
UNFAIR PERMUTATIONS
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Abstract. We study unfair permutations, which are generated by letting n players draw
numbers and assuming that player i draws i times from the unit interval and records her
largest value. This model is natural in the context of partitions: the score of the i-th player
corresponds to the multiplicity of the summand i in a random partition, with the roles of
minimum and maximum interchanged. We study the distribution of several parameters,
namely the position of player i, the number of inversions, and the number of ascents. To
perform some of the heavy computations, we use the computer algebra package Sigma.

1. Introduction

It is well known that if one draws n times from the uniform distribution (we will say
that players 1, 2, . . . , n draw numbers) and orders the players according to the numbers
they have drawn, from smallest to largest, one gets a random permutation, i. e., every
permutation is equally likely. This, of course, remains true if numbers are drawn from an
arbitrary continuous probability distribution.

But what happens if the chances are no longer fair? If some players have a better chance
to draw a higher number? This will be our point of view in the present note. To be precise,
we allow player i to draw i random numbers, and take the best (largest) as her result. Now
it is intuitive that higher numbered players tend to have higher results, and thus tend to
appear later in the list that goes from smallest to largest. The distribution of permutations
is no longer uniform, and 12 . . . n should be much more likely than nn − 1 . . . 1.

A simple combinatorial motivation for this particular probabilistic model comes from
the theory of partitions: let p(n) be the number of partitions of n. There is an obvious
bijection between partitions of n − rk and partitions of n that contain the summand r at
least k times. Therefore, if Xn,r denotes the multiplicity of the summand r in a random
partition of n, we have

P(Xn,r ≥ k) =
p(n − rk)

p(n)
.

Date: July 24, 2010.
This material is based upon work supported by the National Research Foundation of South Africa under

grant number 2053748.
The second author is supported by the Austrian Science Fund (FWF) grants P20162-N18 and P20347-

N18.
This material is based upon work supported by the National Research Foundation of South Africa under

grant number 70560.
1



2 H. PRODINGER, C. SCHNEIDER, AND S. WAGNER

From Rademacher’s asymptotic formula for p(n), one obtains

P(Xn,r ≥ k) = exp

(

− πkr√
6n

+ O
( k2

n3/2
+

1√
n

)

)

,

uniformly for k = o(n3/4) if r is fixed. This shows that the sequence of renormalised random
variables (π/

√
6n )Xn,r converges weakly to an exponential distribution Exp(r). Since

min(Y1, Y2, . . . , Yr) ∼ Exp(r)

if Y1, Y2, . . . , Yr are i.i.d. random variables following an Exp(1)-distribution, we have an
immediate correspondence to the model described above (with a minimum in place of a
maximum). In the following, we consider several statistics of “unfair” permutations which
thus also have natural interpretations for partitions.

To begin with, let us note that the probability for player i to draw the highest number
of all players is precisely i/(n(n+1)/2), since she draws i of the n(n+1)/2 numbers. More
generally, if we want to compute the probability of a specific permutation σ = a1 a2 . . . an to
arise, we find that an/(n(n+1)/2) = an/(a1+a2+ · · ·+an) is the probability that player an

draws the highest number, an−1/(a1 + a2 + · · ·+ an−1) is the (conditional) probability that
player an−1 draws the highest number of the remaining players, etc., so that the probability
of the permutation a1 a2 . . . an is found to be

n
∏

j=1

aj
∑j

i=1 ai

=
n!

a1(a1 + a2) . . . (a1 + · · · + an)
. (1)

As an example, we consider the identical permutation with ai = i. Then a1 + · · · + ai =
i(i + 1)/2, and we get the probability

n!2n

n!(n + 1)!
=

2n

(n + 1)!
.

Likewise, for the reversed permutation with ai = n + 1 − i, the probability is easily found
to be

1

(2n − 1)!!
.

The following section deals with the distribution of the position of a given player, for
which we determine mean, variance and limit distributions in the cases that i is fixed and
that i ∼ αn for some constant α. In Sections 3 to 5, we study two classical permutation
parameters, namely the number of inversions (or, to be precise, anti-inversions, which is
just the number of pairs that are not inversions), and the number of ascents. These are but
two examples of interesting permutation statistics, many more have been studied in the
literature, see for instance the books of Bóna [2] and Stanley [15]; the interested reader is
also referred to the recent papers by Dukes [4] on permutation statistics on involutions and
by Regev and Roichman [13] on permutation statistics on the alternating group. Variations
of our two statistics (ascents/descents and inversions) were studied in yet another recent
article of Chebikin [3]. As one can imagine, there are many more parameters to be studied,
and we hope that others will find this paper interesting and continue our research.
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2. The position of a given player

In the introduction, we started with the probability that i is the highest scoring player.
The opposite, i. e., i being the lowest scoring player, is a bit more difficult. If we let
the players draw from a uniform distribution on [0, 1], then the i-th player’s result has
distribution function xi and thus density ixi−1. Hence we obtain

P(i is lowest scoring player) =

∫ 1

0

ixi−1 · (1 − x1) · · · (1 − xi−1) · (1 − xi+1) · · · (1 − xn) dx

=

∫ 1

0

ixi−1

1 − xi

n
∏

k=1

(1 − xk)dx

for the probability that all other players score more than player i. The fact that the
probabilities sum to 1 can be easily seen by noting that

d

dx

n
∏

k=1

(1 − xk) = −
n

∑

i=1

ixi−1

1 − xi
·

n
∏

k=1

(1 − xk).

