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Abstract. For a graph G, the Hosoya index and the Merrifield-Simmons index are defined as the total

number of its matchings and the total number of its independent sets, respectively. In this paper, we

characterize the structure of those graphs that minimize the Merrifield-Simmons index and those that

maximize the Hosoya index in two classes of simple connected graphs with n vertices: graphs with fixed

matching number and graphs with fixed connectivity.
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1. Introduction

Throughout this paper, we consider finite, undirected simple graphs. For graph-theoretical terms that

are not defined here, we refer to Bollobás’s book [2].

Two vertices of G are said to be independent if they are not adjacent in G. The Merrifield-Simmons

index [13], denoted by i(G), is defined to be the total number of independent sets of G, including the

empty set.

Likewise, two edges of G are said to be independent if they are not adjacent in G. A set of pairwise

independent edges in G is called a matching in G. The maximum cardinality of a matching in G is called

the matching number of G, denoted by β(G). The Hosoya index [11], denoted by z(G), is defined to be

the total number of matchings, where the empty set of edges counts as a matching as well.

The Merrifield-Simmons index and the Hosoya index of a graph G are two prominent examples of

topological indices which are of interest in combinatorial chemistry. The Hosoya index was introduced

by Hosoya [11] in 1971, and it turned out to be applicable to several questions of molecular chemistry.

For example, the connections with physico-chemical properties such as boiling point, entropy or heat of

vaporization are well studied. Similar connections are known for the Merrifield-Simmons index that was

introduced in 1982 in a paper of Prodinger and Tichy [15], where it is called the Fibonacci number of

a graph. For detailed information on the chemical applications, we refer to [10, 11] and the references

therein.

In recent years, many researchers have investigated these graph invariants. An important direction

in this area is to determine the graphs with maximal or minimal indices in a given class of graphs. It

is easy to see that the complete graph has largest Hosoya index and smallest Merrifield-Simmons index

among all graphs of given order n. Generally, it is clear that removing edges decreases the Hosoya index

and increases the Merrifield-Simmons index (see the inequalities (2.1) and (2.2) later).
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Things become more interesting, but also more difficult if one imposes further restrictions. For

instance, it is known that the path has maximal Hosoya index and the star has minimal Hosoya index [10]

among trees of given order. Treelike graphs have also been investigated extensively: for example, Deng

and Chen [7] determined a sharp lower bound for the Hosoya index of unicyclic graphs, and Ou [14] an

upper bound. The Merrifield-Simmons index of unicyclic graphs was studied in [18]. Bicyclic graphs

have been the object of study of a series of articles by Deng and coauthors [4–6, 8]. For further results

and references, we refer the reader to the survey paper [17].

In [19], Yu and Tian characterized the graphs with minimum Hosoya index and maximum Merrifield-

Simmons index, respectively, among connected graphs of given order and matching number. Here, we will

study a closely related question: we determine the graphs with minimum Merrifield-Simmons index and

maximum Hosoya index in the class of graphs with given order n and matching number β. We remark

that the analogous question for the independence number (given the order of a graph and the maximum

size of an independent set, determine minimum and maximum of the Merrifield-Simmons index) was

recently considered by Bruyère and Mélot [3].

Using similar methods, we also characterize the graphs with given order n and connectivity s (the

minimum number of vertices that needs to be removed to make the graph disconnected) that maximize

the Hosoya index and minimize the Merrifield-Simmons index.

2. Preliminaries

Let us first introduce some notation and terminology. V = V (G) will always denote the vertex subset

and E = E(G) the edge subset of a graph G. For a subset W of V (G), we denote by G−W the subgraph

of G obtained by deleting the vertices of W and the edges incident with them. Similarly, for a subset F

of E(G), we denote by G − F the subgraph of G obtained by deleting the edges of F . If W = {v} and

F = {xy} consist of a single element, we use the abbreviations G− v and G− xy instead of G−{v} and

G− {xy}, respectively.

We denote by Kn and Kn the complete graph and the empty graph (with no edges) on n vertices,

respectively. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the union G1 ∪ G2 is defined to be

G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2). We will write kG for the union of k copies of G. The join G1

∨
G2 of G1

and G2 is obtained from G1 ∪G2 by connecting each vertex of G1 with each vertex of G2 by an edge.

We will frequently make use of the following formulas that can be used to compute the Merrifield-

Simmons index and the Hosoya index recursively. We write N(v) = {u|uv ∈ E(G)} and N [v] = N(v)∪{v}
for the open and closed neighborhood of a vertex v in a graph G.

Lemma 2.1 ( [10]). Let G be a graph.

(i) If uv ∈ E(G), then i(G) = i(G− uv)− i(G− {N [u] ∪N [v]});
(ii) If v ∈ V (G), then i(G) = i(G− v) + i(G−N [v]);

(iii) If G1, G2, . . . , Gt are the connected components of G, then i(G) =
∏t
j=1 i(Gj).

Lemma 2.2 ( [10]). Let G be a graph.

