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Abstract. The number of spanning trees of a graph, also known as the complexity, is in-

vestigated for graphs which are constructed by a replacement procedure yielding a self-similar

structure. It is shown that exact formulæ for the number of spanning trees can be given for
sequences of self-similar graphs under certain symmetry conditions. These formulæ exhibit in-

teresting connections to the theory of electrical networks. Examples include the well-known
Sierpiński graphs and their higher-dimensional analoga. Several remarkable auxiliary results are

provided on the way—for instance, a property of the number of rooted spanning forests is proven

for graphs with a high amount of symmetry. Furthermore, it is shown that the enumeration of
spanning trees can be simplified by a procedure similar to the Wye-Delta-transform under certain

circumstances.

1. Introduction

The number of spanning trees of a finite graph or multigraph X, also known as the complexity
τ(X), is certainly one of the most important graph-theoretical parameters. Its applications range
from the theory of networks, where the number of spanning trees is used as a measure for network
reliability [14, 36] to statistical physics, where the complexity is of use in the study of lattices [40],
and theoretical chemistry, in connection with the enumeration of certain chemical isomers [8].

Of course, counting the number of spanning trees in certain graphs or graph classes is also a
prominent problem in combinatorics. Kirchhoff’s celebrated matrix tree theorem [26] relates the
properties of an electrical network to the number of spanning trees in the underlying graph. There
is a large variety of proofs for the matrix tree theorem, see for instance [7, 12, 21], and several
extensions and generalizations have been provided in the past. One of them, due to Moon [34],
which gives a general formula for spanning forests, will be of vital importance within this paper.
It is also known that there are connections to other enumeration problems—namely, those for
Eulerian cycles [21] and for perfect matchings [23].

In view of the large number of interpretations and applications, it is not surprising that many
papers deal with exact formulæ for the number of spanning trees in certain graph classes. Cayley’s
well-known enumeration of labelled trees [11], which is equivalent to the enumeration of spanning
trees in a complete graph Kn, can be seen as the starting point for this path of investigation:
Cayley’s theorem states that

τ(Kn) = nn−2.

This formula has been generalized in many ways. For instance, the complexity of a complete
multipartite graph Kn1,...,nd

is given by

τ(Kn1,...,nd
) = nd−2

d∏
i=1

(n− ni)ni−1,

where n = n1 + · · ·+ nd [2, 17]. A nice combinatorial proof for this formula (involving a modified
form of Prüfer sequences) has been given by Lewis [29]. Further examples of closed formulæ
include those for wheels, fans, ladders, prisms and other special families [4, 6, 35, 44]. A collection
of formulæ can also be found in Berge’s book [5].
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Most of the graphs for which an exact enumeration of spanning trees is possible are highly
symmetric—indeed, there are certain methods which work well for graphs with a large automor-
phism group, such as the fullerenes investigated in [8]. Of course, regular graphs are of particular
interest in this context, see also [1, 13, 15, 32].

Lattices, in particular rectangular and triangular lattices, are of special interest in theoretical
physics—here, various graph-theoretical parameters are important, such as the number of perfect
matchings [22], but also the number of spanning trees [19]. The quantity

h = lim
n→∞

log(τ(Xn))
|VXn|

,

where Xn is an increasing sequence of graphs (such as finite sections of a lattice) approaching an
infinite graph (in some sense), is a useful descriptor in this context. In [30] this quantity is termed
tree entropy and its relation to the simple random walk is studied. A closed formula for h in terms
of return probabilities of the infinite graph in the transitive setting is derived. In the case of the
square lattice it is known that h = 4G

π , where

G =
∞∑
k=0

(−1)k

(2k + 1)2
≈ 0.915965594 . . .

is Catalan’s constant, and for the regular tree of degree four h is given by h = 3 log( 3
2 ), see [9, 32, 40]

and the references therein for this and several other examples.

The graphs we are going to investigate in this paper are of a self-similar nature, and they are
typically related to fractals. Even though these graphs are quite popular in the study of electrical
networks and random walks (see the lecture notes of Barlow [3], Kigami’s book [24], and the ref-
erences therein), it seems that the enumeration of spanning trees (mainly exact enumeration) has
been somewhat neglected up to now in spite of the obvious connections. The strong relation be-
tween the tree counting problem and electrical networks, Laplacians and random walks is exhibited
by the main result involving the so-called spectral dimension or resistance scaling factor, respec-
tively. These notions appear in the study of the Laplace operator on fractals like the Sierpiński
gasket. The resistance scaling factor is usually defined by an eigenvalue problem of a non-linear
map, called the renormalization map, using energy forms, see for example [33].

Using Kirchhoff’s theorem the complexity of a graph is closely related to the spectrum of
the combinatorial Laplacian. For self-similar graphs and fractals the Dirichlet- and Neumann-
spectrum of the Laplace operator was studied from several points of view, see [31, 37, 39] and the
references therein. Sabot [37] has shown that the spectrum is related to the dynamical behavior of
a multi-dimensional polynomial. In the case of the Sierpiński gasket and other highly symmetric
fractals the dimension of this map reduces to 1, see [18, 39].

The substitution process that is used for defining sequences of self-similar graphs in this paper
is essentially a special case of the construction that was defined in the authors’ paper [42], where
enumeration problems are treated from a more general point of view. It is one of several possibilities
to define self-similarity on graphs (see [27, 31, 37] for instance).

The paper will be structured as follows: first, the necessary preliminaries on set partitions and
group actions are given; then, we introduce auxiliary tools from the theory of electrical networks,
including the relations between electrical networks and spanning forests. Next, we turn to our
graph construction process and prove a decomposition property for spanning forests. This can
be used to establish a system of polynomial recurrences for the number of spanning trees and
certain auxiliary parameters. Finally, it is shown how the dynamical system given by this multi-
dimensional polynomial can be reduced and simplified in a step-by-step manner, thus yielding a
closed formula (see Theorem 29): if X0, X1, . . . is a sequence of finite self-similar (multi-)graphs
satisfying additional assumptions (connectedness and symmetry), the complexity τ(Xn) of Xn is
given by

τ(Xn) = τ(X0)
(
|EXn|
|EX0|

)c(1−2/ds)

C
|EXn|
|EX0|

−1
,
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where c, C are constants depending on the graph sequence, and ds denotes the associated spectral
dimension. This formula was already obtained by the authors for the special case of finite Sierpiński
graphs, see [43]. Finally, several examples for the application of the results are given as well.

2. Preliminaries

We write N for the positive integers and N0 for the positive integers with zero. A multigraph
X = (VX,EX) has a vertex set VX and an edge multiset EX with{

{x, y} : x, y ∈ VX
}

as underlying set of elements and is always supposed to be undirected. Of course, an edge of the
form {x, x} = {x} is a loop at the vertex x. If the multigraph X has no multiple edges and no
loops, we regard X as a (simple) graph. An isomorphism γ : X → Y between two multigraphs
X and Y is a pair (γv, γe), where γv : VX → V Y and γe : EX → EY are bijections, so that
γe({x, y}) = {γv(x), γv(y)} holds for all edges {x, y} ∈ EX. The automorphism group Aut(X)
is the set of all isomorphisms from X to itself and its elements are called automorphisms. If no
ambiguity can occur, we write γ(x) or γx instead of γv(x) if γ : X → Y is an isomorphism and
x ∈ VX a vertex.

2.1. Number partitions and set partitions. For n ∈ N denote by P(n) the set of number
partitions of the integer n, and write νk(p) for the number of occurrences of k ∈ N in the partition
p ∈ P(n), so that

n =
∑
k∈N

k · νk(p)

and νk(p) = 0 for k > n. In addition, define |p| by

|p| =
∑
k∈N

νk(p)

and set Pr(n) = {p ∈ P(n) : |p| = r} for r ∈ N. If a number partition has k1, . . . , kr as its distinct
addends, we write

p = k
νk1 (p)
1 · · · kνkr (p)

r

as a shorthand. Usually, the summands k1, . . . , kr are sorted in descending order. For example
312312 means the number partition 3 + 2 + 2 + 2 + 1 + 1.

Let M be a finite set. A set partition B of M is a family of non-empty and disjoint subsets of
M , so that their union is equal to M . The elements of M are called blocks.

The block sizes of B define a number partition p of |M | and the set partition B is said to be
of type p in this case. For convenience, the type p of B is denoted `(B) = p. Let B(M) be the set
of all set partitions of M and denote by Bp(M) ⊆ B(M) those partitions of type p. Of course,

B(M) =
⊎

p∈P(|M |)

Bp(M).

If K is a subset of M , then the restriction B|K ∈ B(K) of B ∈ B(M) is given by

B|K =
{
b ∩K : b ∈ B, b ∩K 6= ∅

}
.

Finally, set ϕ(B) = {ϕ(b) : b ∈ B} for any B ∈ B(M) and any map ϕ : M → R. Of course,
ϕ(B) ∈ B(ϕ(M)) if ϕ is one-to-one.

Let I be an index set. For i ∈ I let Mi ⊆ M be a non-empty subset of M , so that the union
of all Mi is equal to M . Let Bi be a set partition of Mi and denote by B = {Bi : i ∈ I} the family
of these partitions. Then define a multigraph XB as follows:

VXB =
{

(B, b) : B ∈ B, b ∈ B
}

and two distinct vertices (B1, b1) and (B2, b2) are joined by |b1 ∩ b2| edges in EXB. By definition
XB does not contain any loops. We call B
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• cycle-free, if the multigraph XB is cycle-free (and hence simple),
• connected, if XB is so.