These probabilities do not depend “too much” on n and indeed tend to limits as n → ∞,
which is intuitive. Let us give some numerical values of the limit probabilities

pi =

∫ 1

0

ixi−1

1 − xi

∞
∏

k=1

(1 − xk)dx

for i = 1, 2, . . . , 10:

.51609, .21321, .107309, .059750, .035488, .022071, .014216, .00941, .00638, .004408.

It was found (by means of a different approach) in the recent paper [6] that pi is precisely
the limit probability of the event that i is the summand in a random partition that occurs
with largest multiplicity, which agrees with the heuristics given in the introduction (it is
not difficult to make the argument precise). It was also shown there that

pi ∼ π
√

2ie−π
√

2i
3

as i → ∞.
Let us now go one step further and consider the distribution of the i-th player’s final

rank. Fix i first; the probability generating function for the random variable Rn,i defined
as the number of players ranked behind player i is then given by

rn,i(u) =
n−1
∑

k=0

rn,i,ku
k =

∫ 1

0

ixi−1

n
∏

j=1
j 6=i

(

1 − xj + uxj
)

dx.

Here, rn,i,k is the probability that there are precisely k players ranked behind player i (in
particular, rn,i,0 is the probability that i is the lowest scoring player). The mean of Rn,i
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can be determined directly: by independence of the random variables in the draw, player
i beats player j with probability i/(i + j). Hence, we obtain the expected value

E(Rn,i) =
n

∑

j=1
j 6=i

i

i + j
= i(Hn+i − Hi) −

1

2
,

where Hk =
∑k

j=1 1/j denotes the k-th harmonic number. For the variance, a different
approach is necessary since the events “player i beats player j”, j = 1, 2, . . . , n, are not
independent. Hence we differentiate the probability generating function with respect to u
and obtain

V(Rn,i) = r′′n,i(1) + r′n,i(1) − E(Rn,i)
2 = r′′n,i(1) + E(Rn,i) − E(Rn,i)

2.

For the first term, we get

r′′n,i(1) =

∫ 1

0

ixi−1

(

(

n
∑

j=1
j 6=i

xj
)2

−
n

∑

j=1
j 6=i

x2j

)

dx

=

∫ 1

0

ixi−1

( 2n
∑

j=2

(n − |n + 1 − j|)xj −
n

∑

j=1

2xi+j −
n

∑

j=1

x2j + 2x2i

)

dx

=
2n
∑

j=2

i(n − |n + 1 − j|)
i + j

−
n

∑

j=1

2i

2i + j
−

n
∑

j=1

i

i + 2j
+

2

3

= i(i + 1)Hi + 2iH2i − 2i(n + i + 1)Hn+i − 2iHn+2i + i(2n + i + 1)H2n+i

+
2

3
− i

n
∑

j=1

1

i + 2j
.

Hence we finally have the following theorem:

Theorem 1. The mean and variance of the number of players ranked behind player i are

E(Rn,i) = i (Hn+i − Hi) −
1

2
,

V(Rn,i) = i(i − 1)Hi + 2iH2i − 2i(n + i)Hn+i − 2iHn+2i + i(2n + i + 1)H2n+i

− i2(Hn+i − Hi)
2 − 1

12
− i

n
∑

j=1

1

i + 2j
.

For fixed i, the probability generating function tends to a limit:

ri(u) = lim
n→∞

rn,i(u) =

∫ 1

0

ixi−1

1 − xi + uxi

∞
∏

j=1

(

1 − xj + uxj
)

dx,

which is again the probability generating function of a discrete distribution (in particular,
the probability that i is the lowest scoring player is pi = ri(0)). Hence the sequence Rn,i
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of random variables converges weakly to a discrete limit ([5, Theorem IX.1]). This can be
interpreted in terms of partitions as well: if we rank the summands of a random partition
by their multiplicity, then the number of summands with larger multiplicity than i follows
the distribution given by the probability generating function ri(u) (in the limit).

The situation becomes more interesting if we let i grow with n, i. e., i ∼ αn for some
α ∈ (0, 1]. It is then easy to see that mean and variance are of order n and n2 respectively,
and so we study the normalised random variable Nn,i = n−1Rn,i, which turns out to
converge to a limit distribution:

Theorem 2. Let Rn,i be the number of players ranked behind player i, and Nn,i the nor-

malised random variable n−1Rn,i. If i ∼ αn, then Nn,i converges weakly to a random

variable with density

f(z) = − y log y

z − y1/α
, 0 ≤ z ≤ 1,

where y is given implicitly by

z = −α(1 − y1/α)

log y
.

Proof. The moment generating function of the random variable Nn,i is given by

Gn,i(t) = E(etNn,i) = rn,i(e
t/n) =

∫ 1

0

ixi−1

n
∏

j=1
j 6=i

(

1 − xj + et/nxj
)

dx

=

∫ 1

0

n
∏

j=1
j 6=i

(

1 − yj/i + et/nyj/i
)

dy

=

∫ 1

0

exp

( n
∑

j=1
j 6=i

log
(

1 − yj/i + et/nyj/i
)

)

dy.

