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Abstract

We study the number of independent vertex subsets (known as the Merrifield-
Simmons index in mathematical chemistry) and the number of independent edge
subsets (called the Hosoya index) for trees whose vertex degrees are restricted to 1
or d (for some d ≥ 3), a natural restriction in the chemical context. We find that the
minimum of the Merrifield-Simmons index and the maximum of the Hosoya index
are both attained for path-like trees; furthermore, one obtains the second-smallest
value of the Merrifield-Simmons index and the second-largest value of the Hosoya
index for generalized tripods. Analogous results are also found for a closely related
parameter, the graph energy, that also plays an important rôle in mathematical
chemistry.
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1 Introduction

The Merrifield-Simmons index σ(G) [1], defined as the number of independent
vertex subsets of a graph, and the Hosoya index Z(G) [2], defined analogously
as the number of matchings (independent edge subsets), certainly belong to
the most popular topological indices in mathematical chemistry, whose main
purpose is to predict physico-chemical properties of compounds from their
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structure (that can be modeled as a graph). A wealth of theoretical results on
these two parameters has been obtained in recent years, in particular regarding
trees and tree-like structures (such as unicyclic graphs [3–5] or bicyclic graphs
[6,7]). Upper and lower bounds are known under various restrictions, such as
diameter [8], number of leaves [9] or number of cut edges [10]. The interested
reader is referred to [11] for a survey on this topic.

The Hosoya index is intimately related to another important parameter, namely
the energy, defined as the sum of the absolute values of all eigenvalues of a
graph [12]. For trees, this strong relation becomes clear from the representation
as a Coulson integral (see [13]):

E(G) =
2

π

∫ ∞

0
x−2 log





∑

k≥0

m(G, k)x2k



 dx, (1)

where m(G, k) denotes the number of matchings of size k.

Degree restrictions are particularly natural in the chemical context; trees
whose maximum degree is at most 4 are also known as chemical trees [14].
Maximum and minimum values of our two indices for trees with given max-
imum degree were determined in [15,16]. See also [17] for a related extremal
problem concerning trees with given maximum degree. The present paper is
devoted to another natural type of degree restriction: we consider trees whose
vertex degrees are all either 1 or d; the set of all such trees will be denoted
by T1,d. Note in particular that for d = 4, we obtain trees that represent sat-
urated hydrocarbons (alkanes); in chemical practice, one usually removes all
hydrogen atoms (corresponding to leaves in a tree) of a compound to obtain
the associated chemical graph, but the results of this paper show that one ac-
tually obtains very similar behavior if these vertices are kept. The same class
of trees has been investigated, for instance, in [18]. There, the trees in T1,d

that maximize the Wiener index are characterized.

Our main result is the characterization of those trees in T1,d that maximize the
Hosoya index and energy and minimize the Merrifield-Simmons index. It turns
out that they coincide with those trees that have been found to maximize the
Wiener index in the aforementioned paper [18]. The dual problem (maximum
Merrifield-Simmons index, minimum Hosoya index and energy) has essentially
been solved in [15]. The second-largest resp. second-smallest values and asso-
ciated graphs are characterized as well; there is a striking similarity to the
behavior observed for trees without any restrictions (compare [16,19]).
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2 Preliminaries

As mentioned in the introduction, we will be concerned with the class T1,d of
trees whose vertex degrees are either 1 or d (where d ≥ 3; the case d = 2 is es-
sentially trivial, since T1,2 coincides with the set of all paths). Our aim is to de-
termine the trees in this class that maximize the Hosoya index and energy and
minimize the Merrifield-Simmons index. Write µ(G, x) =

∑

k≥0 m(G, k)x2k for
the polynomial that occurs in (1). Clearly, the Hosoya index is just Z(G) =
µ(G, 1). The following lemma is well known (see for instance [13]) and fre-
quently used as a tool in this context.

Lemma 1. Let v be a vertex in a graph G. Then we have

µ(G, x) = µ(G − v, x) + x2
∑

w∈NG(v)

µ(G − {v, w}, x)

and

σ(G) = σ(G − v) + σ(G − ({v} ∪ NG(v))).

If G and G′ are two disjoint graphs, then we have

µ(G ∪ G′, x) = µ(G, x)µ(G′, x) and σ(G ∪ G′) = σ(G)σ(G′).

The trees described in the following definitions will be of particular interest.