Notice that two blocks from distinct partitions of a cycle-free family have at most one point in
common. The connected components of XB naturally define a set partition on M , which is called
the transitive union Union(B) ∈ B(M) of B: each block of Union(B) is given as the union of all
blocks of the family B, which are contained in one connected component of XB. In other words,
Union(B) is the finest partition of M , such that each block of the family B is contained in one block
of Union(B).

The number b(p) of set partitions of M of type p is given by

b(p) = |Bp(M)| = |M |!
(∏
k∈N

νk(p)! (k!)νk(p)

)−1

. (1)

Let o, p be number partitions of |M | and fix a set partition O of M with `(O) = o. Denote by A(O)
the family of set partitions P of M with the property that {O,P} forms a cycle-free, connected
family, and setA(O, p) = A(O)∩Bp(M). Then the number α(O, p) = |A(O, p)| only depends on the
type of O and not on O itself. Thus we may define α(o, p) = α(O, p) for any O ∈ Bo(M). If O and
P are set partitions of M , so that B = {O,P} is cycle-free and connected, then |O|+ |P | = |M |+1,
since the associated graph XB is a tree, |VXB| = |O|+ |P |, and |EXB| = |M |. This implies

A(O) =
⊎

p∈Pk(|M |)

A(O, p), (2)

where k is given by k = |M |+ 1− |O|.

Theorem 1. Let M be a finite set and o, p ∈ P(|M |) with |o|+ |p| = |M |+ 1. Then the formula

α(o, p) = (|o| − 1)! (|p| − 1)!
∏
k∈N

kνk(o)

νk(p)!
(
(k − 1)!

)νk(p)
(3)

holds.

Proof. For the moment write Pr for the set of all number partitions with exactly r terms and set
ν(p) = n if p ∈ P(n). Fix some set partition O ∈ Bo(M) and some integer r ≥ 1 with νr(p) > 0.
Let P be a set partition of type p, such that {O,P} is a cycle-free, connected family. Then each
element of a block b ∈ P of size r (there are νr(p) possibilities to choose such a block) is contained in
exactly one of r pairwise different blocks c1, . . . , cr of O. Denote by q ∈ Pr the type of {c1, . . . , cr}.
Then there are ∏

k∈N

(
νk(o)
νk(q)

)
kνk(q)

choices for the r elements of the block b inside the partition O, if the type of the “neighboring”
blocks {c1, . . . , cr} is given by q. Now consider P ′ = P \ {b} and

O′ = (O \ {o1, . . . , or}) ∪ {(c1 ∪ · · · ∪ cr) \ b}.

Both P ′ and O′ are set partitions of M \ b, and the family {O′, P ′} is cycle-free and connected.
The type p′ of P ′ is obtained from p by removing one addend of size r: νr(p′) = νr(p)− 1. On the
other hand, the type o′ of O′ is given by

νk(o′) =

{
νk(o)− νk(q) + 1 if k = ν(q)− r,

νk(o)− νk(q) otherwise.

The partition O′ emerges from O by removing νk(q) blocks of size k and adding one block of size∑
k∈N

(k − 1)νk(q) = ν(q)− r. (4)

Obviously, p′ and o′ are both number partitions of |M | − r and |p′| = |p| − 1, |o′| = |o| − r + 1.
Finally, we point out the dependency of o′ on q.
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The considerations above yield a recursive formula for α(o, p):

α(o, p) =
1

νr(p)

∑
q∈Pr

α(o′, p′)
∏
k∈N

(
νk(o)
νk(q)

)
kνk(q). (5)

Now, we may proceed by induction. Equation (3) is trivial if |o| = 1 or |p| = 1. The hypothesis
for α(o′, p′) implies

α(o′, p′) = (|o| − r)! (|p| − 2)! (r − 1)! νr(p)(ν(q)− r)
∏
k∈N

kνk(o)−νk(q)

νk(p)!
(
(k − 1)!

)νk(p)
.

Inserting this into (5) shows that it suffices to prove

(|p| − 1)
(
|o| − 1
r − 1

)
=
∑
q∈Pr

(ν(q)− r)
∏
k∈N

(
νk(o)
νk(q)

)
.

The term on the right-hand side, which we denote by A, can be written as

A = [yr]
∂

∂x

∏
k∈N

∑
j∈N0

(
νk(o)
j

)
x(k−1)jyj

∣∣∣∣
x=1

bearing the identity (4) in mind. However, some elementary transformations yield

A = [yr]
∂

∂x

∏
k∈N

(1 + xk−1y)νk(o)

∣∣∣∣
x=1

= [yr]
∑
j∈N

νj(o)(j − 1)xj−2y

1 + xj−1y

∏
k∈N

(1 + xk−1y)νk(o)

∣∣∣∣
x=1

= [yr]
∑
j∈N

νj(o)(j − 1)y(1 + y)|o|−1

= (|M | − |o|)
(
|o| − 1
r − 1

)
,

which proves the theorem, since |o|+ |p| = |M |+ 1. �

Define number partitions pk ∈ P(|M |) for k ∈ {1, . . . , |M |} as follows: For k = 1 set p1 = 1|M |

and for k ≥ 2 set pk = k1 1|M |−k. Thus

pk = k + 1 + · · ·+ 1︸ ︷︷ ︸
|M |−k times

and |pk| = |M | + 1 − k for all k ∈ {1, . . . , |M |}. Let p ∈ P(|M |) with |p| = k. Then we set
αp = α(pk, p). Some simplifications lead to

αp = (|M | − |p|)! |p|!
(∏
k∈N

νk(p)!
(
(k − 1)!

)νk(p)

)−1

.

Suppose that F ⊆ M has |p| elements, then αp counts the number of set partitions P ∈ Bp(M),
each of whose blocks contains exactly one element from F . Last, but not least, we remark that
the quotient

α(o, p)
αp

=
1

|M |+ 1− |o|
∏
k∈N

kνk(o)

is independent of p for all o ∈ P(|M |) with |o| + |p| = |M | + 1 and will be denoted by βo. This
implies α(o, p) = βoαp.
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2.2. Symmetry. An action of a group Γ on a set M is called transitive, if for any x, y ∈ M
there is a γ ∈ Γ with γx = y. The action of Γ naturally extends to tuples and subsets of M :
γ(m1, . . . ,mk) = (γm1, . . . , γmk) for a tuple (m1, . . . ,mk) ∈ Mk and γK = {γm : m ∈ K} for a
subset K ⊆M . The action of Γ on M is called

• k-transitive, if Γ acts transitive on the set of k-tuples in Mk with distinct entries and
• k-homogeneous, if Γ acts transitive on the set of k-subsets of M .

For a subset K ⊆M we denote by Stab(K)(Γ ) and Stab{K}(Γ ) the pointwise and setwise stabilizer
of K, respectively:

Stab(K)(Γ ) =
{
γ ∈ Γ : γm = m for all m ∈ K

}
and

Stab{K}(Γ ) =
{
γ ∈ Γ : γK = K

}
.

Then the restriction γ 7→ γ|K defines a homomorphism from Stab{K}(Γ ) to the symmetric group
Sym(K) of K, whose kernel is Stab(K)(Γ ). The image of this homomorphism is denoted by
Action(Γ,K) ≤ Sym(K).

Let us mention some facts about group actions (see for example [10, 16]): Obviously k-tran-
sitivity implies k-homogeneity and (k − 1)-transitivity if 2 ≤ k ≤ |M |. On the other hand,
k-homogeneity implies (k−1)-transitivity if 2 ≤ k ≤ 1

2 |M |. Using the classification of finite simple
groups [20], Action(Γ,M) is equal to the alternating group Alt(M) or the symmetric group Sym(M)
of M , if Γ acts 6-transitive on M (see [10, 16]).

We say that Γ acts partition-homogeneous on a finite set M , if for any number partition
p ∈ P(|M |) the action of Γ is transitive on Bp(M), where γB = {γb : b ∈ B} for B ∈ B(M).

Lemma 2. If Γ acts partition-homogeneous on M and |M | > 2, then Γ acts k-homogeneous for
all k ∈ {1, . . . , |M |}.

Proof. Let k ≤ 1
2 |M | and K1,K2 be two k-subsets of M . Consider the set partitions

Bi = {M \Ki} ∪
{
{x} : x ∈ Ki

}
for i ∈ {1, 2}. Obviously, B1 and B2 have the same type, so there is a γ ∈ Γ with γB1 = B2.
This implies γK1 = K2. For k > 1

2 |M |, we note that k-homogeneity is equivalent to (|M | −
k)-homogeneity. �

Lemma 3. If Γ acts partition-homogeneous on M and R ⊆ M , then the setwise stabilizer
Stab{R}(Γ ) of R acts 2-homogeneous on R.

Proof. Let A1, A2 ⊆ R be two 2-sets. First, assume that |M \R| > 2: Set

Bi = {M \R,Ai} ∪
{
{x} : x ∈ R \Ai

}
for i ∈ {1, 2}. Then there exists a γ ∈ Γ with γB1 = B2. It follows, that γR = R and γA1 = A2.
Secondly, if |M \R| ≤ 2 and |M | > 6, set

Bi = {Ai, R \Ai} ∪
{
{x} : x ∈M \R

}
for i ∈ {1, 2}. Then there is a γ ∈ Γ with γB1 = B2, which implies γR = R and γA1 = A2.
Finally, the remaining case |M \R| ≤ 2 and |M | ≤ 6 follows from individual discussions depending
on |R| and |M |. �

Proposition 4. If Γ acts partition-homogeneous on M then

Action(Γ,M) = Alt(M) or Action(Γ,M) = Sym(M).