We fix t and let n tend to infinity. Then

Gn,i(t) =

∫ 1

0

exp

( n
∑

j=1
j 6=i

log
(

1 +
t

n
yj/i + O(n−2)

)

)

dy

=

∫ 1

0

exp

(

t

n

n
∑

j=1

yj/i + O(n−1)

)

dy,

where the O-term is uniform in y. Recall that i ∼ αn, which implies

t

n

n
∑

j=1

yj/i =
t

n
· 1 − yn/i

y−1/i − 1

n→∞−→ −αt(1 − y1/α)

log y
.
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However, we need uniformity of this limit in order to interchange limit and integral. Sup-
pose that n is large enough so that |αn/i − 1| ≤ ǫ. Then

1

n

n
∑

j=1

(

yj/i − yj/(αn)
)

=
1

n

n
∑

j=1

yj/(αn)
(

yj(αn/i−1)/(αn) − 1
)

≥ 1

n

n
∑

j=1

yj/(αn)
(

yjǫ/(αn) − 1
)

≥ −ǫ(1 + ǫ)−1−1/ǫ,

since −ǫ(1 + ǫ)−1−1/ǫ is the minimum of the function u 7→ u(uǫ − 1). An analogous upper
estimate holds as well. Hence, if we replace the sum over yj/i by the sum over yj/(αn), the
difference tends to 0 uniformly in y. Now we recognize the latter sum as a Riemann sum
and obtain

∫ 1

0

yu/α du ≥ 1

n

n
∑

j=1

yj/(αn) ≥
∫ 1

0

yu/α du − 1

n
.

So we have uniform convergence to

t ·
∫ 1

0

yu/α du = −αt(1 − y1/α)

log y

and thus

lim
n→∞

Gn,i(t) =

∫ 1

0

exp
(

−αt(1 − y1/α)

log y

)

dy.

If we finally perform the substitution

z = −α(1 − y1/α)

log y
,

then we end up with

lim
n→∞

Gn,i(t) =

∫ 1

0

etz · y log y

y1/α − z
dz,

and the convergence is uniform if t is restricted to a compact interval. The above integral
is precisely the moment generating function of a random variable with density

f(z) = − y log y

z − y1/α
,

which finally proves that the sequence of normalised random variables Nn,i = n−1Rn,i con-
verges weakly to a random variable with the rather unusual density f(z) (see [5, Theorem
IX.4]) and therefore completes the proof of our theorem. �



UNFAIR PERMUTATIONS 7

3. The number of anti-inversions

An inversion in a permutation is a pair i < j such that ai > aj (player i beats player
j). Equivalently, one can consider anti-inversions, i. e., pairs i < j such that player j beats
player i. We expect that in our setting the number of anti-inversions should be higher
than the number of inversions. For ordinary permutations, these numbers are obviously
the same on average; inversions are a very classical permutation statistic, see e. g. [9].
The number of inversions is extremely important in the study of sorting algorithms; for its
distribution compare also [11]. There is also an interesting relation between edge weights
in recursive trees and inversions of permutations, as shown by Kuba and Panholzer [10].
Our aim in this section is to prove the following theorem:

Theorem 3. Let An be the number of anti-inversions in a random unfair permutation of

{1, 2, . . . , n}. Then the mean and variance of An are given by

E(An) =
(2n + 1)2

8
(H2n − Hn) +

1

16
Hn − 5n

8
(2)

and

V(An) =
n(29 + 126n + 72n2)

216
+

35 + 108n + 81n2 − 27n3

162
Hn

+
−3 − 16n − 10n2 + 8n3

12
H2n +

−16 + 27n − 54n3

108
H3n

+
n(1 + 3n + 2n2)

6

(

3H
(2)
2n − 2H(2)

n + 4
∑

1≤i≤2n

(−1)iHi

i

)

+
8

27

n
∑

i=1

1

3i − 2
+

(−1)nn

4

( n
∑

i=1

(−1)i

i
−

3n
∑

i=1

(−1)i

i

)

,

(3)

where Hk =
∑k

j=1 1/j and H
(2)
k =

∑k
j=1 1/j2 denote harmonic numbers and second-order

harmonic numbers respectively.

Remark. Asymptotically, the expected value is

E(An) =
log 2

2
n2 +

( log 2

2
− 3

4

)

n+O(log n) = 0.3465735903n2−0.4034264097n+O(log n),

which should be compared to the fair case, in which the average number of anti-inversions
is

n(n − 1)

4
= 0.25n2 − 0.25n,

which is smaller (as expected). The variance, on the other hand, is larger in the fair case
(which is also intuitive, since fair permutations are “more random” in a certain sense):

V(An) ∼ n3

(

1

3
− π2

18
+

2 log 2

3
− log 3

2
+

2 log2 2

3

)

∼ 0.01811n3,
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as compared to the classical case, where the variance is

n(2n + 5)(n − 1)

72
∼ 0.02777n3.

Proof. Let us use an indicator variable Xi,j, which is 1 if j beats i, and 0 otherwise. As
noted earlier, E(Xi,j) = j/(i + j) is the probability that j beats i.

Now the expected value of anti-inversions is

E(An) =
∑

1≤i<j≤n

j

i + j

=
∑

1≤j≤n

j(H2j−1 − Hj)

=
∑

1≤j≤n

jH2j −
n

2
−

∑

1≤j≤n

jHj.