Definition 1. For n ≥ 1, let c1, . . . , cn be nonnegative integers. The tree which
is obtained from a path v1, . . . , vn of length n − 1 by attaching ci new leaves
to vi, for 1 ≤ i ≤ n, is called (c1, . . . , cn)-caterpillar (Fig. 1). In particular, we
write Cn for the caterpillar with c1 = cn = d− 1 and c2 = · · · = cn−1 = d− 2,
and C ′

n for the caterpillar with c1 = d − 1 and c2 = · · · = cn = d − 2.

v1 v2 vn

Fig. 1. A caterpillar

For convenience we define C0 to be the path of length one and C ′
0 the isolated

vertex.

Note that Cn is an element of T1,d, but C ′
n is not (since vn has degree d − 1).

Elements of T1,d can be regarded as extensions of trees whose degrees are
at most d (by adding an appropriate number of leaves to each vertex). In
this regard, Cn corresponds to the path. Analogously, we define d-tripods as
extensions of tripods, which were found to play an essential rôle in this context,
see [16].
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Fig. 2. A d-tripod

Definition 2. A d-tripod, denoted by Td(l,m, n), is an element of T1,d that is
constructed by attaching three branches C ′

l , C
′
m, C ′

n (where n ≥ m ≥ l ≥ 1)
to a common vertex, see Fig. 2.

Remark 2. From Lemma 1, one can easily deduce the relations

µ(C ′
n, x) = (1 + (d − 2)x2)µ(C ′

n−1, x) + x2µ(C ′
n−2, x), (2)

σ(C ′
n) = 2d−2(σ(C ′

n−1) + σ(C ′
n−1)). (3)

Equation (2) shows that the sequence µ(C ′
n, x) (n ≥ 0) satisfies a linear re-

currence relation whose explicit solution is given by

µ(C ′
n, x) =

X + x2

X − Y
Xn − Y + x2

X − Y
Y n, (4)

where

X =
1 + (d − 2)x2 +

√

1 + 2dx2 + (d − 2)2x4

2
and

Y =
1 + (d − 2)x2 −

√

1 + 2dx2 + (d − 2)2x4

2
.

In a similar way, using the recurrence (3), one also obtains an explicit expres-
sion for σ(C ′

n):

σ(C ′
n) =

2X ′ + 1

X ′ − Y ′
X ′n − 2Y ′ + 1

X ′ − Y ′
Y ′n, (5)

where X ′ = 2d−3 +
√

22d−6 + 2d−2 and Y ′ = 2d−3 −
√

22d−6 + 2d−2. Next we
need a simple yet crucial lemma:

Lemma 3. For all nonnegative integers k and n such that n ≥ 3 and real

numbers a ∈ (0, 1), the function defined on In = {0, 1, . . . , ⌊n−1
2
⌋} by

fa,k :In −→ R

i 7−→ ai + (−1)kan−1−i

is decreasing on In.
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Proof. For all i ∈ In\{⌊n−1
2
⌋} we have

fa,k(i + 1) − fa,k(i) = (a − 1)(ai − (−1)kan−i−2) and ai >
∣

∣

∣(−1)kan−i−2
∣

∣

∣ .

Therefore fa,k(i + 1) − fa,k(i) < 0 meaning that fa,k is decreasing on In.

3 Intermediary results

Let G be a connected graph with a vertex v of degree d − 2 that is not
isomorphic to the star Sd−1. Let us label the vertices of degree d in Cn by
v1, . . . , vn. We denote by C(n, k,G, v) the graph obtained by removing the
d − 2 leaves attached to vk in Cn and identifying vk with the vertex v of G
(see Fig. 3). The next lemma provides information on the behavior of the
number of independent vertex subsets and the energy of C(n, k,G, v) as k
varies. Similar results, considering a path Pn instead of Cn, can be found in
[19] for the Merrifield-Simmons index and in [16] for the Hosoya index.

G

v1 v2 vk−1

vk

v vk+1 vn−1 vn

Fig. 3. C(n, k, G, v)

Lemma 4. Let m be a nonnegative integer, n = 4m + i, i ∈ {1, 2, 3, 4}, and

let l be the integer part of i−1
2

. Then for all real numbers x > 0 we have

µ(C(n, 2, G, v), x) < µ(C(n, 4, G, v), x) < · · · < µ(C(n, 2m + 2l, G, v), x) <

µ(C(n, 2m + 1, G, v), x) < · · · < µ(C(n, 3, G, v), x) < µ(C(n, 1, G, v), x)

and

σ(C(n, 2, G, v)) > σ(C(n, 4, G, v)) > · · · > σ(C(n, 2m + 2l, G, v)) >

σ(C(n, 2m + 1, G, v)) > · · · > σ(C(n, 3, G, v)) > σ(C(n, 1, G, v)).