Proof. If |M | ≥ 14, then Γ is 7-homogeneous and thus 6-transitive, which implies the assertion
using the classification of finite simple groups. The remaining cases follow from a case-by-case
study. (Using the fact that with some exceptions k-homogeneity implies k-transitivity the previous
argument can be refined, so that only a few cases remain.) �
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Let X be a multigraph and Aut(X) be its automorphism group. Furthermore, let D ⊆ VX
be a vertex subset. We say that X is k-homogeneous with respect to D, if Stab{D}(Aut(X)) acts
k-homogeneous on D. Similarly, we say that X is partition-homogeneous with respect to D, if the
action of Stab{D}(Aut(X)) on D is so.

2.3. Electrical networks. Let F be a finite non-empty set and X a multigraph with vertex set F .
In addition, let c : EX → (0,∞) be conductances on the edges of X. Then the pair (F, c) is called
an electrical network (this notation suppresses the dependence on X, since X is implicitly defined
by c). The network (F, c) is called irreducible, if the multigraph X is connected. Furthermore, the
(positive semidefinite) Laplace operator (or Laplacian) ∆ : RF → RF of a network (F, c) is defined
by

∆(f)(x) =
∑
e∈EX
e={x,y}

(
f(x)− f(y)

)
c(e).

For a non-empty subset B ⊆ F and a function g : B → R there exist solutions f : F → R
of the Dirichlet problem: f |B = g and (∆f)(x) = 0 for all x ∈ F \ B. Any solution is unique on
connected components of the multigraph X containing elements of B. The harmonic extension
HF
Bg of g is defined to be the unique solution of the Dirichlet problem, which is identically zero on

components disjoint from B. This defines a linear operator HF
B : RB → RF .

Two networks (F, cF ) and (G, cG) with ∅ 6= B ⊆ F ∩G are called electrically equivalent with
respect to B, if they cannot be distinguished by applying voltages to B and measuring the resulting
currents on B. In terms of the associated Laplace operators ∆F and ∆G electrical equivalence
means

ΠB∆FH
F
B = ΠB∆GH

G
B ,

where ΠB : RF → RB , f 7→ f |B is the canonical projection.

Let (F, c) be a network, ∆ be the associated Laplace operator, and B ⊆ F a non-empty set.
Define the trace Tr(∆|B) : RB → RB of ∆ on B by Tr(∆|B) = ΠB∆H

F
B and denote by Tr(c|B)

the conductances on the complete graph with vertex set B associated with Tr(∆|B). Then (F, c)
and (B,Tr(c,B)) are equivalent with respect to B. Note that the Dirichlet principle implies

〈Tr(∆|B)g, g〉 = min{〈∆f, f〉 : f ∈ RF , f |B = g}, (6)

where the minimum is attained if f is the harmonic extension of g.

Lemma 5. Let (F, c) be a network with c : EX → (0,∞) and Γ ≤ Aut(X), such that c(e) =
c(γe(e)) for all e ∈ EX and γ ∈ Γ . If B is a non-empty subset of F and cB = Tr(c|B), then
cB({x, y}) = cB({γx, γy}) for all x, y ∈ B and γ ∈ Stab{B}(Γ ).

Proof. Set ∆B = Tr(∆|B). If g ∈ RB and γ ∈ Stab{B}(Γ ), then

〈∆Bg ◦ γ, g ◦ γ〉 = inf{〈∆h, h〉 : h ∈ RF , h|B = g ◦ γ}

= inf{〈∆f ◦ γ, f ◦ γ〉 : f ∈ RF , f |B = g} = 〈∆Bg, g〉

by virtue of (6). Now the polarization equation implies

cB({x, y}) = 〈∆B1{x}, 1{y}〉 = 1
2

(
〈∆B1{x,y}, 1{x,y}〉 − 〈∆B1{x}, 1{x}〉 − 〈∆B1{y}, 1{y}〉

)
= 1

2

(
〈∆B1{γx,γy}, 1{γx,γy}〉 − 〈∆B1{γx}, 1{γx}〉 − 〈∆B1{γy}, 1{γy}〉

)
= 〈∆B1{γx}, 1{γy}〉 = cB({γx, γy})

for x, y ∈ B and γ ∈ Stab{B}(Γ ), where 1A denotes the characteristic function of a set A. �

The unit conductances c : EX → (0,∞) on a finite multigraph X are defined by c(e) = 1
for all edges e ∈ EX. In this case, the Laplace operator ∆ of c corresponds to the combinatorial
Laplace matrix of X. Note that c(e) = c(γe(e)) for e ∈ EX and γ ∈ Aut(X) in this case.
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Corollary 6. Let X be a finite, connected multigraph and c be the unit conductances on X. If
D is a non-empty subset of VX, so that X is 2-homogeneous with respect to D, then Tr(c|D) is a
multiple of the unit conductances cD on the complete graph with vertex set D.

In the setting of the previous corollary, the factor ρ for which Tr(c|D) = ρ−1cD holds is called
the resistance scaling factor of X with respect to D, see [3, 24, 33] for similar notions.

Lemma 7. The resistance scaling factor of the star K1,θ with respect to the set D consisting of
the θ leaves is given by ρ = θ.

Proof. Denote by u ∈ VK1,θ the center of star K1,θ, fix some leaf v ∈ D, and let Kθ be the
complete graph with vertex set D (VKθ = D). Let c and cD be the unit conductances on K1,θ

and on Kθ, respectively, and denote by ∆ and ∆D the associated Laplace operators. Finally, set
g : VKθ → R, w 7→ 1{v}(w) and let h : VK1,θ → R be the harmonic extension of g: this implies
h(u) = θ−1. Then we have

ρ =
〈∆Dg, g〉
〈∆h, h〉

=
θ − 1
θ−1
θ

= θ,

which proves the statement. �

2.4. Spanning forests. Let X be a multigraph with θ distinguished vertices D ⊆ VX. Every
spanning forest F of X induces a set partition B on D: the distinguished vertices in one connected
component of F form a block of B. Let SX be the set of non-empty spanning forests of X, which
only have components containing at least one distinguished vertex each. For B ∈ B(D) write
SX(B) for the set of those forests in SX , whose induced set partition is B. If p ∈ P(θ),

SX(p) =
⊎

B∈Bp(D)

SX(B)

denotes the set of spanning forests in SX defining a set partition of type p. Then

SX =
⊎

p∈P(θ)

SX(p).

The number of spanning trees in a finite multigraph X is often called the complexity of X and
denoted by τ(X).

A rooted spanning forest (F,R) of a multigraph X is a spanning forest F of X together with a
collection R ⊆ VX of roots, such that F has exactly |R| components and each component contains
exactly one element of R. We denote by RX(R) the set of all rooted spanning forests of X with
roots R ⊆ VX. Let ∆ be the Laplace operator associated with the unit conductances on X. An
extension of Kirchhoff’s famous matrix tree theorem states that the number of rooted spanning
forests (F,R) of a finite multigraph X with given roots ∅ 6= R ⊆ VX is

|RX(R)| = det(ΠH∆Π
∗
H),

where H = VX \ R, see [34]. (If H = ∅ the above determinant is defined to be 1.) Note that
ΠH∆Π

∗
H is the Dirichlet-Laplace operator with respect to the boundary R.

Let X be a finite multigraph and D ⊆ VX be a θ-set. Then τ(X) = |SX({D})| = |RX({v})|
for any vertex v ∈ VX. Similarly, we have |SX(B)| = |RX(D)| for B = {{v} : v ∈ D} ∈ B(D). If
k ∈ {2, . . . , θ− 1} and X is k-homogeneous with respect to D, then |RX(R1)| = |RX(R2)| for any
two k-sets R1, R2 ⊆ D.

Theorem 8. Let X be a connected, finite multigraph and let D ⊆ VX be a vertex subset with θ
vertices. Suppose that X is partition-homogeneous with respect to D. Then

|RX(R)| = kρk−1θ1−kτ(X)

for all k-sets R ⊆ D, where ρ is the resistance scaling factor of X with respect to D.
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Proof. Since X is partition-homogeneous with respect to D, X is also k-homogeneous with respect
to D for k ∈ {2, . . . , θ − 1} by Lemma 2. Hence

|RX(R1)| = |RX(R2)| (7)

for all R1, R2 ⊆ D of equal size. Now let B,C be non-empty subsets of D with B ] {w} = C. We
prove that

|RX(C)| = ρ|C|
θ|B|

|RX(B)|

holds, which implies the statement by an easy induction. As before, let ∆ be the Laplace operator
associated with the unit conductances on X. For convenience, set ∆A = ΠVX\A∆Π

∗
VX\A for any

non-empty set A ⊆ D. Then

|RX(B ∪ {x})|
|RX(B)|

=
det∆B∪{x}

det∆B
= 〈1{x},∆−1

B 1{x}〉

for all x ∈ D \B. Thus (7) yields

〈1{x},∆−1
B 1{x}〉 = 〈1{y},∆−1

B 1{y}〉

for all x, y ∈ D \ B. Furthermore, if v, w, x, y ∈ D \ B with v 6= w and x 6= y, then there is an
automorphism γ of X due to Lemma 3, which stabilizes the set B and satisfies {γv, γw} = {x, y}.
This implies

〈1{v},∆−1
B 1{w}〉 = 〈1{x},∆−1

B 1{y}〉,
since ∆B is symmetric. Hence all diagonal entries, as well as all non-diagonal entries of ∆−1

B

corresponding to indices from D \B are equal: there are numbers a and b, so that

〈1{x},∆−1
B 1{x}〉 = a and 〈1{x},∆−1

B 1{y}〉 = b

for all distinct x, y ∈ D \B. Set

h = HVX
D 1{w}, g = ∆h = ∆HVX

D 1{w},

where HVX
D f is the harmonic extension of a function f : D → R. Note that ΠD g = Tr(∆|D) 1{w}

and ΠVX\D g = 0. Using the symmetry condition once again, g(w) = (θ− 1)ρ−1 and g(x) = −ρ−1

for x ∈ D \ {w}. The definition of h implies ΠB h = 0 and therefore

∆B(ΠVX\B h) = ΠVX\B g and ΠVX\B h = ∆−1
B (ΠVX\B g).