(i) If uv ∈ E(G), then z(G) = z(G− uv) + z(G− {u, v});
(ii) If v ∈ V (G), then z(G) = z(G− v) +

∑
u∈N(v) z(G− {u, v});

(iii) If G1, G2, . . . , Gt are the components of the graph G, then z(G) =
∏t
j=1 z(Gj).

We write G + uv for the graph obtained from G by adding the edge uv, provided that uv /∈ E(G).

The two lemmas immediately yield the following inequalities:

i(G+ uv) < i(G), (2.1)
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z(G+ uv) > z(G). (2.2)

The following lemma, known as the Tutte-Berge formula, is an important tool to characterize the

matching number.

Lemma 2.3 ( [1,12,16]). Suppose G is a graph on n vertices with matching number β. Let o(H) denote

the number of odd components (i.e., components of odd cardinality) of a graph H. Then

n− 2β = max{o(G− S)− |S| : S ⊂ V (G)},

and in particular this means that there exists a subset S0 ⊂ V (G) such that n− 2β = o(G− S0)− |S0|.

The next lemma already provides us with important information on the structure of extremal graphs

with given matching number.

Lemma 2.4. Suppose that G has minimum Merrifield-Simmons index or maximum Hosoya index among

connected graphs of order n and matching number β. If β = bn/2c, then G = Kn; otherwise, there exist

a nonnegative integer s ≤ β and positive odd numbers n1, n2, . . . , nq such that G ∼= Ks

∨
(
⋃q
j=1Knj

) with

s = q + 2β − n and
∑q
j=1 nj = n− s.

Proof. Let G be a connected graph of order n with matching number β that minimizes the Merrifield-
Simmons index. Moreover, let M be a maximum matching in G, so that |M | = β. By Lemma 2.3, there
exists a subset S0 ⊂ V (G) of vertices in G such that

n− 2β = max{o(G− S)− |S| : S ⊂ V (G)} = o(G− S0)− |S0|.

Set s = |S0| and q = o(G−S0), and let G1, G2, . . . , Gq be the odd components of G−S0 with |V (Gj)| =
nj ≥ 1 for j = 1, 2, . . . , q. Clearly, n ≥ s+ q = n+ 2s− 2β. Thus s ≤ β.

Case 1 If s = 0, then G− S0 = G and n+ s− 2β = n− 2β = q ≤ 1 since G is connected. If q = 0,
then n = 2β; if q = 1, then n = 2β + 1, so β = bn/2c in either case. It is clear (by (2.1)) that Kn

maximizes the Hosoya index and minimizes the Merrifield-Simmons index among all graphs of order n,
so we must have G ∼= Kn in this case.

Case 2 If s ≥ 1, then q = n + s − 2β ≥ 1 since n ≥ 2β. We claim that G − S0 contains no even
component. Otherwise, let W be a even component of G− S0. Then by adding an edge to G between a
vertex w of W and a vertex v of an odd component of G− S0, we obtain a graph G′ for which

n− 2β(G′) ≥ o(G′ − S0)− |S0| = o(G− S0)− |S0| = n− 2β(G),

so that β(G) ≥ β(G′). Moreover, β(G) ≤ β(G′) since G is a proper subgraph of G′, which means that
β(G) = β(G′). By (2.1), we have i(G′) < i(G), a contradiction.

Next we claim that each component Gj is a complete graph. If not, we can add an edge to the
component to obtain a graph G′ with β(G′) = β(G) and i(G′) < i(G) as before.

Similarly, we find that the subgraph induced by S0 has to be complete, and every vertex of Gj
(1 ≤ j ≤ q) is adjacent to every vertex in S0. So finally, G ∼= Ks

∨
(
⋃q
j=1Knj

), which is what we wanted
to prove. The proof for the Hosoya index is analogous.

3. Graphs with minimum Merrifield-Simmons index

In this section, we determine the maximum Merrifield-Simmons index of graphs with given order n
and either given matching number β or given connectivity s. Lemma 2.4 already gives us some rough
information on the shape of the extremal graphs, given the order and matching number. It remains to
determine the values of n1, n2, . . . , nq. We first derive a formula for the Merrifield-Simmons index.

Lemma 3.1. If G = Ks

∨
(
⋃q
j=1Knj

), then i(G) = (n1 + 1)(n2 + 1) · · · (nq + 1) + s.

3



Proof. An independent set of G either consists of one of the vertices of the Ks-part (which are adjacent
to all other vertices), or they consist of a collection of independent sets in Kn1 ,Kn2 , . . . ,Knq . Since a
complete graph has only independent sets of cardinality 0 or 1, we have i(Kn) = n+ 1 and thus

i(G) = s+

q∏
j=1

i(Knj ) = s+ (n1 + 1)(n2 + 1) · · · (nq + 1),

which proves the lemma.

Theorem 3.2. Let G be a graph with n vertices and matching number β.