The formula
∑

1≤j≤n

jHj =

(

n + 1

2

)

Hn − n(n − 1)

4

is classical [8], and

∑

1≤j≤n

jH2j =
∑

1≤j≤n

j
∑

1≤i≤j

[ 1

2i
+

1

2i − 1

]

=
∑

1≤i≤n

[ 1

2i
+

1

2i − 1

]

∑

i≤j≤n

j

=
∑

1≤i≤n

[ 1

2i
+

1

2i − 1

]

[(

n + 1

2

)

−
(

i

2

)]

=

(

n + 1

2

)

H2n − 1

4

∑

1≤i≤n

(i − 1) +
∑

1≤i≤n

[

− i

4
+

1

8
+

1

8(2i − 1)

]

=

(

n + 1

2

)

H2n − n(2n − 1)

8
+

1

8

(

H2n − 1

2
Hn

)

.

Summarizing, we get the desired formula (2).
The computation of the variance is much more involved. In principle, it could be done

in the same way, but the calculations are very lengthy, and so we decided to use the
summation toolbox Sigma.

By definition, the variance is given by

V(An) = E

(

∑

1≤i<j≤n

Xi,j ·
∑

1≤k<l≤n

Xk,l

)

−
∑

1≤i<j≤n

E(Xi,j) ·
∑

1≤k<l≤n

E(Xk,l).



UNFAIR PERMUTATIONS 9

If all indices are distinct, then the random variables Xi,j and Xk,l are independent, and
the corresponding terms cancel out. Therefore

V(An) = 2
∑

1≤i<j<k≤n

E(Xi,j · Xj,k) + 2
∑

1≤i<j<k≤n

E(Xi,k · Xj,k)

+ 2
∑

1≤i<j<k≤n

E(Xi,j · Xi,k) +
∑

1≤i<j≤n

E(Xi,j · Xi,j)

− 2
∑

1≤i<j<k≤n

E(Xi,j) · E(Xj,k) − 2
∑

1≤i<j<k≤n

E(Xi,k) · E(Xj,k)

− 2
∑

1≤i<j<k≤n

E(Xi,j) · E(Xi,k) −
∑

1≤i<j≤n

E(Xi,j) · E(Xi,j).

Each of the terms can be easily determined combinatorially: for instance, E(Xi,j · Xj,k) is
precisely the probability that the results xi, xj, xk of players i, j, k satisfy xi < xj < xk.
This is independent of all other players, and so the argument that leads to (1) also shows
that

E(Xi,j · Xj,k) =
kj

(i + j)(i + j + k)
.

Likewise, one obtains

E(Xi,k · Xj,k) =
k

i + j + k
,

E(Xi,j · Xi,k) = E(Xi,j · Xj,k) + E(Xi,k · Xk,j) =
kj

(i + j)(i + j + k)
+

kj

(i + k)(i + j + k)
,

and E(Xi,j · Xi,j) = E(Xi,j) = j/(i + j). Plugging all these formulas in, we can write the
variance as

V(An) = 2
∑

1≤i<j<k≤n

kj

(i + j)(i + j + k)
+ 2

∑

1≤i<j<k≤n

k

i + j + k

+ 2
∑

1≤i<j<k≤n

kj

(i + j)(i + j + k)
+ 2

∑

1≤i<j<k≤n

kj

(i + k)(i + j + k)
+

∑

1≤i<j≤n

j

i + j

− 2
∑

1≤i<j<k≤n

j

i + j
· k

j + k
− 2

∑

1≤i<j<k≤n

k

i + k
· k

j + k

− 2
∑

1≤i<j<k≤n

j

i + j
· k

i + k
−

∑

1≤i<j≤n

j2

(i + j)2
.
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The package Sigma is able to compute all these sums; the algorithm that is used for
these purposes is outlined in the following section. We have

∑

1≤i<j<k≤n

kj

(i + j)(i + j + k)
=

n(18n2 + 27n + 68)

216
+

−54n3 + 648n2 + 702n + 97

1296
Hn

+
(2n + 1)(2n2 − 7n − 3)

24
H2n +

54n3 + 27n − 16

432
H3n

+
(−1)nn

16

( n
∑

i=1

(−1)i

i
−

3n
∑

i=1

(−1)i

i

)

+
2

27

n
∑

i=1

1

3i − 2
,

(4)

∑

1≤i<j<k≤n

k

i + j + k
=

115n

216
+

−648n3 − 486n2 + 162n − 1

1296
Hn

+
216n3 + 162n2 − 54n − 53

432
H3n +

(−1)n(2n + 1)

16

( n
∑

i=1

(−1)i

i
−

3n
∑

i=1

(−1)i

i

)

+
(n + 1)(2n + 1)n

3

2n
∑

i=1

(−1)i

i
+

1

27

n
∑

i=1

1

3i − 2
,

(5)

∑

1≤i<j<k≤n

kj

(i + k)(i + j + k)
= −n(36n2 + 63n − 1)

108
+

−540n3 − 729n2 − 189n + 41

648
Hn

+
(2n + 1)

(

16n2 + 10n − 3
)

24
H2n +

−216n3 − 162n2 + 54n + 53

432
H3n

− (−1)n(2n + 1)

16

( n
∑

i=1

(−1)i

i
−

3n
∑

i=1

(−1)i

i

)

− 1

27

n
∑

i=1

1

3i − 2
,

(6)

∑

1≤i<j<k≤n

j

i + j
· k

j + k
= −n(n + 1)(2n + 1)

12
H2

n +
−16n3 + 4n2 + 24n + 7

48
Hn +

7n

24

− n(n + 1)(2n + 1)

12
H2

2n +

(

(2n + 1)
(

4n2 − 2n − 3
)

24
+

n(n + 1)(2n + 1)

6
Hn

)

H2n

− n(n + 1)(2n + 1)