For x ∈ D \B a short computation yields

h(x) =
(
∆−1
B (ΠVX\B g)

)
(x) =

∑
y∈D\B

〈1{x},∆−1
B 1{y}〉 g(y),

since ΠVX\D g = 0. If x = w and x 6= w, respectively, we obtain a simple linear system of equations
from the last identity:

1 = (θ − 1)ρ−1a− (θ − |C|)ρ−1b,

0 = −ρ−1a+ |C|ρ−1b,

with the solution

a =
ρ|C|
θ|B|

and b =
ρ

θ|B|
using |C| = |B|+ 1, which finishes the proof. �

Finally, we remark the following connection between the complexity and the spectrum of the
combinatorial Laplacian by virtue of Kirchhoff’s theorem. The complexity τ(X) of a graph X with
v = |VX| vertices is given by v τ(X) = λ1 · · ·λv−1, where λ1, . . . , λv−1 are the nonzero eigenvalues
of the combinatorial Laplacian ∆ on X (counted with multiplicity). Denote by P the characteristic
polynomial of ∆, then the product of the nonzero eigenvalues is equal to the coefficient of the linear
term of P (up to the sign): [x]P (−x) = v τ(X). Hence the quantity [x]P (−x) is given by the
number of rooted spanning trees of X. Similarly, the coefficient [xk]P (−x) is equal to the number
of rooted spanning forests with exactly k components, see for instance [34].
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Now, if D is a vertex subset with θ elements, so that X is partition-homogeneous with respect
to D, then the previous theorem relates the spectrum of the combinatorial Laplacian ∆ with the
spectrum of the Dirichlet-Laplace operator with boundary R ⊆ D.

3. Self-similar graphs

3.1. Construction. Let G be an edgeless graph with θ ≥ 2 distinguished vertices given by η :
Θ → VG (Θ = {1, . . . , θ}). Let s ≥ 2 substitutions be defined by injective maps σi : Θ → VG for
i ∈ S = {1, . . . , s}. For any multigraph X and any injective map ϕ : Θ → VX a new multigraph
Y together with an injective map ψ : Θ → V Y is constructed as follows:

For each i ∈ S let Zi be an isomorphic copy of the multigraph X, so that the vertex sets
VZ1, . . . , VZs, and VG are mutually disjoint. The isomorphism between X and Zi is denoted by
ζi : VX → VZi. Let Z be the disjoint union of G and Z1, . . . , Zs and define the relation ∼ on VZ
as the reflexive, symmetric, and transitive hull of

s⋃
i=0

{
(σi(j), ζi(ϕ(j))) : j ∈ Θ

}
⊆ VZ × VZ.

Then the multigraph Y is defined by its vertex set V Y = VZ/∼ and edge multiset

EY =
{
{[v], [w]} : {v, w} ∈ EZ

}
,

where [v] denotes the equivalence class of a vertex v. The map ψ : Θ → V Y is defined by
ψ(i) = [η(i)] ∈ V Y .

If the pair (Y, ψ) is constructed as above from (X,ϕ), we write (Y, ψ) = Copy(X,ϕ). Since
we fix G, η, and {σi : i ∈ S}, the dependence on these items is suppressed. Note that Y is the
amalgamation of s isomorphic copies of X: for i ∈ S define Z̄i by

VZ̄i =
{

[v] : v ∈ VZi
}

and EZ̄i =
{
{[v], [w]} : {v, w} ∈ EZi

}
,

then Z̄i is isomorphic to X and the isomorphism is given by

ζ̄i : VX → VZ̄i, v 7→ [ζi(v)].

The subgraph Z̄i is called the i-th part of Y . On the i-th part of Y distinguished vertices are given
by Θ → VZ̄i, j 7→ ζ̄i(ϕ(j)) = [σi(j)]. We say, that the initial data G, η and σi satisfy

• the connectedness condition, if the union of σi(Θ) for i ∈ S covers VG and if the family
{{σi(Θ)} : i ∈ S} is connected.

• the separation condition, if, for distinct i, j ∈ S, the intersection σi(Θ)∩σj(Θ) contains at
most one vertex of G,

The following lemmata collect immediate consequences of the construction:

Lemma 9. Let X be a connected multigraph, ϕ : Θ → VX be an injective map, and set (Y, ψ) =
Copy(X,ϕ).

• If the initial data satisfy the connectedness condition and if X is connected, then Y is
connected, too.

• If the initial data satisfy the separation condition and if X is a graph, then Y is also a
graph (i. e. there are no parallel edges or loops).

• If connectedness holds, then |V G| ≤ s(θ − 1) + 1.

Define the constant κ by κ = s(θ−1)+1−|VG|. If the connectedness condition is satisfied, then
κ ≥ 0 has a geometrical interpretation: Suppose that X is a connected and (Y, ψ) = Copy(X,ϕ).
If H is a subgraph of Y , so that the restriction of H on each part of Y is a spanning tree, then the
cyclomatic number of H is κ.
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Lemma 10. The cardinalities of V Y and EY satisfy

|V Y | = s(|VX| − θ) + |V G| = s(|VX| − 1)− κ+ 1 and |EY | = s |EX|.

Thus, if c(X) and c(Y ) are the cyclomatic numbers of X and Y , respectively, then c(Y ) = s c(X)+
κ.

3.2. Examples. It occurs frequently that the above substitution procedure is applied to the θ-com-
plete graph X = Kθ. In this case it does not matter which specific injective map ϕ : Θ → VX
is chosen, since all of them yield isomorphic results (Y, ψ) = Copy(X,ϕ). Similarly, if X is equal
to the star K1,θ, ϕ will always be some injective map from Θ to the leaves of X, and the result
(Y, ψ) = Copy(X,ϕ) does not depend on the specific choice of ϕ. In these two cases ϕ will not be
explained any further.

3.2.1. Sierpiński graphs. Fix some d ∈ N0 and let s = θ = d+ 1. Define the edgeless graph G by

VG =
{

x ∈ Nd+1
0 : ‖x‖1 = 2

}
and the map η : Θ → VG by η(i) = 2ei, where ei is the i-th canonical basis vector of Rd+1. In
addition, set σi(j) = ei + ej ∈ VG for i ∈ S and j ∈ Θ. Note that Θ = S = {1, . . . , d + 1}. It is
easy to see that

|V G| = 1
2 (d+ 2)(d+ 1) and κ = d(d+ 1) + 1− 1

2 (d+ 2)(d+ 1) = 1
2d(d− 1).

The usual finite d-dimensional Sierpiński graphs are then constructed as follows: Let X0 = Kd+1

and inductively define (Xn, ϕn) by (Xn, ϕn) = Copy(Xn−1, ϕn−1) for n ∈ N. See Figure 1 for
the case d = 2. The resistance scaling factor ρ(X1) of X1 with respect to ϕ1(Θ) is given by

G

η(1) η(2)

η(3)

σ1 σ2

σ3

X0

X1

X2

Figure 1. Initial data and finite 2-dimensional Sierpiński graphs.

ρ(X1) = d+3
d+1 , which can be seen from a successive application of Lemma 7 together with the rule

for resistors in series.

3.2.2. Austria graphs. The “Austria” graphs are studied in [28] (their shape resembles a map of
Austria). Let θ = 2, s = 4, and VG = {1, 2, 3, 4}. Define η and σ1, . . . , σ4 as follows:

i η(i) σ1(i) σ2(i) σ3(i) σ4(i)
1 1 1 2 4 4
2 4 2 3 2 3

Obviously, we have κ = 1. The finite Austria graphs are inductively constructed by X0 = K2

and (Xn, ϕn) = Copy(Xn−1, ϕn−1) for n ∈ N, see Figure 2 for an illustration of the initial data
and some finite Austria graphs. Note that the resistance scaling factor ρ(X1) of X1 with respect
to ϕ1(Θ) is given by ρ(X1) = 5

3 . The orientation of each of the four substitutions (defined by
σ1, . . . , σ4) can be flipped. For example, σ1 could also be defined by σ1(1) = 2 and σ1(2) = 1. Note
that two distinct choices yield different graph sequences X0, X1, . . . (the specific configuration can
be identified in X2). Here the substitutions σ1, . . . , σ4 are chosen, so that the vertex degrees in
X0, X1, . . . are uniformly bounded.
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1 2 4

3

σ1

σ2

σ3

σ4G

X0

X1

X2

X3

Figure 2. Initial data and finite Austria graphs.

3.2.3. A multigraph example. Set θ = 3, s = 4, VG = {1, . . . , 6}, and define η and σ1, . . . , σ4 as
follows (see Figure 3):

i η(i) σ1(i) σ2(i) σ3(i) σ4(i)
1 1 1 1 1 2
2 2 2 2 3 3
3 3 3 4 5 6

In addition, it is easy to see that κ = 3. The multigraph sequence X0, X1, . . . is defined by
(Xn, ϕn) = Copy(Xn−1, ϕn−1), where X0 = K3. As a consequence of the construction principle,
several parallel edges appear, and the number of vertex pairs connected by more than one edge is
unbounded as well as the number of edges connecting certain pairs. Finally, a short computation
yields the resistance scaling factor ρ(X1) of X1 with respect to ϕ1(Θ): ρ(X1) = 2

5 .

2

3

1

65

4

σ1

σ4σ3

σ2

G

X1

X0

X2

Figure 3. Initial data and the graphs X0, X1, X2.