(i) If β = bn2 c, then i(G) ≥ n+ 1 with equality if and only if G ∼= Kn.
(ii) If 1 ≤ β ≤ bn2 c− 1, then i(G) ≥ β · 2n+1−2β + 1, with equality if and only if G ∼= K1

∨
((n− 2β)K1 ∪

K2β−1).

Proof. (i) As it was mentioned in the proof of Lemma 2.4, it is clear that i(G) ≥ i(Kn) = n+ 1 for any
graph of order n (in view of (2.1)), with equality only if G ∼= Kn. This settles the case that β = bn2 c.

(ii) If n ≥ 2β + 2, let G∗ be a graph with minimum Merrifield-Simmons index among graphs with n
vertices and matching number β. By Lemma 2.4, there exist positive odd numbers n1, n2, . . . , nq and a
positive integer s ≤ β such that G∗ = Ks

∨
(
⋃q
j=1Knj ) with s = q + 2β − n and

∑q
j=1 nj = n− s. Since

n ≥ 2β + 2 we have q = n− 2β + s ≥ 2.
Now we show that there is at most one number in the set {n1, n2, . . . , nq} that is greater than 1. If not,

assume without loss of generality that n2 ≥ n1 ≥ 3. Let G′ = Ks

∨
(Kn1−2 ∪Kn2+2 ∪ · · · ∪Knq−1

∪Knq
).

By Lemma 3.1, we have

i(G∗)− i(G′) = (n3 + 1) · · · (nq + 1)[(n1 + 1)(n2 + 1)− (n1 − 1)(n2 + 3)]

= (n3 + 1) · · · (nq + 1)[2(n2 − n1) + 4] > 0,

which contradicts the choice of G∗. Hence we have G∗ ∼= Ks

∨
((q−1)K1∪Knq

). Note that n = s+nq+q−1
and q = n+ s− 2β, so nq = 2β − 2s+ 1. It follows that G∗ ∼= Ks

∨
((n+ s− 2β − 1)K1 ∪K2β−2s+1).

By Lemma 3.1, we have

i(G∗) = i
(
Ks

∨
((n+ s− 2β − 1)K1 ∪K2β−2s+1)

)
= (2β − 2s+ 2)2n+s−2β−1 + s

= (β − s+ 1)2n+s−2β + s.

Let f(s) = (β − s+ 1)2n+s−2β + s. If 1 ≤ s < β, then

f(s+ 1)− f(s) = (β − s− 1)2n+s−2β + 1 > 0

and thus f(s + 1) > f(s). Therefore, the minimum of f(s) is obtained for s = 1. This means that the
graph that minimizes the Merrifield-Simmons index is G∗ ∼= K1

∨
((n − 2β)K1 ∪ K2β−1), and i(G∗) =

f(1) = β · 2n+1−2β + 1.

For graphs with given connectivity, the result and its proof are very similar.

Theorem 3.3. Let G be a graph of order n with connectivity s. We have i(G) ≥ 2n− s, with equality if
and only if G ∼= (Ks

∨
K1 ∪Kn−s−1).

Proof. Let G∗ be a graph that minimizes the Merrifield-Simmons index among all graphs of order n
whose connectivity is s. Let S be a set of cardinality s such that G∗−S is disconnected. In view of (2.1),
the graph induced by S has to be complete, the vertices in S have to be connected to all vertices of
G∗, and G∗ − S has to be the union of two complete graphs. Otherwise, it would be possible to add
edges to G∗ without increasing the connectivity, thereby decreasing the Merrifield-Simmons index. Thus
G∗ ∼= Ks

∨
(Kn1

∪Kn2
) for some positive integers n1, n2 with n1 + n2 = n− s. By Lemma 3.1, we have

i(G∗) = s+ (n1 + 1)(n2 + 1) = s+ (n1 + 1)(n− s− n1 + 1).

This is minimized for n1 = 1 or n1 = n − s − 1, so that G∗ ∼= Ks

∨
(K1 ∪ Kn−s−1) and thus i(G∗) =

s+ 2(n− s) = 2n− s.
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4. Graphs with maximum Hosoya index

In this section, we focus on the Hosoya index, for which we obtain similar results as in the previous
section. Once again, Lemma 2.4 provides information on the rough shape of the extremal graphs. The
following lemma will help us to reduce the possibilities for the numbers s and n1, n2, . . . , nq.

Lemma 4.1. Let G be the graph Ks

∨
(
⋃q
j=1Knj

), where n1, n2, . . . , nq are all positive integers and
n1 ≤ n2 ≤ . . . ≤ nq. If there exists an index i ∈ {1, 2, . . . , q − 1} such that ni ≥ 2, let G′ be the graph
Ks

∨
(Kn1

∪ · · · ∪Kni−1
∪Kni−1 ∪Kni+1

∪ · · · ∪Knq+1). The inequality z(G) < z(G′) holds.