12
H

(2)
2n − n(n + 1)(2n + 1)

6

2n
∑

i=1

(−1)iHi

i
,

(7)
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∑

1≤i<j<k≤n

k

i + k
· k

j + k
=

n(n + 1)(2n + 1)

12
H2

n +
56n2 + 40n − 9

192
Hn

− n(4n − 43)

96
+

(−28n2 − 20n − 7

96
− n(n + 1)(2n + 1)

6
Hn

)

H2n

+
n(n + 1)(2n + 1)

12

(

H(2)
n − H

(2)
2n + H2

2n

)

,

(8)

∑

1≤i<j<k≤n

j

i + j
· k

i + k
= −n

(

32n2 + 60n − 29
)

96
+

−64n3 − 72n2 − 8n − 15

192
Hn

+
32n3 + 44n2 + 20n − 1

96
H2n +

n(n + 1)(2n + 1)

6

(

H(2)
n − H

(2)
2n −

2n
∑

i=1

(−1)iHi

i

)

,

(9)

∑

1≤i<j≤n

j2

(i + j)2
=

(n − 6)n

12
− (n + 1)(2n + 1)n

6

(

H(2)
n − H

(2)
2n

)

+
5Hn

48
+

H2n

24
. (10)

For the evaluation of the sum
∑

1≤i<j≤n j/(i + j) see (2). Summarizing, we find the exact

expression (3) for the variance of An. �

4. Simplifying sums with Sigma

The Mathematica package Sigma [14] can be used to simplify multi-sums with the
symbolic summation paradigms of telescoping, creative telescoping and recurrence solving.
The underlying algorithms based on our refined difference field theory of Karr’s ΠΣ-fields [7]
do not only work for hypergeometric terms [12], but for rational expressions in terms
of indefinite nested sums and products. In the following we illustrate this approach by
carrying out the summation steps for the triple sum (5), i. e., for the sum

∑

1≤i<j<k≤n

k

i + j + k
=

n
∑

k=1

k−1
∑

j=1

j−1
∑

i=1

k

i + j + k
.

Here the overall tactic is to attack the sums from the innermost sum F1(k, j) =
∑j−1

i=1 k/(i+

j+k) over the middle sum F2(k) =
∑k−1

j=1 F1(k, j) to the outermost sum F3(n) =
∑n

k=1 F2(k),
and to eliminate as many summation quantifiers as possible. While processing one of these
quantifiers, say

∑k−1
j=1 F1(k, j), in the setting of ΠΣ-fields, the following preparation is cru-

cial: the occurring sums in F1(k, j) have to be represented in indefinite nested form w.r.t.
the summation index j. In order to accomplish this task algorithmically, we compute first
a recurrence relation of F1(k, j) in j:

F1(k, j + 1) − F1(k, j) = − k
(

1 + 3j + 2k + 2jk + k2
)

(1 + j + k)(2j + k)(1 + 2j + k)
. (11)

Internally, Sigma follows Zeilberger’s creative telescoping paradigm [12]. For a given d ≥ 1
and the given summand F0(k, j, n), it searches for constants c0(k, j), . . . , cd(k, j), free of the
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summation index i, and for a suitable expression g(k, j, i) such that the following summand
recurrence holds:

c0(k, j)F0(k, j, i) + · · · + cd(k, j)F0(k, j + d, i) = g(k, j, i + 1) − g(k, j, i). (12)

In our particular example, Sigma is successful with d = 1 and finds c0(k, j) = 1, c1 = −1,
and g(k, j, i) = −k/(i + j + k). Finally, summing this equation (12) over i from 1 to
i − 1 yields the recurrence (11) for F1(k, j). Note that the correctness of the summand
recurrence (12) can be easily verified and thus also the recurrence relation (11) is implied.

In the next step, Sigma solves the recurrence and generates the general solution

c + k

( j
∑

r=1

1

k + 2r − 2
−

j
∑

r=1

1

k + r
+

j
∑

r=1

1

k + 2r − 1

)

for c being a constant, i. e., not depending on j. Setting c = −1, the derived expression
and F1(k, j) agree for j = 1. And since both expressions are a solution of the first order
recurrence (11), they are equal for all j ≥ 1, i. e.,

F1(k, j) = −1 + k

( j
∑

r=1

1

k + 2r − 2
−

j
∑

r=1

1

k + r
+ b

j
∑

r=1

1

k + 2r − 1

)

; (13)

in particular, the identity holds for k, j ≥ 1. Summarizing, we succeeded in transforming
the input sum F1(k, j) to an expression where j does not occur inside of any summand.
Moreover, the correctness of all the computations can be verified by simple polynomial
arithmetic, and we obtain a rigorous proof of identity (13). In this form, we are ready to

deal with the next sum F2(k) =
∑k−1

j=1 F1(k, j). In this particular instance, Sigma finds

g(k, j) = −j + 1 − k(j + k)

j
∑

r=1

1

k + r
+

k(2j + k − 2)

2

j
∑

r=1

1

k + 2r − 2

+
k(2j + k − 1)

2

j
∑

r=1

1

k + 2r − 1

as a solution for the telescoping equation g(k, j + 1) − g(k, j) = F1(k, j). Hence summing
this equation over j from 1 to k − 1 gives

F2(k) =
k−1
∑

j=1

F1(k, j) = −k + 1 − 2k2

k−1
∑

r=1

1

k + r

+
3(k − 2)k

2

k−1
∑

r=1

1

k + 2r − 2
+

(3k − 1)k

2

k−1
∑

r=1

1

k + 2r − 1
.