Proof. Using the first equation in Lemma 1 for C(n, i + 1, G, v), we find

µ(C(n, i + 1, G, v), x) = (µ(C ′
i−1, x)µ(C ′

j, x) + µ(C ′
i, x)µ(C ′

j−1, x))x2µ(G − v, x)

+ µ(C ′
i, x)µ(C ′

j, x)



µ(G − v, x) + x2
∑

w∈NG(v)

µ(G − {v, w}, x)



 .

where j = n − 1 − i.
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Using the notations of Section 2, we have XY = −x2. If we take A = (X+x2)/
(X − Y ) and B = −(Y + x2)/(X − Y ), then AB = (1 − d)x4/(X − Y )2 and
Equation (4) yields

µ(C ′
i, x)µ(C ′

j, x) = A2Xn−1 + B2Y n−1 + (−1)i (1 − d)x2i

(X − Y )2
x4(Xn−1−2i + Y n−1−2i)

= A2Xn−1 + B2Y n−1

+ (−1)i (1 − d)Xn−1

(X − Y )2
x4





(

x2

X2

)i

+ (−1)n−1

(

x2

X2

)j




µ(C ′
i, x)µ(C ′

j−1, x) = A2Xn−2 + B2Y n−2

+ (−1)i (1 − d)x2Xn

(X − Y )2





(

x2

X2

)i+1

+ (−1)n

(

x2

X2

)j




µ(C ′
i−1, x)µ(C ′

j, x) = A2Xn−2 + B2Y n−2

+ (−1)i−1 (1 − d)x2Xn

(X − Y )2





(

x2

X2

)i

+ (−1)n

(

x2

X2

)j+1




µ(C ′
i−1, x)µ(C ′

j, x) + µ(C ′
i, x)µ(C ′

j−1, x) = 2A2Xn−2 + 2B2Y n−2

+ (−1)i (1 − d)x2Xn(x2 − X2)

X2(X − Y )2





(

x2

X2

)i

+ (−1)n−1

(

x2

X2

)j


 .

Therefore, with f x2

X2
,n−1

as in Lemma 3,

µ(C(n, i + 1, G, v), x) = D + E(−1)if x2

X2
,n−1

(i) (6)

where

D = (2A2Xn−2 + 2B2Y n−2)x2µ(G − v, x)

+ (A2Xn−1 + B2Y n−1)



µ(G − v, x) + x2
∑

w∈NG(v)

µ(G − {v, w}, x)





E =
(1 − d)x4Xn

X(X − Y )2





x2 + X − X2

X
µ(G − v, x) + x2

∑

w∈NG(v)

µ(G − {v, w}, x)



 .

As X > |Y | and A > |B|, D is clearly positive. Since |NG(v)| = d − 2 by our
assumptions, and µ(G − {v, w}, x) ≤ µ(G − v, x) for all w ∈ NG(v), we have

∑

w∈NG(v)

µ(G − {v, w}, x) ≤ (d − 2)µ(G − v, x).
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Equality can only hold if all neighbors of v are leaves, which has been excluded.
Therefore we obtain

E >
(1 − d)x4Xn

X(X − Y )2

(

x2 + (1 + (d − 2)x2)X − X2

X
µ(G − v, x)

)

= 0.

Finally it becomes clear that Equation (6), together with Lemma 3 (it is easy
to see that x2

X2 < 1) implies the first part of the lemma.

For the case of the Merrifield-Simmons index, we can follow the same way to
end up with

σ(C(n, i + 1, G, v)) = F + K(−1)i−1f 2d−2

X′2
,n−1

(i), (7)

where, with X ′ = 2d−3 +
√

22d−6 + 2d−2, Y ′ = 2d−3 −
√

22d−6 + 2d−2, A′ =
(2X ′ + 1)/(X ′ − Y ′) and B′ = −(2Y ′ + 1)/(X ′ − Y ′),

F = (A′2X ′n−1 + B′2Y ′n−1)σ(G − v)

+ 22d−4(A′2X ′n−3 + B′2Y ′n−3)σ(G − ({v} ∪ NG′(v))),

K =
X ′n−1(2d−1 − 1)

(X ′ − Y ′)2

(

2d−2σ(G − ({v} ∪ NG(v))) − σ(G − v)
)

,

are two positive constants. This proves the second part of the lemma.