3.2.4. An example without full symmetry. Let θ = 3, s = 7, VG = {1, . . . , 12}, and define η and
σ1, . . . , σ7 as follows:

i η(i) σ1(i) σ2(i) σ3(i) σ4(i) σ5(i) σ6(i) σ7(i)
1 1 1 2 3 4 5 6 7
2 3 7 8 9 10 11 12 9
3 5 12 7 8 9 10 11 11

It is then easy to compute κ: κ = 3. Now set X0 = K3 and define (Xn, ϕn) = Copy(Xn−1, ϕn−1).
Note that, for n ≥ 1, the action of the automorphism group Aut(Xn) on the set ϕn(Θ) is given by
the alternating group of degree 3:

Action(Aut(Xn), ϕn(Θ)) = Alt(ϕn(Θ)).

See Figure 4 for an illustration of the initial data and the graphsX0, X1, andX2. Quite surprisingly,
the value of the resistance scaling factor ρ(X1) of X1 with respect to ϕ1(Θ) is a very simple one,
namely ρ(X1) = 2, which can be seen from successive applications of the Wye-Delta-transform or
by calculating the energy form.
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3

5

1 8

10

12 9

11

7

46

2

σ7

σ3

σ5

σ1

σ4σ6

σ2

X0

X1

X2

Figure 4. Initial data and the graphs X0, X1, X2.

3.3. Symmetry. A group Γ ≤ Sym(Θ) is invariant with respect to the above construction, if the
following holds: for each γ ∈ Γ there are ξ ∈ Sym(VG), π ∈ Sym(S), and γ1, . . . , γs ∈ Γ , so that
ξ ◦ η = η ◦ γ and ξ ◦ σi = σπ(i) ◦ γi for all i ∈ S. The following lemma explains the relevance of
invariant groups:

Lemma 11. Let X be a multigraph, ϕ : Θ → VX an injective map, and set (Y, ψ) = Copy(X,ϕ).
Let Γ be an invariant group, set

Γϕ = {ϕ ◦ γ ◦ ϕ−1 : γ ∈ Γ} ≤ Sym(ϕ(Θ))

and analogously define Γψ ≤ Sym(ψ(Θ)). If Γϕ is a subgroup of Action(Aut(X), ϕ(Θ)), then Γψ

is a subgroup of Action(Aut(Y ), ψ(Θ))

Proof. We have to show that for each γ ∈ Γ there is a γ̄ ∈ Aut(Y ) with ψ◦γ = γ̄ ◦ψ. By definition,
there are ξ ∈ Sym(VG), π ∈ Sym(S), and γ1, . . . , γs ∈ Γ , so that ξ ◦ η = η ◦ γ and ξ ◦σi = σπ(i) ◦ γi
for all i ∈ S. By assumption, there are γ̄1, . . . , γ̄s ∈ Aut(X), so that ϕ ◦ γi = γ̄i ◦ϕ for i ∈ S. Now,
if x is a vertex in the i-th part of Y , set

γ̄(x) = ζ̄π(i) ◦ γ̄i ◦ ζ̄−1
i (x).

(Here ζ̄i : VX → VZ̄i is the isomorphism from X to the i-th part Z̄i of Y .) It is easy to check that
γ̄ is a well-defined automorphism of Y , which satisfies ψ ◦ γ = γ̄ ◦ψ: notice that γ̄([v]) = [ξ(v)] for
all v ∈ VG. �

Note that the join Γ1∨Γ2 of two invariant groups Γ1 and Γ2 is also an invariant group. Hence
there exists a maximal invariant group. If this maximal invariant group acts k-homogeneous on
Θ, and if |η(Θ) ∩ σi(Θ)| = k for some i ∈ S, then s ≥

(
θ
k

)
: for any k-subset K ⊆ Θ there must be

an index j ∈ S with η(Θ) ∩ σj(Θ) = η(K).

Corollary 12. If separation and connectedness hold, and if the maximal invariant group acts
k-homogeneous on Θ for all k ∈ Θ, then s ≥ θ.

Proof. Using s ≥ 2, separation, and connectedness there exists an index i ∈ S, so that |η(Θ) ∩
σi(Θ)| = k for some k ∈ {1, . . . , θ−1}. The k-homogeneity of the maximal invariant group implies
s ≥

(
θ
k

)
≥ θ. �

We say that the initial data satisfies the symmetry condition, if the maximal invariant group
acts partition-homogeneous on Θ. Proposition 4 and Lemma 11 imply the following:

Corollary 13. Suppose that X is a partition-homogeneous multigraph with respect to ϕ(Θ), where
ϕ : Θ → VX is injective, and set (Y, ψ) = Copy(X,ϕ). If the symmetry condition holds, then Y is
partition-homogeneous with respect to ψ(Θ).

It is easy to see, that all examples of Section 3.2 satisfy the symmetry condition. In fact,
the maximal invariant group of Example 3.2.1 and 3.2.3 is the symmetric group, whereas for
Example 3.2.2 and 3.2.4 the maximal invariant group is given by the alternating group.
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3.4. Decomposition of set partitions and spanning forests. Consider an element ω =
(ω1, . . . , ωs) in the Cartesian product

∏
i∈S B(Θ) and denote by σ(ω) the family

σ(ω) =
{
σi(ωi) : i ∈ S

}
.

Then Union(σ(ω)) is a set partition of VG. Moreover, define the following counting functions:

χp(ω) =
∣∣∣{i ∈ S : ωi ∈ Bp(Θ)

}∣∣∣ and χ(ω) =
∑
i∈S

|ωi| =
∑

p∈P(θ)

|p|χp(ω)

for p ∈ P(θ) and ω ∈
∏
i∈S B(Θ).

Now let X be a multigraph, ϕ : Θ → VX be an injective map, and set (Y, ψ) = Copy(X,ϕ).
For the sake of notation, define ψi : Θ → V Y by ψi(j) = ζ̄i(ϕ(j)) (i ∈ S). For P ∈ B(V Y ) consider
the restriction P |ψi(Θ) of P on the distinguished vertices of the i-th part of Y (i ∈ S). Thus the
assignment

Tr(P ) =
(
ψ−1
i (P |ψi(Θ))

)
i∈S

defines a map Tr : B(V Y ) →
∏
i∈S B(Θ), the trace of a set partition.

Let F be a spanning forest in SY (ψ(B)) for some B ∈ B(Θ) and denote by Fi the restriction
of F on the i-th part of Y (i ∈ S). Then, for each i ∈ S, there exists exactly one spanning forest
Li of X, so that

Fi = ζ̄i(Li). (8)
Furthermore, F induces a set partition P of V Y , where the blocks of P are the vertex sets of the
connected components of F . Define the trace ω = Tr(F ) of F to be equal to Tr(P ). Then the
forest Li is contained in the set SX(ϕ(ωi)) for i ∈ S, and we can draw some conclusions from this
setup:

• For each b ∈ Union(σ(ω)), the intersection b ∩ η(Θ) is not empty.
• The restriction Union(σ(ω))|η(Θ) equals η(B).
• The family σ(ω) is cycle-free.

The above discussion motivates the definition of Ω(B) for B ∈ B(Θ): Ω(B) is the set of all
ω ∈

∏
i∈S B(Θ), such that b ∩ η(Θ) 6= ∅ for b ∈ Union(σ(ω)), Union(σ(ω))|η(Θ) = η(B), and σ(ω)

is a cycle-free family. Then Tr(SY (ψ(B))) = Ω(B) and there is a bijective correspondence between

SY (ψ(B)) and
⊎

ω∈Ω(B)

∏
i∈S

SX(ϕ(ωi)). (9)

for B ∈ B(Θ), which is determined by (8).

With the symmetry condition in mind let us define the setΩ(p) for a number partition p ∈ P(θ)
by

Ω(p) =
⊎

B∈Bp(Θ)

Ω(B).

It is remarkable that, for any tuple ω ∈ Ω(p), the number of blocks χ(ω) in ω satisfies an identity,
which only involves |p|:

Lemma 14. Suppose that the connectedness condition is satisfied. Then, for p ∈ P(θ), we have

χ(ω) = κ+ s+ |p| − 1

for all ω ∈ Ω(p).

Proof. Suppose that X = Kθ and (Y, ψ) = Copy(X,ϕ). We prove that χ(Tr(F )) = κ+ s+ |p| − 1
holds for all spanning forests F ∈ SY (p), which implies the statement, since each ω ∈ Ω(p) has a
representation as a spanning forest in SY (p).

Let ω ∈ Ω(p) and let F be a spanning forest with ω = Tr(F ). If ωi ∈ Bq(Θ), F has exactly
θ−|q| edges in the i-th part of Y (since F induces a spanning forest with |q| components). Similarly,
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F has a total of exactly |V Y | − |p| edges. Therefore, we have two expressions for the number of
edges of F :

|V Y | − |p| =
∑

q∈P(Θ)

(θ − |q|)χq(ω) = θ
∑

q∈P(Θ)

χq(ω)− χ(ω) = θs− χ(ω).

From Lemma 10 we know that |V Y | = s(θ− 1)− κ+ 1. Now, solving the equation for χ(ω) yields
the lemma. �

F L1 L2

L3

Figure 5. Decomposition of spanning forests.

Finally, we illustrate the correspondence given in (9) for the case of finite 2-dimensional
Sierpiński graphs. Figure 5 depicts the decomposition of a spanning forest F of X1 into a triple
(L1, L2, L3), so that the relation (8) holds. It is readily seen that F ∈ SX1(ϕ1({1, 23})) and

L1 ∈ SX0(ϕ0({1, 23})), L2 ∈ SX0(ϕ0({12, 3})), L3 ∈ SX0(ϕ0({123})).
Thus the trace of F is given by

Tr(F ) = ({1, 23}, {12, 3}, {123}) ∈ Ω({1, 23}).
Here and in the following we sometimes write {1, 23} as a shorthand for the partition {{1}, {2, 3}}
and analogously for other partitions, if no ambiguity can occur.