(14)

In order to handle the last summation quantifier, Sigma has to transform the occurring
sums of (14) in terms of indefinite nested sums and products w.r.t. k. Here we follow



UNFAIR PERMUTATIONS 13

exactly the same strategy as above. By telescoping, creative telescoping, and recurrence
solving we find the following alternative representations:

k−1
∑

r=1

1

k + r
= − Hk + H2k −

1

2k
,

k−1
∑

r=1

1

k + 2r − 2
= − Hk

2
+

H3k

2
− (−1)k 1

2

( k
∑

r=1

(−1)r

r
−

3k
∑

r=1

(−1)r

r

)

+
3k − 4

3k(3k − 2)
,

k−1
∑

r=1

1

k + 2r − 1
= − Hk

2
+

H3k

2
+ (−1)k 1

2

( k
∑

r=1

(−1)r

r
−

3k
∑

r=1

(−1)r

r

)

+
1

1 − 3k
.

Using this information we find

F2(k) = −2H2kk
2 +

k

4
(2k + 3)Hk +

3(2k − 1)k

4
H3k

+ (−1)k k

4

( k
∑

r=1

(−1)r

r
−

3k
∑

r=1

(−1)r

r

)

+
1

3
,

and we are ready to deal with the sum F3(n). In this case, Sigma finds the solution

g(k) =
115k − 72

216
+

216k3 + 162k2 − 378k − 1

1296
Hk −

(k − 1)k(2k − 1)

3
H2k

+
1

27

k
∑

r=1

1

3r − 2
+

216k3 − 486k2 + 270k − 53

432
H3k

+
(−1)k(2k − 1)

16

( 3k
∑

r=1

(−1)r

r
−

k
∑

r=1

(−1)r

r

)

for the telescoping equation g(k + 1) − g(k) = F2(k). To this end, summing this equation
over k from 1 to n produces the right hand side of (5). Once more we emphasize that the
computation steps for the identity we found, and similarly for all the identities (4)–(10),
can be verified independently by simple polynomial arithmetic. We remark further that the
closed form solutions (4)–(10) can be written in terms of harmonic sums [1, 16] – truncated
versions of multiple-zeta-values – that arise frequently in particle physics.

5. The number of ascents

Let Ui be the indicator random variable that is 1 if the left neighbour of i in a random
unfair permutation is smaller than i, and 0 otherwise. The sum over all Ui is the random
variable “number of ascents”.

Let us consider the probability that the left neighbour of i is j for fixed i and j. If player
i’s best result is y and player j’s best result is x, then nobody else has a best result in the
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range [x, y], and so we find the following formula for this probability:
∫∫

0≤x<y≤1

iyi−1jxj−1 1

(1 − yj + xj)(1 − yi + xi)

n
∏

k=1

(1 − yk + xk)dx dy.

Summing over all pairs (i, j), we get the expected number of ascents:

∑

1≤j<i≤n

∫∫

0≤x<y≤1

iyi−1jxj−1

(1 − yj + xj)(1 − yi + xi)

n
∏

k=1

(1 − yk + xk)dx dy.

We make use of this integral representation to prove the following theorem:

Theorem 4. The average number of ascents in an unfair permutation of n is

n

2
+

3 log n

8
+ O(1).

Proof. The proof proceeds in several stages: first of all, note that by analogous reasoning,

∑

1≤j<i≤n

∫∫

0≤x<y≤1

ixi−1jyj−1

(1 − yj + xj)(1 − yi + xi)

n
∏

k=1

(1 − yk + xk)dx dy

is exactly the expected number of descents. Since the sum of the two expected values must
obviously be n − 1, it suffices to show that the difference is 3 log n/4 + O(1), i.e.,

∑

1≤j<i≤n

ij

∫∫

0≤x<y≤1

yi−1xj−1 − xi−1yj−1

(1 − yj + xj)(1 − yi + xi)

n
∏

k=1

(1 − yk + xk)dx dy =
3 log n

4
+ O(1). (15)

Now we perform the change of variables x = yz to simplify the limits of the integral, which
leaves us with the expression

∑

1≤j<i≤n

ij

∫ 1

0

∫ 1

0

yi+j−1(zj−1 − zi−1)

(1 − yj + yjzj)(1 − yi + yizi)

n
∏

k=1

(1 − yk + ykzk)dy dz. (16)

Let us now focus on a single summand

S(i, j) =

∫ 1

0

∫ 1

0

yi+j−1(zj−1 − zi−1)
∏

k

(1 − yk + ykzk)dy dz,

where the product is over all k ∈ [1, n] except for i and j. It turns out that the “essential
part” of the integral is the region where 1 − y is of order (i + j)−1, and 1 − z of order
(i + j)−2. Write s = i + j (note for later use that s ≤ 2n), let ǫ > 0 be sufficiently small
(for instance, ǫ = 1/100), and consider the region

R = {(y, z) : s−1−7ǫ ≤ 1 − y ≤ s−1+ǫ and 1 − z ≤ s−2+3ǫ}.
We first show that the integral over [0, 1] × [0, 1] \ R is negligible:
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• If 1 − y ≥ s−1+ǫ, then

yi+j−1 = ys−1 ≤ (1 − s−1+ǫ)s−1 ≪ exp(−sǫ),

and so the integral over the region {(y, z) : 1 − y ≥ s−1+ǫ} is O(exp(−sǫ)) (the
remaining factors are ≤ 1).