4 Main Results

Lemma 4 can now be used to determine the extremal trees in T1,d, as follows:

Theorem 1. Let d ≥ 3 and n be two nonnegative integers. The tree that
maximizes the energy and minimizes the Merrifield-Simmons index among all
elements of T1,d of order (d − 1)n + 2 is the caterpillar Cn. For all real x > 0
we have

µ(Cn, x) =
(X + x2)2

X − Y
Xn−1 − (Y + x2)2

X − Y
Y n−1,

σ(Cn) =
3X ′ + 2d−2 + 1

X ′ − Y ′
X ′n − 3Y ′ + 2d−2 + 1

X ′ − Y ′
Y ′n,

with X,Y,X ′, Y ′ as in equations (4) and (5).

Proof. Let T be an element of T1,d whose order is (d − 1)n + 2. If T is not
the caterpillar, then it has a branching vertex v with at least three branches
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that are not just single vertices and such that two of them are C ′
i and C ′

j for
certain integers i ≥ j ≥ 1.

Now we apply Lemma 4, where G is taken to be the graph consisting of all
branches of v other than C ′

i and C ′
j. Moving G to the end of the caterpillar

formed by these two branches, we obtain a new tree T1 that has strictly smaller
Merrifield-Simmons index than T and satisfies µ(T, x) < µ(T1, x) for arbitrary
x > 0. Together with the Coulson integral (1), this shows that T cannot be
maximal with respect to the energy or minimal with respect to the Merrifield-
Simmons index.

The two explicit expressions follow from Equations (4) and (5) using the rela-
tions µ(Cn, x) = µ(C ′

n, x) + x2µ(C ′
n−1, x) and σ(Cn) = σ(C ′

n) + 2d−2σ(C ′
n−1).

Lemma 4 also allows us to go one step further and determine the extremal
trees if Cn is excluded.

Theorem 2. For all integers d ≥ 3 and for a given number of vertices (d −
1)n + 2, the element of T1,d\{Cn, n ∈ N} with minimum Merrifield-Simmons
index and maximum energy is

• the d-tripod Td(1, 1, 1) if n = 4,
• the d-tripod Td(2, 1, 1) if n = 5,
• the d-tripod Td(2, 2, n − 5) if n > 5.

v1

v2

Fig. 4. A non d-tripod in T
′
1,d

Proof. The cases where n < 4 are not interesting because Cn is the only
element of T1,d in these cases, and the cases n = 4 and n = 5 are trivial as
well.

Now we assume that n > 5. We start by showing that the minimizer of the
σ-index or the maximizer of the energy in T

′
1,d = T1,d\{Cn, n ∈ N} has to be

a d-tripod. Let T be an element of T
′
1,d that is not a d-tripod, then there are

two possible cases:

• Case a: T consists of a vertex with more than three caterpillar branches
that are not just single vertices. Then, applying Lemma 4 as in the proof of
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Theorem 1, we can merge two branches to form a single caterpillar branch
and get an element T1 of T

′
1,d such that σ(T1) < σ(T ) and µ(T, x) < µ(T1, x)

for all x > 0.
• Case b: T has at least two branching vertices with at least three branches

each, as pictured in Fig. 4. Once again we can use Lemma 4 to merge two
branches of v1, thereby constructing an element of T

′
1,d with σ(T1) < σ(T )

and µ(T, x) < µ(T1, x) for all x > 0, as in the previous case.

Therefore such a tree T cannot minimize the Merrifield-Simmons index or
maximize the energy, which leaves us with the set of d-tripods. Applying
Lemma 4 once again, we find that T2,2,n−5 is the d-tripod that minimizes the
σ-index and maximizes the energy.

Remark 5. In particular, as µ(G, 1) coincides with the Hosoya index of G,
the maximal trees in T1,d with respect to the number of matchings are the
same as the maximal trees that we found with respect to the energy.

5 Conclusion

The results of this paper show an interesting analogy between trees in the
class T1,d and general trees without degree restrictions. With a little bit more
effort, one can certainly also determine the third-largest/smallest values and
perhaps more, as in [16,19]. We also believe that our crucial Lemma 4 can
be applied to the study of unicyclic graphs or other tree-like structures with
similar degree restrictions. A natural problem for further study would be to
consider trees with more general degree restrictions, such as prescribing the
entire degree sequence. This might be a very hard problem, but partial results
can possibly be obtained along the lines of this paper.
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