+ 1
· (dn)!

n!((d− 1)n)!
=

1

(d− 1)n+ 1

(
dn

n

)
,

as it should be. Finally, we can use the functional equation T (x) = eT (x) to obtain the
number of Cayley trees with n nodes:

[xn]T (x) =
1

n
[tn−1](et)n =

1

n
[tn−1]ent =

1

n
· nn−1

(n− 1)!
=

nn−1

n!
.

Note that, since we are dealing with an exponential generating function here, a factor 1
n!

occurs naturally. �
The last result concerning Cayley trees deserves more attention: consider labelled trees
that do not have a distinguished root (but the nodes are still labelled 1 to n); in graph-
theoretical terminology, a tree just is a connected acyclic graph (that is, there is no cycle
of nodes). It is clear that any labelled tree with n nodes can be rooted in n different
ways (at any of the nodes). Therefore, the number of labelled trees is 1

n
· nn−1 = nn−2,

which is known as Cayley’s formula. The first few terms in the resulting sequence are
1, 1, 3, 16, 125, . . .. There is a very elegant combinatorial proof for this formula by what is
known as Prüfer codes.

To any labelled tree with n nodes, we associate a sequence (a1, a2, . . . , an−2) of n − 2
numbers between 1 and n as follows:
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• Consider all leaves (i.e., nodes that have precisely one neighbour), and find the one
whose label is largest.

• The label of its neighbour is the first element a1 of our sequence.

• Remove the leaf and repeat the process with the remaining tree, until there are only
two vertices left.

Figure 8.4 shows an example of this procedure. The resulting Prüfer code is (3, 4, 1, 3).
The process can also be reversed quite easily: determine the largest number between 1 and
n that is not present in the code; the corresponding node must be a leaf and connected to
the node labelled a1; now remove a1 from the code and repeat this step.

1

2

3 4 5

6

1

2

3 4 5

1

2

3 4

1

2

3

CODE: 3

CODE: 34

CODE: 341

CODE: 3413

Figure 8.4: How to obtain the Prüfer code of a labelled tree.

Noting that there are exactly nn−2 possible codes, this shows that the number of labelled
trees must also be nn−2, which provides us with a different proof of Cayley’s formula.



Chapter 9

Integer partitions

A partition of an integer n is a representation of n as a sum of positive integers, called
the summands or parts of the partition. The order of the summands is irrelevant in this
context (as opposed to compositions). Typically, one writes the summands in decreasing
order; for instance, the partitions of 5 are

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Thus there are seven partitions of 5. The number of partitions of n is denoted by p(n)
(p(5) = 7, for instance).

9.1 Ferrers diagrams

A convenient way of visualising an integer partition is to draw what is known as a Ferrers
diagram. Each summand is represented by a horizontal line of dots, as in Figure 9.1.
Ferrers diagrams are frequently used in the study of the properties of partitions. Let, for
instance, the number of partitions of n whose largest summand is k be denoted by p(n, k),
and let the number of partitions of n whose largest summand is ≤ k be P (n, k). Then,
one has

p(n, k) = P (n− k, k).

This follows immediately from the following argument: removing the largest part k (which
is equivalent to removing the first row in the Ferrers diagram) yields a partition of n − k
whose summands are all at most equal to k. Furthermore, it is clear from the definition
that p(n) = P (n, n) and that

P (n, k) =
k∑

l=1

p(n, l).

These formulas can be used to determine p(n) recursively. However, a more efficient algo-
rithm is given in the following section.

A particularly useful operation on Ferrers diagrams is conjugation: reading a partition
by columns rather than by rows, one obtains the conjugate partition. For instance, the

69
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Figure 9.1: Ferrers diagram of the partition 9 + 7 + 5 + 5 + 2 + 1 + 1 + 1.

conjugate of the partition shown in Figure 9.1 is 8 + 5 + 4 + 4 + 4 + 2 + 2 + 1 + 1. Note
that the length (number of summands) of a partition is exactly the maximum (largest
summand) of its conjugate. The following theorem is an immediate consequence:

Theorem 9.1 The number of partitions of n whose largest summand is k is the same as
the number of partitions of n into exactly k summands.

9.2 Generating functions

Generating functions play an important role in the study of partitions as well. In the
language of Section 6.1, the summands in an integer partition form a multiset, so that we
obtain the following representations for the generating function P (x) =

∑∞
n=1 p(n)x

n:

P (x) =
∞∏
k=1

(1− xk)−1 = exp

(
∞∑
k=1

xk

k(1− xk)

)
.