• Suppose that 1− z ≥ s−2+3ǫ. We can also assume now that 1− y ≤ s−1+ǫ. For any
k with s1−ǫ ≤ k ≤ 2s1−ǫ, we now have

yk − ykzk = yk(1 − zk) ≥ (1 − s−1+ǫ)2s1−ǫ

(1 − (1 − s−2+3ǫ)s1−ǫ

) ≫ s−1+2ǫ,

which shows that the product in the integrand satisfies
∏

k

(1 − yk + ykzk) ≤ (1 − Cs−1+2ǫ)s1−ǫ

= O(exp(−Csǫ))

for some C > 0. Hence the integral over the region {(y, z) : 1− z ≥ s−2+3ǫ} is also
O(exp(−Csǫ)).

• We can now already deduce that

zj−1 − zi−1 = zj−1(1 − zi−j) = (1 + O(s−1+3ǫ)) · (i − j)(1 − z) ≪ s−1+3ǫ. (17)

Therefore, the whole integrand is O(s−1+3ǫ), and the integral over the region {(y, z) :
1 − y ≤ s−1−7ǫ} is

O
(

s−1+3ǫ · s−1−7ǫ · s−2+3ǫ
)

= O(s−4−ǫ).

Combining the three estimates, we obtain

S(i, j) =

∫∫

R

yi+j−1(zj−1 − zi−1)
∏

k

(1 − yk + ykzk)dy dz + O(s−4−ǫ).

In addition to (17), we also need to estimate the remaining two factors in the integrand;
the first factor is easy:

yi+j−1 = e−s(1−y)
(

1 + O(s(1 − y)2)
)

= e−s(1−y)(1 + O(s−1+2ǫ)).

It remains to deal with the product: we take the logarithm to obtain
∑

k

log(1 − yk + ykzk).

Our first claim is that yk − ykzk = yk(1 − zk) is small for all k; indeed, if k ≥ s1+8ǫ, then

yk(1 − zk) ≤ yk ≤ (1 − s−1−7ǫ)s1+8ǫ ≪ exp(−sǫ).

If, on the other hand, k ≤ s1+8ǫ, then

yk(1 − zk) ≤ 1 − zk ≤ 1 − (1 − s−2+3ǫ)s1+8ǫ ≪ s−1+11ǫ.

This holds in particular for k = i and k = j, so that we may extend the summation to the
entire interval [1, n] at the expense of a small error term. Hence we have

∑

k

log(1 − yk + ykzk) =
n

∑

k=1

log(1 − yk + ykzk) + O(s−1+11ǫ)
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= −
n

∑

k=1

yk(1 − zk) −
n

∑

k=1

∞
∑

m=2

1

m
(yk(1 − zk))m + O(s−1+11ǫ)

= −
n

∑

k=1

yk(1 − zk) + O

( n
∑

k=1

(yk(1 − zk))2

1 − yk(1 − zk)

)

+ O(s−1+11ǫ)

= − y(1 − z)

(1 − y)(1 − yz)
+

yn+1

1 − y
− (yz)n+1

1 − yz
+ O

( ∞
∑

k=1

y2k(1 − zk)2

)

+ O(s−1+11ǫ)

= − y(1 − z)

(1 − y)(1 − yz)
+

yn+1

1 − y
− (yz)n+1

1 − yz
+ O

( y2(1 − z)2(1 + y2z)

(1 − y2)(1 − y2z2)(1 − y2z)

)

+ O(s−1+11ǫ)

= − y(1 − z)

(1 − y)(1 − yz)
+

yn+1

1 − y
− (yz)n+1

1 − yz
+ O

(

(s−2+3ǫ)2

(s−1−7ǫ)3

)

+ O(s−1+11ǫ)

= − y(1 − z)

(1 − y)(1 − yz)
+

yn+1

1 − y
− (yz)n+1

1 − yz
+ O(s−1+27ǫ).

Next we approximate yn+1 and zn+1; first, if 1 − z ≥ n−1−ǫ, then also

1 − y ≥ n(−1−ǫ)(−1−7ǫ)/(−2+3ǫ) ≥ n−1+ǫ

by the definition of the region R, and thus yn+1 ≪ exp(−nǫ) ≪ exp(−(s/2)ǫ). Otherwise,

zn+1 = 1 − (n + 1)(1 − z) + O(n(1 − z)2)

and thus

(yz)n+1

1 − yz
=

yn+1

1 − yz
(1 − (n + 1)(1 − z)) + O

((1 − z)2

1 − yz
· nyn+1

)

=
yn+1

1 − yz
(1 − (n + 1)(1 − z)) + O

((1 − z)2

1 − y
· ne−n(1−y)

)

=
yn+1

1 − yz
(1 − (n + 1)(1 − z)) + O

((1 − z)2

(1 − y)2
· n(1 − y)e−n(1−y)

)

=
yn+1

1 − yz
(1 − (n + 1)(1 − z)) + O

((1 − z)2

(1 − y)2

)

=
yn+1

1 − yz
(1 − (n + 1)(1 − z)) + O(s−2+20ε).