Proof. In the following, we use the abbreviation H = Kn1 ∪ · · · ∪Kni−1 ∪Kni+1 ∪ · · · ∪Knq−1 . We prove
the statement by induction on ni. If ni = 2, then by part (ii) of Lemma 2.2, applied to one of the vertices
of the part Kni

of G, we have

z(G) = z
(
Ks

∨
(H ∪K2 ∪Knq

)
)

= z
(
Ks

∨
(H ∪K1 ∪Knq

)
)

+ z
(
Ks

∨
(H ∪Knq

)
)

+ sz
(
Ks−1

∨
(H ∪K1 ∪Knq

)
)
.

Likewise, if we apply part (ii) of Lemma 2.2 to one of the vertices of the part Knq+1 of G′, we get

z(G′) = z
(
Ks

∨
(H ∪K1 ∪Knq+1)

)
= z

(
Ks

∨
(H ∪K1 ∪Knq )

)
+ nqz

(
Ks

∨
(H ∪K1 ∪Knq−1)

)
+ sz

(
Ks−1

∨
(H ∪K1 ∪Knq )

)
.

It follows that

z(G′)− z(G) = nqz
(
Ks

∨
(H ∪K1 ∪Knq−1)

)
− z

(
Ks

∨
(H ∪Knq

)
)

= (nq − 1)
[
z
(
Ks

∨
(H ∪Knq−1)

)
− z

(
Ks

∨
(H ∪Knq−2)

)]
+ s(nq − 1)z

(
Ks−1

∨
(H ∪Knq−1)

)
≥ s(nq − 1)z

(
Ks−1

∨
(H ∪Knq−1)

)
> 0.

The first inequality holds because Ks

∨
(H∪Knq−2) is a proper subgraph of Ks

∨
(H∪Knq−1) and nq ≥ 2.

Now assume that the result holds for all positive integers less than ni ≥ 3. By Lemma 2.2(ii), we have

z(G) = z
(
Ks

∨
(H ∪Kni

∪Knq
)
)

= z
(
Ks

∨
(H ∪Kni−1 ∪Knq

)
)

+ (ni − 1)z
(
Ks

∨
(H ∪Kni−2 ∪Knq

)
)

+ sz
(
Ks−1

∨
(H ∪Kni−1 ∪Knq

)
)
,

and

z(G′) = z
(
Ks

∨
(H ∪Kni−1 ∪Knq+1)

)
= z

(
Ks

∨
(H ∪Kni−1 ∪Knq

)
)

+ nqz
(
Ks

∨
(H ∪Kni−1 ∪Knq−1)

)
+ sz

(
Ks−1

∨
(H ∪Kni−1 ∪Knq

)
)
.

It follows that

z(G′)− z(G) = nqz
(
Ks

∨
(H ∪Kni−1 ∪Knq−1)

)
− (ni − 1)z

(
Ks

∨
(H ∪Kni−2 ∪Knq )

)
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= nq

[
z
(
Ks

∨
(H ∪Kni−2 ∪Knq−1)

)
+ (ni − 2)z

(
Ks

∨
(H ∪Kni−3 ∪Knq−1)

)
+ sz

(
Ks−1

∨
(H ∪Kni−2 ∪Knq−1)

)]
− (ni − 1)

[
z
(
Ks

∨
(H ∪Kni−2 ∪Knq−1)

)
+(nq − 1)z

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)
+ sz

(
Ks−1

∨
(H ∪Kni−2 ∪Knq−1)

)]
= (nq − ni + 1)z

(
Ks

∨
(H ∪Kni−2 ∪Knq−1)

)
+ s(nq − ni + 1)z

(
Ks−1

∨
(H ∪Kni−2 ∪Knq−1)

)
+ nq(ni − 2)z

(
Ks

∨
(H ∪Kni−3 ∪Knq−1)

)
− (ni − 1)(nq − 1)z

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)
= (nq − ni + 1)z

(
Ks

∨
(H ∪Kni−2 ∪Knq−1)

)
+ s(nq − ni + 1)z

(
Ks−1

∨
(H ∪Kni−2 ∪Knq−1)

)
+ nq(ni − 1)

[
z
(
Ks

∨
(H ∪Kni−3 ∪Knq−1)

)
− z

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)]
− nqz

(
Ks

∨
(H ∪Kni−3 ∪Knq−1)

)
+ (ni − 1)z

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)
= (nq − ni + 1)z

(
Ks

∨
(H ∪Kni−2 ∪Knq−1)

)
+ s(nq − ni + 1)z

(
Ks−1

∨
(H ∪Kni−2 ∪Knq−1)

)
+ nq(ni − 1)

[
z
(
Ks

∨
(H ∪Kni−3 ∪Knq−1)

)
− z

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)]
− nqz

(
Ks

∨
(H ∪Kni−3 ∪Knq−1)

)
+ nqz

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)
− nqz

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)
+ (ni − 1)z

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)
= (nq − ni + 1)

[
z
(
Ks

∨
(H ∪Kni−2 ∪Knq−1)

)
− z

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)]
+ s(nq − ni + 1)z

(
Ks−1

∨
(H ∪Kni−2 ∪Knq−1)

)
+ nq(ni − 2)

[
z
(
Ks

∨
(H ∪Kni−3 ∪Knq−1)

)
− z

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)]
≥ s(nq − ni + 1)z

(
Ks−1

∨
(H ∪Kni−2 ∪Knq−1)

)
+ nq(ni − 2)

[
z
(
Ks

∨
(H ∪Kni−3 ∪Knq−1)

)
− z

(
Ks

∨
(H ∪Kni−2 ∪Knq−2)

)]
≥ s(nq − ni + 1)z

(
Ks−1

∨
(H ∪Kni−2 ∪Knq−1)

)
> 0.