4. Results

In the rest of this paper, we always assume that the initial data satisfy the connectedness and
symmetry condition.

4.1. A recursion for spanning forests. Let X be a connected multigraph and ϕ : Θ → VX be
an injective map. Suppose that X is partition-homogeneous with respect to ϕ(Θ). By virtue of
symmetry

|SX(B1)| = |SX(B2)|
for all B1, B2 ∈ B(ϕ(Θ)) of the same type. Thus define τp(X) by

τp(X) =
|SX(p)|
b(p)

for p ∈ P(θ), where b(p) = |Bp(Θ)| is the number of set partitions of Θ of type p given by
(1). Furthermore, write τ (X) for the vector (τp(X))p∈P(θ). Note that τp(X) = |SX(B)| for any
B ∈ Bp(ϕ(Θ)) and τp(X) is equal to the complexity τ(X) of X if p is the trivial partition with
one summand given by p = θ. No confusion should occur between the complexity τ(X) and the
vector τ (X).

If (Y, ψ) = Copy(X,ϕ) then Equation (9) implies

b(p) τp(Y ) =
∑

B∈Bp(Θ)

|SY (ψ(B))| =
∑

ω∈Ω(p)

∏
i∈S

|SX(ϕ(ωi))| =
∑

ω∈Ω(p)

∏
q∈P(θ)

τq(X)χq(ω)

for all p ∈ P(θ). For a subset Ω ⊆
∏
i∈S B(Θ) define the generating function GF(Ω |x) by

GF(Ω |x) =
∑
ω∈Ω

∏
i∈S

x`(ωi) =
∑
ω∈Ω

∏
q∈P(θ)

xχq(ω)
q ,

where `(ωi) is the type of the set partition ωi. Now the following proposition is immediate:
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Proposition 15. The vectors τ (X) and τ (Y ) satisfy the following identity:

τ (Y ) = Q(τ (X)),

where the s-homogeneous polynomial function Q : RP(θ) → RP(θ) is given by its coordinates

Qp(x) =
1
b(p)

GF(Ω(p) |x)

for p ∈ P(θ). Additionally, the symmetry condition implies that

Qp(x) = GF(Ω(B) |x)

for p ∈ P(θ) and any B ∈ Bp(Θ).

Lemma 14 implies a constraint for the monomials of Q: Let p ∈ P(θ) and let∏
q∈P(θ)

xnq
q

be a monomial with nonzero coefficient in Qp, then there is some ω ∈ Ω(p) with χq(ω) = nq for
all q ∈ P(θ) and the relation ∑

q∈P(θ)

|q|nq = χ(ω) = κ+ s+ |p| − 1

holds.

Let p ∈ P(θ) and F ∈ SY (p), then Tr(F ) ∈ Ω(p). On the other hand, given a tuple ω in Ω(p),
there are ∏

q∈P(θ)

τq(X)χq(ω)

spanning forests F in SY (p) with Tr(F ) = ω. Note that this number may be zero, since τp(X) = 0
for some p ∈ P(θ). (This happens for example if X = K1,θ is the star.) However, if X is given by
the θ-complete graph Kθ, then, for p ∈ P(θ), τp(X) is given by

τp(X) =
∏
k∈N

(kk−2)νk(p),

which is always strictly larger than zero. Thus, if X = Kθ and (Y, ψ) = Copy(X,ϕ), each ω ∈
Ω(p) has a representation as spanning forest F in SY (p). This can be used to obtain another
representation of Q:

Corollary 16. Let X = Kθ the complete graph and (Y, ψ) = Copy(X,ϕ). Then the coordinates of
the polynomial Q satisfy

Qp(x) =
1
b(p)

∑
F∈SY (p)

∏
q∈P(θ)

(
xq

τq(X)

)χq(Tr(F ))

for all p ∈ P(θ).

As an exemplification, we study these results in the case of finite 2-dimensional Sierpiński
graphs in more detail: Recall that θ = s = 3 and note that P(3) = {31, 2111, 13}. Furthermore,
Bp({1, 2, 3}) for p ∈ P(3) is given by

B31({1, 2, 3}) = {{123}}, B13({1, 2, 3}) = {{1, 2, 3}},
B2111({1, 2, 3}) = {{12, 3}, {13, 2}, {23, 1}}.

The left part of Figure 6 shows the initial data with complete labelling, whereas the right part yields
a table of all arrangements for the construction of spanning forests. (The shaded area indicates
connected pieces.) For example, up to symmetry, there is one way to construct a spanning tree
F of Xn+1 from a triple (L1, L2, L3) of certain spanning forests of Xn, so that the relation (8)
holds. This arrangement is illustrated in the first row and first line of this table. Therefore,



SPANNING TREES 17

η(1) η(2)

η(3)

σ1(1) σ1(2)

σ1(3)

σ2(1) σ2(2)

σ2(3)

σ3(1) σ3(2)

σ3(3)

×6 ×2 ×2 ×2

×1 ×1 ×2 ×6

×6 ×6 ×6

Figure 6. Initial data with complete labelling and (up to symmetry) all arrange-
ments for the construction of spanning forests.

Ω(31) = Ω({123}) consists of the six tuples

({123}, {123}, {13, 2}), ({123}, {123}, {23, 1}), ({123}, {12, 3}, {123}),
({123}, {23, 1}, {123}), ({12, 3}, {123}, {123}), ({13, 2}, {123}, {123}).

The next five arrangements of the table belong to Ω(2111) and the last five to Ω(13) = Ω({1, 2, 3}).
Altogether, we get

Q

 x31

x2111

x13

 =

 6x2
31 x2111

7x31 x2
2111 + x2

31 x13

14x3
2111 + 12x31 x2111 x13

 .

It is easy to see that the initial values are τ (X0) = (3, 1, 1). Therefore

τ (X1) = Q(τ (X0)) = (54, 30, 50),

τ (X2) = (524880, 486000, 1350000) and so forth. Notice that the second and third component
of τ (Xn) are prescribed by the first using Theorem 8, since there is a correspondence between
spanning forests and rooted spanning forests in this case:

RXn
(ϕn({1})) = SXn

(31), RXn
(ϕn({1, 2, 3})) = SXn

(13),

RXn(ϕn({1, 2})) = SXn(ϕn({13, 2})) ] SXn(ϕn({23, 1})).

This will be studied in the next chapter.

A similar enumeration yields the polynomial Q in the 3-dimensional case, see Table 1. The
initial values are τ (X0) = (16, 3, 1, 1, 1) and thus τ (X1) = (131072, 42996, 6156, 18432, 27648), . . .
Note that there are five partitions of θ = 4:

P(5) = {41, 3111, 22, 2112, 14};

and 3111 and 22 both have two terms. As a consequence, the aforementioned correspondence does
not hold in this case. However, a carefully weighted sum of terms τp(Xn) with p ∈ Pk(θ) for some
k ∈ Θ gives the number of rooted spanning forests with k roots fixed in the set ϕn(Θ). (Recall
that Pk(θ) is the set of number partitions with k terms.)

4.2. A recursion for rooted spanning forests. Let X be a connected multigraph, which is
partition-homogeneous with respect to ϕ(Θ), where ϕ : Θ → VX is injective. Using Theorem 8
the number |RX(W )| of rooted spanning forests with roots W ⊆ ϕ(Θ) depends only on the size of
W . Hence define

rk(X) = |RX(W )|
for some W ⊆ ϕ(Θ) with k ∈ Θ elements. Therefore r(X) = (r1(X), . . . , rθ(X)) is a vector in
Rθ. We remark that r1(X) is precisely the complexity τ(X) of X and rθ(X) = τp(X), where the
number partition p is given by p = 1θ.

Let W ⊆ ϕ(Θ) be a k-set for k ∈ Θ and p ∈ Pk(θ), then by Theorem 1 there are αp set
partitions B ∈ Bp(ϕ(Θ)), so that |b ∩W | = 1 for all b ∈ B. If B is such a set partition and F is a
spanning forest in SX(B), then (F,W ) is a rooted spanning forest in RX(W ).
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Q41(x) = 56x41x3
3111 + 168x41x2

3111x22 + 168x41x3111x2
22 + 56x41x3

22

+ 72x2
41x3111x2112 + 72x2

41x22x2112

Q3111(x) = 20x4
3111 + 96x2

3111x2
22 + 108x41x2

3111x2112 + 192x41x3111x22x2112

+ 72x3
3111x22 + 56x3111x3

22 + 84x41x2
22x2112 + 24x2

41x2
2112

+ 6x2
41x3111x14 + 6x2

41x22x14

Q22(x) = 2x4
3111 + 16x3

3111x22 + 36x2
3111x2

22 + 32x3111x3
22 + 12x41x2

3111x2112

+ 22x4
22 + 48x41x3111x22x2112 + 36x41x2

22x2112 + 2x2
41x2

2112

Q2111(x) = 88x3
3111x2112 + 264x2

3111x22x2112 + 264x3111x2
22x2112 + 88x3

22x2112

+ 120x41x3111x2
2112 + 120x41x22x2

2112 + 14x41x2
3111x14

+ 28x41x3111x22x14 + 14x41x2
22x14 + 6x2

41x2112x14

Q14(x) = 720x2
3111x2

2112 + 1440x3111x22x2
2112 + 720x2

22x2
2112 + 208x41x3

2112

+ 56x3
3111x14 + 168x2

3111x22x14 + 168x3111x2
22x14 + 56x3

22x14

+ 144x41x3111x2112x14 + 144x41x22x2112x14

Table 1. The polynomial Q for finite 3-dimensional Sierpiński graphs.