The former representation as an infinite product is usually easier to work with. If one
considers partitions with the property that all summands are distinct, then this corresponds
exactly to the powerset construction, so that one obtains

Q(x) =
∞∏
k=1

(1 + xk) = exp

(
∞∑
k=1

(−1)k−1 xk

k(1− xk)

)
for the generating function Q(x) =

∑∞
n=0 q(n)x

n, where q(n) is the number of partitions of
n into distinct summands. More generally, one can consider partitions into elements from
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a prescribed set S. Then, the corresponding generating functions are

PS(x) =
∏
s∈S

(1− xs)−1

and
QS(x) =

∏
s∈S

(1 + xs)

for arbitrary partitions and partitions into distinct summands, respectively. This can be
used to treat so-called money changing problems :

Example 9.1 In how many ways can one give change of n Rand using R1, R2 or R5 coins?
This problem is equivalent to asking for the number of partitions of n into summands 1, 2
and 5. Hence the generating function is

C(x) =
1

(1− x)(1− x2)(1− x5)
.

This can be turned into an explicit formula (albeit complicated) by means of a partial
fraction decomposition: one has

C(x) =
13

40(1− x)
+

1

4(1− x)2
+

1

10(1− x)3
+

1

8(1 + x)
+

1 + x+ 2x2 + x3

5(1 + x+ x2 + x3 + x4)

=
13

40(1− x)
+

1

4(1− x)2
+

1

10(1− x)3
+

1− x

8(1− x2)
+

1 + x2 − x3 − x4

5(1− x5)

=
13

40

∞∑
n=0

xn +
1

4

∞∑
n=0

(n+ 1)xn +
1

10

∞∑
n=0

(n+ 1)(n+ 2)

2
xn

+
1− x

8

∞∑
n=0

x2n +
1 + x2 − x3 − x4

5

∞∑
n=0

x5n,

so that the number of possibilities is

n2 + 8n

20
+



1 n = 10k or n = 10k + 2,
11
20

n = 10k + 1,
7
20

n = 10k + 3 or n = 10k + 9,
3
5

n = 10k + 4 or n = 10k + 8,
3
4

n = 10k + 5 or n = 10k + 7,
4
5

n = 10k + 6,

and it can also be shown that this is precisely the nearest integer to (n+4)2

20
.

Generating functions also prove useful when it comes to partition identities, of which the
following theorem (due to Euler) is a famous example:
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Theorem 9.2 The number of partitions of an integer n in which all parts are odd equals
the number of partitions of n in which all parts are distinct.

Proof: The generating function for partitions into odd summands is

Podd(x) =
∞∏
n=1
n odd

(1− xn)−1 = (1− x)−1(1− x3)−1(1− x5)−1(1− x7)−1 . . .

We introduce some artificial factors:

Podd(x) =
(1− x2)(1− x4)(1− x6) . . .

(1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6) . . .

The factor 1 − x2n in the numerator can be written as (1 + xn)(1 − xn), and the second
factor also occurs in the denominator so that one can cancel. This yields

Podd(x) = (1 + x)(1 + x2)(1 + x3) . . . =
∞∏
n=1

(1 + xn),

which is exactly the generating function for partitions into distinct summands. �
Let us finally discuss another result of Euler known as the Pentagonal Number Theorem:

Lemma 9.3 The infinite product
∏∞

n=1(1− xn) can be written as

∞∏
n=1

(1− xn) = 1 +
∞∑
k=1

(−1)k
(
xk(3k−1)/2 + xk(3k+1)/2

)
.

Proof: The product
∏∞

n=1(1 − xn) resembles the generating function for partitions into
distinct summands, the only exception being the sign. If the product is expanded, then
every summand corresponds to a partition into distinct elements, and the sign is (−1)l,
where l is the number of summands. Therefore, we have to consider the difference qeven(n)−
qodd(n), where qeven(n) denotes the number of partitions of n into distinct even summands
and qodd(n) the number of partitions into distinct odd summands. This difference is exactly
the constant in the expansion of the product, and we will show that it is almost always 0,
except for two exceptional cases (n = k(3k−1)

2
and n = k(3k+1)

2
), by constructing a bijection

between the two.

To each partition λ, we assign two parameters called the base b(λ) and the slope s(λ). The
base is simply the smallest summand, while the slope is the length of the NE-SW diagonal
starting at the rightmost point of the top row (see Figure 9.2).

The bijection is now constructed as follows: if b(λ) ≤ s(λ), then we remove the base
and attach it to the slope (as shown in Figure 9.3, top) to obtain another partition; if
b(λ) > s(λ), then we reverse the process by removing the slope and appending it at the
end of the partition (Figure 9.3, bottom). This procedure reverses the parity of the length
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Figure 9.2: Base and slope.