Here, the first inequality holds because Ks

∨
(H ∪Kni−2 ∪Knq−2) is a proper subgraph of Ks

∨
(H ∪

Kni−2 ∪Knq−1); the second one holds by the induction hypothesis. This completes the proof.

For the class of graphs with given connectivity, we immediately obtain the following result now:

Theorem 4.2. Let G be a graph with n vertices and connectivity s. We have z(G) ≤ z (Ks

∨
(K1 ∪Kn−s−1)),

with equality if and only if G ∼= Ks

∨
(K1 ∪Kn−s−1).

Proof. By the same argument as in the proof of Theorem 3.3, the graph G∗ that maximizes the Hosoya
index under the given conditions must be of the form G∗ ∼= Ks

∨
(Kn1

∪Kn2
). By Lemma 4.1, we must

have n1 = 1 or n2 = 1. This completes the proof.

Now we direct our attention to graphs with fixed matching number. We will prove a result analogous
to Theorem 3.2, which however will be somewhat more complicated. In the following, we will denote the
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graph Ks

∨
(n + s − 2β − 1)K1 ∪K2β−2s+1) by G(n, s, β). It consists of a complete graph Ks, which is

joined to an empty graph Kn−2β+s−1 by all possible s(n − 2β + s − 1) edges and to a complete graph
K2β−2s+1 by all possible s(2β − 2s+ 1) edges, see Figure 1.

Kn−2β+s−1

Ks

K2β−2s+1

Figure 1: G(n, s, β).

Theorem 4.3. Let G be a graph with n vertices and matching number β.

(i) If β = bn2 c, then z(G) ≤ z(Kn) with equality if and only if G ∼= Kn.

(ii) If n ≥ 2β + 2, then z(G) ≤ max(z(G(n, 1, β), G(n, β, β)), with equality if and only if G ∼= G(n, 1, β)
or G ∼= G(n, β, β), whichever has greater Hosoya index.

Proof. (i) Once again, it is clear that z(G) ≤ z(Kn) for any graph of order n (in view of (2.2)), with
equality only if G ∼= Kn. This settles the case that β = bn2 c.

(ii) Suppose that n ≥ 2β + 2, and let G∗ be a graph with n vertices and matching number β whose
Hosoya index is maximal among all such graphs. By Lemma 2.4, there exist positive odd numbers
n1, n2, . . . , nq such that G∗ ∼= Ks

∨
(
⋃q
j=1Knj

) with s = q + 2β − n (so q = n − 2β + s ≥ 2) and∑q
j=1 nj = n− s.
First, we show that at most one of the numbers n1, n2, . . . , nq is greater than one. Otherwise, assume

that n2 ≥ n1 ≥ 3. Set H =
⋃q
j=3Knj , G′ = Ks

∨
(Kn1−1∪Kn2+1∪H) and G′′ = Ks

∨
(Kn1−2∪Kn2+2∪

H). By Lemma 4.1, we have z(G∗) < z(G′) < z(G′′). Moreover, it is easy to see that G′′ has order
n and matching number β, which gives us a contradiction to the choice of G∗. Hence we must have
G∗ ∼= Ks

∨
((q− 1)K1 ∪Knq

). Note also that n = s+nq + q− 1 and q = n+ s− 2β, so nq = 2β− 2s+ 1.
It follows that G∗ ∼= Ks

∨
((n+ s− 2β − 1)K1 ∪K2β−2s+1) = G(n, s, β).

Now we have to study the behavior of z(G(n, s, β)) as a function of s for fixed n and β. Transforming
G(n, s, β) to G(n, s − 1, β) amounts to increasing the K2β−2s+1-part by two vertices (denoted by u and
v in Figure 2) and then reducing the Kn−2β+s−1-part and the Ks-part by one vertex each.

Let us compare z(G(n, s, β)) and z(G(n, s − 1, β)), considering the graphical representations in Fig-
ure 2. We only have to compare the numbers zs and zs−1 of matchings containing edges (thick in
Figure 2) joining u and any vertex in the Kn−2β+s−2-part of G(n, s, β), and joining v to any vertex in the
K2β−2s+1-part of G(n, s − 1, β), respectively, since if all these edges are removed, the remaining graphs
are isomorphic.