This motivates the following definitions: For a set K ⊆ Θ with k ∈ Θ elements define the set
partition PK of Θ by

PK = {K} ]
{
{j} : j ∈ Θ \K

}
Notice that the type of PK is given by the number partition

pk = k + 1 + · · ·+ 1︸ ︷︷ ︸
θ−k times

and |PK | = |pk| = θ + 1 − k. Then, for a spanning forest F ∈ SX(ϕ(B)) with B ∈ A(PK), the
tuple (F,ϕ(K)) is a rooted spanning forest in RX(ϕ(K)). Hence

RX(ϕ(K)) =
⊎

B∈A(PK)

{
(F,ϕ(K)) : F ∈ SX(ϕ(B))

}
and

rk(X) =
∑

p∈Pk(θ)

∑
B∈A(PK ,p)

|SX(ϕ(B))| =
∑

p∈Pk(θ)

αp τp(X),

using the decomposition (2) and |A(PK , p)| = αp. Thus define the map Σ : RP(θ) → Rθ by its
coordinates

Σk(x) =
∑

p∈Pk(θ)

αp xp.

Corollary 17. Suppose X is a connected multigraph and ϕ : Θ → VX is an injective map. If X
is partition-homogeneous with respect to ϕ(X), then r(X) = Σ(τ (X)).

For a k-set K ⊆ Θ define O(K) to be the set of all ω, such that the family σ(ω) ∪ {η(PK)}
is connected and cycle-free. Then the following partition is immediate:

O(K) =
⊎

B∈A(PK)

Ω(B).

This implies

Σk(Q(x)) =
∑

p∈Pk(θ)

αpQp(x) =
∑

p∈Pk(θ)

∑
B∈A(PK ,p)

Qp(x)

=
∑

B∈A(PK)

Qp(x) =
∑

B∈A(PK)

GF(Ω(B) |x) = GF(O(K) |x)

using Equation (2), Proposition 15 and αp = |A(PK , p)|.
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Lemma 18. Let j ∈ S and fix partitions Bi ∈ B(Θ) for i ∈ S \ {j}, so that

(B1, . . . , Bj−1, Bj , Bj+1, . . . , Bs) ∈ O(K)

for some Bj ∈ B(Θ). Now consider the cycle-free family

B =
{
σi(Bi) : i ∈ S \ {j}

}
∪ {η(PK)}.

Then the s-tuple
ω = (B1, . . . , Bj−1, ωj , Bj+1, . . . , Bs)

is contained in O(K) for every ωj ∈ A(O), where O = σ−1
j (Union(B)|σj(Θ)).

Proof. We have to prove that σ(ω) ∪ {η(PK)} is connected and cycle-free for every ωj ∈ A(O).
However, ωj ∈ A(O) implies that {ωj , O} is connected and cycle-free. Note that B is cycle-free
and σj(O) reflects the connected components of B on σj(Θ). Therefore

σ(ω) ∪ {η(PK)} = B∪{σj(ωj)}

is also connected and cycle-free. �

Corollary 19. Let B = (B1, . . . , Bs) ∈ O(K) be an s-tuple of set partitions. For j ∈ S define
O(K,B, j) to be the set of all ω ∈ O(K), such that ωi = Bi for i ∈ S \ {j}. Then, for each j ∈ S,
there exists a constant cB,j, so that

GF(O(K,B, j) |x) = cB,j Σm(x)
∏

i∈S\{j}

x`(Bi),

where m = |Bj |.

Proof. Consider the family B defined in Lemma 18 and set O = σ−1
j (Union(B)|σj(Θ)). Notice that

m+ |O| = θ + 1. Lemma 18 states that

O(K,B, j) = {B1} × · · · × {Bj−1} × A(O)× {Bj+1} × · · · × {Bs}.

Using Equation (2) and |A(O, p)| = α(`(O), p) = β`(O)αp for p ∈ Pm(θ) we obtain∑
ω∈A(O)

x`(ω) =
∑

p∈Pm(θ)

∑
ω∈A(O,p)

xp =
∑

p∈Pm(θ)

β`(O)αpxp = β`(O)Σm(x),

which implies the statement for cB,j = β`(O). �

Proposition 20. Let I be an index set and {xι : ι ∈ I} be a set of variables. Define the polynomial
P by

P =
∑
u∈U

a(u)
∏
j∈S

xuj
,

where U ⊆ Is is a finite set of s-tuples, and a(u) is a real number for u ∈ U . If v ∈ U and j ∈ S
are given, we denote by U(v, j) the set of all u ∈ U with ui = vi for i ∈ S \ {j}. Now suppose that
there are finite-dimensional subspaces L1, . . . ,Ls of the vector space

∑
ι∈I Rxι such that∑

u∈U(v,j)

a(u)
∏
i∈S

xui
= Lv,j

∏
i∈S\{j}

xvi

holds with Lv,j ∈ Lj for all v ∈ U and all j ∈ S. Then P can be written in the form

P =
M∑
m=1

∏
i∈S

L′m,i

for some M ∈ N and some L′m,i ∈ Li.
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Proof. We use simultaneous induction on s and d = dimLs. The claim is trivial for s = 1 as well
as for d = 0 (P is identically 0 in the latter case). Choose a basis Λ1, . . . , Λd of Ls in reduced
echelon form. Hence Λ1 contains a variable xc for some c ∈ I that is not contained in Λ2, . . . , Λd.
We may suppose that the coefficient of xc in Λ1 is 1.

Now, consider those tuples v ∈ U , so that the coefficient of Λ1 in Lv,s with respect to the basis
Λ1, . . . , Λd is nonzero. By the choice of Λ1, such tuples v are characterized by the property, that
Lv,s has a nonzero coefficient with respect to xc, which is equivalent to v̄ = (v1, . . . , vs−1, c) ∈ U
and a(v̄) 6= 0. As a consequence, the nonzero coefficient of Λ1 in Lv,s is given by a(v̄). This
motivates the following definition: Let W ⊆ Is−1 be the set of all tuples w = (w1, . . . , ws−1), so
that w̄ = (w1, . . . , ws−1, c) ∈ U and a(w̄) 6= 0, and set

P ∗ =
∑

w∈W
a(w̄)

s−1∏
i=1

xwi
=
∑
u∈U
us=c

a(u)
s−1∏
i=1

xui
.

Then, we have P = (P − P ∗ · Λ1) + P ∗ · Λ1. The second representation of P ∗ shows that P ∗

satisfies the condition of the proposition (with s replaced by s − 1). Therefore, by induction
hypothesis, P ∗ can be written in the claimed form. Furthermore, P − P ∗ · Λ1 also satisfies the
condition of the proposition, but instead of Ls, we can take L∗s, the space spanned by Λ2, . . . , Λd.
Since dimL∗s = dimLs−1, we may employ the induction hypothesis again, which shows that
P − P ∗ · Λ1 can also be written in the desired form. Altogether, we obtain a representation for
P = (P − P ∗ · Λ1) + P ∗ · Λ1 of the form

P =
M∑
m=1

∏
i∈S

L′m,i,

which finishes the proof. �

Theorem 21. There exists an s-homogeneous polynomial R : Rθ → Rθ satisfying Σ ◦Q = R◦Σ,
i. e. ∑

p∈Pk(θ)

αpQp(x) = Rk

( ∑
p∈P1(θ)

αpxp, . . . ,
∑

p∈Pθ(θ)

αpxp

)
for k ∈ Θ.

Proof. For each k ∈ Θ apply Proposition 20 to the polynomial Σk ◦Q: For i ∈ S let Li be spanned
by the linear combinations Σ1, . . . , Σθ. Then Corollary 19 yields exactly the required condition of
Proposition 20. Hence, for each k ∈ Θ, there exists an s-homogeneous polynomial Rk : Rθ → R,
so that Σk ◦Q = Rk ◦Σ holds. �

Corollary 22. Let k ∈ Θ and zn1
1 · · · znθ

θ be a monomial, which occurs in the polynomial Rk(z),
then ∑

i∈Θ
i ni = κ+ s+ k − 1.

Proof. The monomial zn1
1 · · · znθ

θ in Rk(z) corresponds to the term(
Σ1(x)

)n1 · · ·
(
Σθ(x)

)nθ

in Σk(Q(x)). Hence for some number partitions p1 ∈ P1(θ), . . . , pθ ∈ Pθ(θ) and p ∈ Pk(θ), the
monomial xn1

p1 · · ·x
nθ
pθ

occurs in Qp(x). However, all monomials in Qp(x) are of the form∏
q∈P(θ)

xχq(ω)
q

for some ω ∈ Ω(p). Now the assertion follows from Lemma 14. �

Corollary 23. Let (Y, ψ) = Copy(X,ϕ), then the following relation between r(X) and r(Y ) holds:

r(Y ) = R(r(X)).
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Proof. Proposition 15 implies τ (Y ) = Q(τ (X)). Using Corollary 17 and Theorem 21 we get

r(Y ) = Σ(τ (Y )) = Σ(Q(τ (X))) = R(Σ(τ (X))) = R(r(X)),

which proves the statement. �

Note that Theorem 21 is trivial for θ ≤ 3, since |Pk(θ)| = 1 for k ∈ Θ in this case. For the
sake of completeness, we give the map Σ for θ = 2 and θ = 3:

Σ(x21 , x12) = (x21 , x12) and Σ(x31 , x2111 , x13) = (x31 , 2x2111 , x13)

However, if θ ≥ 4 the situation is more complicated. As an example, we consider 3-dimensional
Sierpiński graphs X0, X1, . . . Here θ = s = 4 and the polynomial Q is given in Table 1. A simple
computation yields

Σ(x41 , x3111 , x22 , x2112 , x14) = (x41 , 2x3111 + 2x22 , 3x2112 , x14)

and therefore we obtain the polynomial

R


z1

z2

z3

z4

 =


7z1z

3
2 + 12z2

1z2z3
11
4 z

4
2 + 20z1z

2
2z3 + 52

9 z
2
1z

2
3 + 6z2

1z2z4

11z3
2z3 + 20z1z2z

2
3 + 21

2 z1z
2
2z4 + 6z2

1z3z4

20z2
2z

2
3 + 208

27 z1z
3
3 + 7z3

2z4 + 24z1z2z3z4


satisfying Σ ◦ Q = R ◦ Σ. This is a considerable simplification compared to the polynomial Q
given in Table 1.