It follows that
∑

k

log(1 − yk + ykzk)

= − y(1 − z)

(1 − y)(1 − yz)
+

yn+1

1 − y
− yn+1

1 − yz
(1 − (n + 1)(1 − z)) + O(s−1+27ǫ)

= − y(1 − z)

(1 − y)(1 − yz)
(1 − yn(n + 1 − ny)) + O(s−1+27ǫ).
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We can apply a similar argument to show that yn may be replaced by e−n(1−y), and it is
also easy to see that

y(1 − z)

(1 − y)(1 − yz)
=

1 − z

(1 − y)2
+ O(s−1+27ǫ).

Hence we finally obtain

S(i, j) =

∫∫

R

(i − j)(1 − z) exp
(

−s(1 − y) − 1 − z

(1 − y)2

(

1 − e−n(1−y)(n + 1 − ny)
)

)

dy dz

·
(

1 + O(s−1+27ǫ)
)

+ O(s−4−ǫ).

Now we complete the range of the integral again; the integral over the region 0 ≤ 1 − y ≤
s−1−7ǫ (and 0 ≤ 1 − z ≤ s−2+3ǫ) only gives rise to an error term O(s−4−ǫ) by trivial
estimates, as before. Since the integral over R is also easily estimated to be O(s−4+7ǫ), we
thus have

S(i, j) = (i − j)

∫ 1

y=1−s−1+ǫ

∫ 1

z=1−s−2+3ǫ

(1 − z)

· exp
(

−s(1 − y) − 1 − z

(1 − y)2

(

1 − e−n(1−y)(n + 1 − ny)
)

)

dy dz + O(s−4−ǫ + s−5+34ǫ).

The change of variables y = 1 − u, z = 1 − v transforms this to

S(i, j) = (i − j)

∫ s−1+ǫ

u=0

∫ s−2+3ǫ

v=0

v exp
(

−su − v

u2

(

1 − e−nu(1 + nu)
)

)

du dv + O(s−4−ǫ).

We further extend the range of integration to the entire quarter-plane [0,∞) × [0,∞):

• For u ≥ s−1+ǫ and v ≤ s−2+3ǫ, we estimate the integrand by ve−su and obtain an
error term of order O(exp(−sǫ)).

• For u ≤ n−1 and v ≥ s−2+3ǫ, we use the inequality

(

1 − e−nu(1 + nu)
)

≥
(

1 − 2

e

)

(nu)2 ≥ Cs2u2

for some C > 0 to obtain an estimate of the form O(exp(−Cs3ǫ)).
• For n−1 ≤ u ≤ s−1+ǫ and v ≥ s−2+3ǫ, we use the fact that (1 − e−nu(1 + nu)) ≥ C

for some C > 0 to estimate the integral by
∫ s−1+ǫ

u=n−1

∫ ∞

v=s−2+3ǫ

v exp

(

−su − Cv

u2

)

du dv

=

∫ s−1+ǫ

u=n−1

u2(Cs3ǫ + s2u2)

C2s2
exp

(

−su − Cs−2+3ǫ

u2

)

du

≪
∫ s−1+ǫ

u=n−1

s−4+5ǫ exp (−su − Csǫ) du

≪ exp(−Csǫ).
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• Finally, if u ≥ s−1+ǫ and v ≥ s−2+3ǫ, we also use the inequality (1 − e−nu(1 + nu)) ≥
C to obtain an estimate of the form O(exp(−sǫ)).

Putting everything together, we find

S(i, j) = (i − j)

∫ ∞

u=0

∫ ∞

v=0

v exp
(

−su − v

u2

(

1 − e−nu(1 + nu)
)

)

du dv + O(s−4−ǫ)

= (i − j)

∫ ∞

u=0

u4e−su

(1 − e−nu(1 + nu))2 du + O(s−4−ǫ).

Performing the final change of variables u = w/s yields

S(i, j) = (i − j)s−5

∫ ∞

w=0

w4e−w

(1 − e−nw/s(1 + nw/s))
2 dw + O(s−4−ǫ).

The integral represents a function I(s/n) that is easily seen to be convex and increasing;
furthermore, I(0) = Γ(5) = 24. Since s/n is also bounded above (by 2), we obtain the
final estimate

S(i, j) = (i − j)s−5 (24 + O(s/n)) + O(s−4−ǫ).

It remains to take the sum

∑

1≤j<i≤n

ijS(i, j) =
∑

1≤j<i≤n

(

ij(i − j)

(i + j)5
(24 + O((i + j)/n)) + O((i + j)−2−ǫ)

)

(18)

=
3 log n

4
+ O(1)

to complete the proof of (15) and thus the entire theorem. �

Although it is not needed for our asymptotic formula it is interesting to note that the
sum on the right hand side of (18) simplifies with Sigma to

∑

1≤j<i≤n

ij(i − j)

(i + j)5
=

H2n

32
− (4n2 + 4n − 1)(2n + 1)2

32
H

(5)
2n +

512n4 + 1024n3 + 512n2 − 1

1024
H(5)

n

+
n(n + 1)(2n + 1)

2

(

H
(4)
2n − H(4)

n

)

+
64n2 + 64n − 1

128
H(3)

n − 8n2 + 8n + 1

16
H

(3)
2n

=
1

32
(log n + γ) +

31ζ(5)

1024
− 9ζ(3)

128
+

1

384
(−5 + 12 log 2) + O(1/n);

here ζ(x) denotes the Riemann Zeta function.

Remark. Intuitively, the difference between the number of inversions (whose average dif-
fers from the average for fair permutations) and the number of ascents (whose average
differs only in the lower terms) lies in the fact that the number of inversions is a “global”
permutation statistic as opposed to the “local” ascents.
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