It is easy to check that removing the end vertices of a thick edge from G(n, s, β) or G(n, s−1, β) leads
to a graph isomorphic to G(n− 2, s− 1, β). Thus we have

zs = (n− 2β + s− 2)z(G(n− 2, s− 1, β)),

zs−1 = (2β − 2s+ 1)z(G(n− 2, s− 1, β)).

It follows that

z(G(n, s, β))− z(G(n, s− 1, β)) = zs − zs−1 =
(
(n− 2β + s− 2)− (2β − 2s+ 1)

)
z(G(n− 2, s− 1, β))

= (n− 4β + 3s− 3)z(G(n− 2, s− 1, β)).

7



Kn−2β+s−2

Ks−1

K2β−2s+1

v
u

Kn−2β+s−2

Ks−1

K2β−2s+1

vu

G(n, s, β) G(n, s− 1, β)

Figure 2: G(n, s, β) and G(n, s− 1, β); the thick edges are those that are only present in one of the two.

Hence if s ≤ (4β−n)/3+1, we have z(G(n, s, β)) ≤ z(G(n, s−1, β)), while z(G(n, s, β)) > z(G(n, s−1, β))
if s > (4β−n)/3+1. This means that z(G(n, s, β)), regarded as a function of s, is a unimodular function
whose maximum must occur at one of the two ends. This means that G∗ = G(n, 1, β) or G∗ = G(n, β, β),
which completes the proof.

Theorem 4.3 still leaves us with two possibilities: the maximum can be obtained for either G(n, 1, β)
or for G(n, β, β). For β = 1, we are done of course, but in general we would like to know which of the two
applies to a given choice of n and β. It is not hard to see that for β > 1, G(2β, 1, β) = K2β 6= G(2β, β, β),
which means that z(G(2β, 1, β)) > z(G(2β, β, β)). We will see in the next lemma that if n is large enough
then the inequality is reversed.

Theorem 4.4. For any fixed β > 1, there exists a unique integer n0(β) ≥ 2β such that

z(G(n0(β), 1, β)) ≥ z(G(n0(β), β, β))

and
z(G(n0(β) + 1, 1, β)) < z(G(n0(β) + 1, β, β)).

Proof. We study how much z(G(n, 1, β)) and z(G(n, β, β)) increase when n is increased by 1. The

vKn−β

Kβ

. . .

uKn−2β

K2β

G(n, 1, β) G(n, β, β)

Figure 3: How G(n+ 1, 1, β) and G(n+ 1, β, β) are obtained from G(n, 1, β) and G(n, β, β).
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difference

z(G(n+ 1, 1, β))− z(G(n, 1, β)) = z(K2β−1)

comes from matchings that contain vertex u in Figure 3, and it does not depend on n, while

z(G(n+ 1, β, β))− z(G(n, β, β)) = βz(G(n− 2, β − 1, β − 1)) (for n ≥ 2β and β ≥ 2),

the number of matchings that cover vertex v in Figure 3, is a strictly increasing function of n. Thus

D(n) = z(G(n, β, β))− z(G(n, 1, β))

is a strictly convex function of n ≥ 2β, since

D(n+ 1)−D(n) = βz(G(n− 2, β − 1, β − 1))− z(K2β−1)

is increasing. Since D(2β) < 0, there must be a unique n0(β) such that D(n0(β)+1) > 0 and D(n0(β)) ≤
0.

5. Asymptotic considerations

Let n0 = n0(β) be as in Theorem 4.4. In the following, we derive information on the value of n0(β). To
this end, we need formulas for both z(G(n, β, β)) and z(G(n, 1, β)). First of all, we have

z(G(n, 1, β)) = z(K2β) + (n− 2β)z(K2β−1),

since G(n, 1, β) consists of a K2β (which accounts for the first term) and n − 2β additional pendant
vertices attached to one of its 2β vertices (so each of them is part of z(K2β−1) matchings, and there
are no matchings containing more than one of them). It is well-known that z(Kn), which also counts
involutions (permutations that are equal to their own inverse) of a set of cardinality n, has exponential
generating function

F (x) =
∑
n≥0

z(Kn)

n!
xn = ex+x

2/2,

where we set z(K0) = 1. Moreover, it is known [9, Proposition VIII.2] that

z(Kn) ∼ 1√
2
· nn/2 · e−n/2+

√
n−1/4 (5.3)

as n → ∞. For our purposes, a simple upper bound will be useful as well. One has the trivial bound
(see [9, Proposition IV.1])

z(Kn) = n![xn]F (x) ≤ n! · u−nF (u)

for any positive real u. Setting u =
√
n and u =

√
n+ 1 respectively, we get

z(Kn) ≤ n! · n−n/2 · en/2+
√
n (5.4)

and
z(Kn) ≤ n! · (n+ 1)−n/2 · e(n+1)/2+

√
n+1. (5.5)

We also have a generating function for z(G(n, β, β)): write n = 2β+m, and note that G(n, β, β) consists
of a complete graph Kβ and an empty graph Kβ+m, connected by all possible β(β +m) edges. We have

z(G(n, β, β)) =

β∑
k=0

(
β

k

)(
β +m

k

)
k!z(Kβ−k),

9



which can be argued as follows: the k-th term counts matchings with precisely k edges containing one of
the vertices of the empty graph Kβ+m.