Figure 9.3: Transferring the base or the slope.

of a partition (note that the length changes by 1), and so it produces a 1−1 correspondence
between partitions into an even number of distinct summands and partitions into an odd
number of distinct summands.

This procedure can only fail if the base and the slope overlap and if either b(λ) = s(λ)
(Figure 9.4, top) or b(λ) = s(λ)− 1 (Figure 9.4, bottom). In the first case, we do not get
a proper partition at all, in the second case, we do not get a partition into distinct parts.

The first exception occurs if λ is the partition (2k − 1) + (2k − 2) + . . . + k (so that
k = b(λ) = s(λ)); since

(2k − 1) + (2k − 2) + . . .+ k = k2 +
k−1∑
m=0

m = k2 +
k(k − 1)

2
=

k(3k − 1)

2
,

this means that qeven(n) − qodd(n) = (−1)k if n = k(3k−1)
2

(note that the length of the
exceptional partition is k).
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Figure 9.4: Exceptional cases.

Similarly, the second exception occurs if λ is the partition (2k) + (2k − 1) + . . . + (k + 1)
(so that k = b(λ)− 1 = s(λ)); since

(2k) + (2k − 1) + . . .+ (k + 1) = k2 +
k∑

m=1

m = k2 +
k(k + 1)

2
=

k(3k + 1)

2
,

this means that qeven(n)−qodd(n) = (−1)k if n = k(3k+1)
2

(again, the length of the exceptional
partition is k).

For all other n > 0, we have qeven(n)− qodd(n) = 0, so that we obtain the theorem (clearly,
the coefficient of x0 has to be 1, which explains the first summand in the formula). �
This result can now be used to prove a recursive formula for the number of partitions:

Theorem 9.4 For all n > 0, the formula

p(n) =
∞∑
k=1

(−1)k−1
(
p(n− k(3k − 1)/2) + p(n− k(3k + 1)/2)

)
holds, where we set p(0) = 1 and p(n) = 0 if n < 0.

Proof: Since
∑∞

n=0 p(n)x
n =

∏∞
k=1(1− xk)−1, Lemma 9.3 can be written as(

∞∑
n=0

p(n)xn

)
·

(
1 +

∞∑
k=1

(−1)k
(
xk(3k−1)/2 + xk(3k+1)/2

))
= 1.

Compare the coefficient of xn on both sides: on the right hand side, it is clearly equal to
0 if n > 0. On the left hand side, the coefficient is

p(n) +
∞∑
k=1

(−1)k
(
p(n− k(3k − 1)/2) + p(n− k(3k + 1)/2)

)
,
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which readily proves the theorem. �
This theorem allows one to determine the value of p(n) for small n with comparatively
little effort: p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11, . . .

Remark: A celebrated theorem due to Hardy and Ramanujan states that the number of
partitions of n is approximately

p(n) ≈ eπ
√

2n/3

4
√
3n

.

9.3 q-binomial coefficients

We know from the previous section that the generating function for partitions into parts
of size ≤ k (their number was denoted by P (n, k)) is given by

∞∑
n=0

P (n, k)xn =
k∏

m=1

(1− xm)−1,

and by the arguments of Section 9.1, this is also the generating function for partitions of
length ≤ k. What if we restrict both at the same time (that is, require all parts to be ≤ k
and the length to be ≤ l)? The following theorem provides an answer:

Theorem 9.5 The generating function for the number P (n, k, l) of partitions of n into at
most l summands of size at most k is given by

∞∑
n=0

P (n, k, l)xn =
(x)k+l

(x)k(x)l
,

where (x)k is defined by (x)k =
∏k

m=1(1− xm).

Remark: The sum in Theorem 9.5 is actually a finite sum, since P (n, k, l) = 0 if n > kl.

Proof: Note first that
P (n, k, l)− P (n, k, l − 1)

is the number of partitions of n into exactly l summands all of which are ≤ k. If we remove
the first column from the Ferrers diagram of such a partition, we are left with a partition
of n− l into at most l summands all of which are ≤ k − 1 (and this can also be reversed).
Hence,

P (n, k, l)− P (n, k, l − 1) = P (n− l, k − 1, l). (9.1)

Now we can use induction to proceed. If k = 0, then the stated formula reads

∞∑
n=0

P (n, 0, l) =
(x)l
(x)l

= 1,
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which holds if we define P (0, 0, l) = 1 and P (n, 0, l) = 0 otherwise (so that recursion (9.1)
remains true in these cases). Likewise, the formula is also true if l = 0. All that remains
is the induction step. Making use of (9.1), we find