(
β
k

)(
β+m
k

)
k! counts the number of ways to pick k vertices in Kβ

and Kβ+m respectively and connect them by a perfect matching. This leaves a complete graph Kβ−k in
the Kβ-part of G(n, β, β), which explains the factor z(Kβ−k).

Now we obtain the following exponential generating function:

Gm(x) =
∑
β≥0

z(G(2β +m,β, β))

β!
xβ =

∑
β≥0

xβ

β!

β∑
k=0

(
β

k

)(
β +m

k

)
k!z(Kβ−k)

=
∑
β≥0

xβ

β!

β∑
k=0

(
β +m

β − k

)(
β

β − k

)
(β − k)!z(Kk) =

∑
k≥0

∑
`≥0

xk+`

(k + `)!

(
k + `+m

`

)(
k + `

`

)
`!z(Kk)

=
∑
k≥0

z(Kk)xk

k!

∑
`≥0

(
k + `+m

`

)
x` =

∑
k≥0

z(Kk)xk

k!
(1− x)−k−m−1

= (1− x)−m−1
∑
k≥0

z(Kk)

k!

(
x

1− x

)k
= (1− x)−m−1 exp

(
x

1− x
+

x2

2(1− x)2

)
.

Since the second factor has a power series expansion with positive coefficients only and constant coefficient
1, it is clear that the coefficient of xβ in Gm(x) is greater or equal to the coefficient of xβ in (1−x)−m−1,
which is

(
m+β
m

)
, hence

z(G(n, β, β)) = β![xβ ]Gm(x) ≥ β!

(
m+ β

m

)
. (5.6)

Now we have all the necessary ingredients for the following theorem.

Theorem 5.1. For all β > 1, n0(β) ≤ 3β. Moreover, as β →∞, we have

lim
β→∞

n0(β)

β
= A ≈ 2.2938153733404154,

which is the unique positive real solution of the equation (A− 1)A−1 = 2(A− 2)A−2.

Proof. To prove the first statement for some value of β, we simply need to show that z(G(3β, 1, β)) <
z(G(3β, β, β)). In view of our estimate (5.6), we have

z(G(3β, β, β)) ≥ β!

(
2β

β

)
=

(2β)!

β!
.

On the other hand, (5.4) and (5.5) yield

z(G(3β, 1, β)) = z(K2β) + βz(K2β−1) ≤ (2β)! · (2β)−β · eβ+
√
2β +

(2β)!

2
· (2β)−β+1/2 · eβ+

√
2β

=
(

1 +
√
β/2

)
· (2β)! · (2β)−β · eβ+2

√
β .

Thus we are done if (
1 +

√
β/2

)
· (2β)−β · eβ+2

√
β · β! < 1.

To this end, we use the following well-known inequality, which is a form of Stirling’s approximation:

β! ≤ ββ+1/2e1−β .

It remains to show that (
1 +

√
β/2

)√
β · 2−β · e1+2

√
β < 1.
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β 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n0(β) 6 8 10 13 15 18 20 22 25 27 30 32 34 37 39 41 44 46 49

Table 1: Values of n0(β).

However, it is straightforward to prove that(
1 +

√
β/2

)
· e
√
β ≤ 2

√
β/2 · e

√
β =
√

2eβ < 4β < 2β/2

for β ≥ 11, and that e2
√
β ≤ 2β/2 for β ≥ 17. Thus we can conclude that n0(β) ≤ 3β for β ≥ 17. For

smaller values of β, this can be checked directly (see Table 1).
For the second statement of the theorem, we also need an upper bound for z(G(n, β, β)). Set

H(x) =

∞∑
k=0

hkx
k = exp

(
x

1− x
+

x2

2(1− x)2

)
.

Using the same idea that gave us (5.4) and (5.5), we get, with u = 1− k−1/3,

hk = [xk]H(x) ≤ u−kH(u) =
(

1− k−1/3
)−k

exp

(
k2/3 − 1

2

)
= exp

(
3k2/3

2
+O(k1/3)

)
.

Thus there exists an absolute positive constant C such that hk ≤ exp(Ck2/3) for all k ≥ 0 (this even
holds for h0 = 1). Now we have

z(G(n, β, β)) = β![xβ ](1− x)−n+2β−1H(x) = β!

β∑
r=0

(
n− 2β + r

r

)
hβ−r

≤ β!

β∑
r=0

(
n− 2β + r

r

)
exp(Cβ2/3) = β!

(
n− β + 1

β

)
exp(Cβ2/3)

=
(n− β + 1)!

(n− 2β + 1)!
exp(Cβ2/3).

Combining this with (5.6), we get

(n− β)!

(n− 2β)!
≤ z(G(n, β, β)) ≤ (n− β + 1)!

(n− 2β + 1)!
exp(Cβ2/3),

from which it follows that

log z(G(n, β, β)) = log(n− β)!− log(n− 2β)! +O(β2/3).

Write n = Aβ and use Stirling’s approximation to obtain

log z(G(n, β, β)) = β log β + ((A− 1) log(A− 1)− (A− 2) log(A− 2)− 1)β +O(β2/3). (5.7)

On the other hand, for n < 3β, we have

z(K2β) ≤ z(G(n, 1, β)) ≤ βz(K2β),

thus in view of (5.3)

log z(G(n, 1, β)) = log z(K2β) +O(log β) = β log(2β)− β +O(
√
β). (5.8)
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Comparing (5.7) and (5.8) shows that we have

z(G(n, β, β)) < z(G(n, 1, β))

for sufficiently large β if (A− 1) log(A− 1)− (A− 2) log(A− 2) < log 2, and

z(G(n, β, β)) > z(G(n, 1, β))

for sufficiently large β if (A − 1) log(A − 1) − (A − 2) log(A − 2) > log 2. Now the second statement of
the theorem follows immediately.

Table 1 shows values of n0(β) which are increasing with β. We use the inequality 2β ≤ n0(β) ≤ 3β,
to show in the next theorem that n0(β) is indeed a non-decreasing function of β.

Theorem 5.2. For any β > 1 we have n0(β + 1) ≥ n0(β).

Proof. To prove the theorem, we show that z(G(n0(β + 1), 1, β)) < z(G(n0(β + 1), β, β)). If n0(β) ≤
n0(β + 1)− 2, then we are immediately done. If n0(β + 1) ≥ 3β, then combined with n0(β) ≤ 3β, we get
n0(β+1) ≥ n0(β), so for the rest of this proof, we assume that n0(β+1) ≤ 3β−1 and n0(β) > n0(β+1)−2.
The latter implies that

z(G(n0(β + 1)− 2, 1, β)) ≥ z(G(n0(β + 1)− 2, β, β)). (5.9)

For simplicity, we use the abbreviation N = n0(β+1). There are N −β−1 edges in G(n, β+1, β+1)

v

KN−β−1

Kβ

u

v

KN−2β−2

K2β

G(N, 1, β + 1) G(N, β + 1, β + 1)

Figure 4: G(N, 1, β + 1) and G(N, β + 1, β + 1).

that are not present in G(n, β, β) (thick edges in Figure 4). They all have an end in common, and
removing one of them yields a graph that is isomorphic to G(N − 2, β, β). Therefore,

z(G(N, β + 1, β + 1)) = z(G(N, β, β)) + (N − β − 1)z(G(N − 2, β, β))

≤ z(G(N, β, β)) + (2β − 2)z(G(N − 2, β, β)),

using the assumption that N ≤ 3β − 1. Let H be the graph obtained by attaching N − 2β − 1 pendant
vertices to one vertex of K2β+1. Note that one can get G(N, 1, β+ 1) from H by connecting one of those
pendant vertices to the remaining 2β vertices of the complete graph K2β+1. Likewise, it is easy to see
that G(N, 1, β) is a subgraph of H, so

z(G(N, 1, β + 1)) = z(H) + 2βz(G(N − 2, 1, β)) ≥ z(G(N, 1, β)) + 2βz(G(N − 2, 1, β)).

Together with (5.9) and the fact that z(G(N, 1, β + 1)) < z(G(N, β + 1, β + 1)) by definition of N =
n0(β + 1), it follows that

z(G(N, 1, β)) ≤ z(G(N, 1, β + 1))− 2βz(G(N − 2, 1, β))

< z(G(N, β + 1, β + 1))− 2βz(G(N − 2, β, β))

≤ z(G(N, β + 1, β + 1))− (2β − 2)z(G(N − 2, β, β)) ≤ z(G(N, β, β)),

as desired.
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We deduce as corollary of Theorem 5.2 the following reversed version of Theorem 4.4:

Corollary 5.3. For every n ≥ 6, there is a unique positive integer β0 = β0(n) such that z(G(n, β, β)) >
z(G(n, 1, β)) for 1 < β < β0, and z(G(n, β, β)) ≤ z(G(n, 1, β)) for bn/2c ≥ β ≥ β0.

Proof. Since n0(2) = 6 and n0(β) is an unbounded function of β, for any integer n ≥ 6 there exists a β1
such that n ≤ n0(β1). We choose β1 to be as small as possible. This means that for any β < β1 we have
n0(β) < n and hence z(G(n, 1, β)) < z(G(n, β, β)), while for all β ≥ β1 we have n0(β) ≥ n0(β1) ≥ n and
thus z(G(n, β, β)) ≤ z(G(n, 1, β)). Hence we can take β0(n) = β1. The uniqueness of β0(n) follows from
the necessity of choosing β1 to be minimal.

We remark that Theorem 5.1 also implies

lim
n→∞

β0(n)

n
= A−1 ≈ 0.4359548774597885.
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