∞∑
n=0

P (n, k, l)xn =
∞∑
n=0

P (n, k, l − 1)xn +
∞∑
n=l

P (n− l, k − 1, l)xn

=
∞∑
n=0

P (n, k, l − 1)xn +
∞∑
n=0

P (n, k − 1, l)xn+l

=
∞∑
n=0

P (n, k, l − 1)xn + xl

∞∑
n=0

P (n− 1, k − 1, l)xn

=
(x)k+l−1

(x)k(x)l−1

+ xl · (x)k+l−1

(x)k−1(x)l
,

where the last step follows from the induction hypothesis. Making use of the fact that
(x)k = (x)k−1(1− xk) by definition, we can simplify further to obtain

(x)k+l−1

(x)k(x)l−1

+ xl · (x)k+l−1

(x)k−1(x)l
= (1− xl) · (x)k+l−1

(x)k(x)l
+ xl(1− xk) · (x)k+l−1

(x)k(x)l

= (1− xk+l) · (x)k+l−1

(x)k(x)l
=

(x)k+l

(x)k(x)l
.

This completes the induction. �
The generating function for the number p(n, k, l) of partitions of n whose length and largest
part are exactly l and k respectively is closely related; the techniques of Section 9.1 can be
applied once again:

Corollary 9.6 The generating function for the number p(n, k, l) of partitions of n into l
summands of which the largest is equal to k is given by

∞∑
n=0

p(n, k, l)xn = xk+l−1 (x)k+l−2

(x)k−1(x)l−1

.

Proof: If we remove the first row and the first column of the Ferrers diagram of a partition of
n whose length and largest part are l and k respectively, we obtain a partition of n−k−l+1
whose length is at most l − 1 and whose largest part is at most k − 1. Therefore,

∞∑
n=0

p(n, k, l)xn =
∞∑

n=k+l−1

P (n− k − l + 1, k − 1, l − 1)xn

=
∞∑
n=0

P (n, k − 1, l − 1)xn+k+l−1 = xk+l−1 (x)k+l−2

(x)k−1(x)l−1
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by Theorem 9.5. �
P (n, k, l) counts precisely those partitions whose Ferrers diagram fits inside a k × l-
rectangle; let us assume that the lower left corner of this rectangle is (0, 0), while the
upper right corner is (k, l). The boundary of the Ferrers diagram can also be interpreted
as a lattice path consisting of “up” and “right” steps that connects (0, 0) and (k, l), see
Figure 9.5. Therefore, P (n, k, l) also counts paths of this type with the property that the
area above the path (or, by symmetry, below the path) is n.

Figure 9.5: The lattice path corresponding to a partition.

The total number of all such lattice paths is
(
k+l
k

)
(the number of ways to choose which of

the k + l steps are “right” steps). Therefore, one has

∞∑
n=0

P (n, k, l) =

(
k + l

k

)
,

and so the limit of the right hand side of the formula in Theorem 9.5 must be

lim
x→1

(x)k+l

(x)k(x)l
=

(
k + l

k

)
.

Note that one has to take the limit, since both numerator and denominator are zero at
x = 1. This is the reason why one calls[

n

k

]
q

=
(q)n

(q)k(q)n−k

=
(1− q)(1− q2) . . . (1− qn)

(1− q)(1− q2) . . . (1− qk) · (1− q)(1− q2) . . . (1− qn−k)
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a q-binomial coefficient (it is customary to use the letter q in this context). One has

lim
q→1

[
n

k

]
q

=

(
n

k

)
,

and the proof of Theorem 9.5 shows that[
n+ 1

k

]
q

= qk
[
n

k

]
q

+

[
n

k − 1

]
q

.

Analogously, one also finds [
n+ 1

k

]
q

=

[
n

k

]
q

+ qn+1−k

[
n

k − 1

]
q

.

Note that as q → 1, both formulas reduce to the ordinary recursion for the binomial
coefficients.

Example 9.2 The q-binomial coefficient
[
5
3

]
q
is given by[

5

3

]
q

=
(1− q)(1− q2)(1− q3)(1− q4)(1− q5)

(1− q)(1− q2)(1− q3)(1− q)(1− q2)
=

(1− q4)(1− q5)

(1− q)(1− q2)

= (1 + q2)(1 + q + q2 + q3 + q4) = 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6.

The corresponding partitions whose length and largest part are ≤ 2 and ≤ 3 respectively
are

0 = ,

1 = 1,

2 = 1 + 1 = 2,

3 = 2 + 1 = 3,

4 = 2 + 2 = 3 + 1,

5 = 3 + 2,

6 = 3 + 3.