4.3. A simplified recursion. Besides the obvious parameters s, θ, and κ there are two further
intrinsic parameters of the initial data, which we are going to introduce now:

Let X be a connected multigraph and ϕ : Θ → VX be an injective map, so that X is partition-
homogeneous with respect to ϕ(Θ). Additionally, set (Y, ψ) = Copy(X,ϕ). Denote by ρ(X) and
ρ(Y ) the resistance scaling factor of X with respect to ϕ(Θ) and of Y with respect to ψ(Θ),
respectively.

Lemma 24. With the above notation the quotient ρ(Y )/ρ(X) is independent of the specific choice
of the multigraph X and will be denoted by λ, called the resistance scaling factor of the initial data.

Proof. We define λ by λ = ρ(Y ), where (Y, ψ) = Copy(X,ϕ) and X is the complete graph with θ
vertices. For general multigraphs X we have to prove that ρ(Y ) = λ ρ(X):

Let cY be the unit conductances on Y . Furthermore, let XK be the complete graph with
vertex set ϕ(Θ), set (YK , ψ) = Copy(XK , ϕ) and let cK be the unit conductances on YK . Finally,
let cD be the unit conductances on the complete graph with vertex set ψ(Θ).

By definition, we have Tr(cY |ψ(Θ)) = ρ(Y )−1cD and Tr(cK |ψ(Θ)) = λ−1cD. In addition,
(V Y, cY ) and (V YK , ρ(X)−1cK) are electrically equivalent with respect to ψ(Θ): By construction
Y consists of s edge-disjoint parts, which are isomorphic to X. Since ρ(X) is the resistance scaling
factor of X, each copy of X in Y can be replaced by a complete graph with constant conductances
ρ(X)−1 without a change of the trace. Hence the two networks are equivalent, which implies the
statement. �

Lemma 25. Let R1 be given by
R1(z) =

∑
n

anzn

using multi-index notation and define µ by

µ = θ−κ
∑
n

an

∏
k∈Θ

knk .

Then the complexity of Y is given by τ(Y ) = µρ(X)κ τ(X)s and µ is called the tree scaling factor
of the initial data.
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Proof. Note that τ(X) = r1(X) and τ(Y ) = r1(Y ) by definition. Theorem 8 yields the relation
rk(X) = kρ(X)k−1θ1−kτ(X) for k ∈ Θ. Inserting this into the recursion τ(Y ) = R1(r(X)) (see
Corollary 23) implies

τ(Y ) =
∑
n

an

∏
k∈Θ

(
kρ(X)k−1θ1−kτ(X)

)nk .

By the s-homogeneity of R and Corollary 22 the identities∑
k∈Θ

nk = s and
∑
k∈Θ

(k − 1)nk = κ

hold. Therefore we obtain

τ(Y ) = ρ(X)κ τ(X)s θ−κ
∑
n

an

∏
k∈Θ

knk = µρ(X)κ τ(X)s,

finishing the proof. �

The two quantities λ and µ completely describe the evolution of the complexity and the
resistance. Let us combine the last two lemmata:

Theorem 26. Define T : R2 → R2 by T (a, b) = (λa, µaκbs). Then

(ρ(Y ), τ(Y )) = T (ρ(X), τ(X)).

Theorem 27. In general the following estimate for µ holds:

µ ≤ 1
θκ

(
sθ

κ

)
≤ sκ

κ!
.

In the special case of κ = 0 equality holds, i. e. µ = 1.

Proof. Let X = K1,θ be the star and (Y, ψ) = Copy(X,ϕ). Then Y has sθ edges and cyclomatic
number κ; a spanning tree is thus obtained by deleting κ edges in such a way that no cycle remains.
This implies

τ(Y ) ≤
(
sθ

κ

)
.

Note that equality holds in the above estimate if κ = 0, which implies µ = 1 in this case. Obviously,
τ(X) = 1 and ρ(X) = θ due to Lemma 7. Therefore, we have

µ =
τ(Y )

τ(X)sρ(X)κ
≤ 1
θκ

(
sθ

κ

)
,

which proves the theorem. �

4.4. Sequences of self-similar graphs. Let X0 be a connected multigraph and ϕ0 : Θ → VX0

be an injective map, so that X0 is partition-homogeneous with respect to ϕ0(Θ). Iteratively define
the multigraphs X1, X2, . . . and the maps ϕ1, ϕ2, . . . by

(Xn, ϕn) = Copy(Xn−1, ϕn−1)

for n ∈ N. Then Xn is a connected multigraph, which is partition-homogeneous with respect
to ϕn(Θ). Denote by ρ(Xn) the resistance scaling factor of Xn with respect to ϕn(Θ); then
ρ(Xn) = λnρ(X0) for all n ∈ N0. Now Lemma 10 implies the following:

Corollary 28. The cardinalities of VXn and EXn are given by

|VXn| = sn(|VX0| − 1)− κ s
n−1
s−1 + 1 and |EXn| = sn|EX0|.

Theorem 29. The complexity τ(Xn) of Xn is given by

τ(Xn) = λ
κ

sn−1−n(s−1)
(s−1)2 (µρ(X0)κ)

sn−1
s−1 τ(X0)s

n

.

Proof. The result follows from Theorem 26 by induction. �
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Since every spanning tree is a subset of the edge set, it is natural to rewrite the formula for
τ(Xn) in terms of |EXn|:

τ(Xn) = τ(X0)
(
|EXn|
|EX0|

) κ
s−1 (1−2/ds)

C
|EXn|
|EX0|

−1
,

where C = λ
κ

(s−1)2 µ
1

s−1 ρ(X0)
κ

s−1 τ(X0) and

ds = 2
log(s)
log(sλ)

is the so-called spectral dimension. This quantity appears in the asymptotic behavior of the
Dirichlet- or Neumann-eigenvalue statistics of the Laplacian on fractals or on infinite self-similar
graphs, as well as in transition density estimates for Brownian motion on fractals and its discrete
counterpart, see for instance [3, 18, 24, 25].

Furthermore, there are s possibilities to embed Xn in Xn+1 as a part of Xn+1. Hence for
each infinite sequence ι = (ι1, ι2, . . . ) ∈ SN, there exists an infinite limit graph X∞(ι), so that the
embeddings

X0
ι1
↪−→ X1

ι2
↪−→ X2 · · ·

ιn
↪−→ Xn · · · ↪−→ X∞(ι).

hold. In this sense the multigraph sequence X0, X1, . . . approaches the infinite multigraph X∞(ι).
The tree entropy h (see [30]) is then given by

h = lim
n→∞

log(τ(Xn))
|VXn|

=
κ
s−1 log(λ) + log(µ) + κ log(ρ(X0)) + (s− 1) log(τ(X0))

(s− 1)(|VX0| − 1)− κ
.

4.5. Examples. In the following we continue studying the examples from Section 3.2: Using
Theorem 29 closed formulæ for the complexity are derived. For these examples the parameters θ,
s, and κ are mentioned before. In addition, ρ(X0) and ρ(X1) is already computed, so that the
resistance scaling factor λ is given by λ = ρ(X1)/ρ(X0). It remains to compute the tree scaling
factor µ, which is done by means of Lemma 25.

4.5.1. Sierpiński graphs. As a first example, we derive a formula for the complexity of d-dimensional
Sierpiński graphs, see Section 3.2.1 for their definition. In order to apply Theorem 29, we have
to determine the tree scaling factor µ first. To this end, apply the substitution procedure to
X = K1,d+1, the star; this method can be seen as an analogon to the Wye-Delta-transform for
electrical networks. Then, the resulting graph Y is bipartite and its vertices can be divided into
the following categories:

• the centers of the parts Z̄i ' X,
• the corner vertices, each of which is attached to exactly one of the centers, and
• linking vertices between the centers: each of these vertices has exactly two neighbors (which

are center vertices), and for each pair of center vertices, there is exactly one vertex linking
them.

Figure 7. The graph Y for d = 2 and d = 3.

One can regard Y as a complete graph with d + 1 vertices whose edges are subdivided, with an
additional pendant vertex attached to each of the d+ 1 vertices (see Figure 7).



24 ELMAR TEUFL AND STEPHAN WAGNER

Obviously, τ(X) = 1, since X is a tree. Now, the main task is to calculate τ(Y ): A spanning
tree of Y has to contain each of the d+ 1 edges incident to the pendant vertices. Furthermore, we
can choose any of the (d+ 1)d−1 spanning trees of the complete graphs Kd+1 (each of the d edges
is represented by two edges in view of the subdivisions), and add one of the two possible edges for
each of the remaining

(
d+1
2

)
− d = d(d−1)

2 linking vertices. Therefore, we have

τ(Y ) = (d+ 1)d−1 · 2d(d−1)/2.

Lemma 7 yields ρ(X) = ρ(K1,d+1) = d+ 1. Using Lemma 25 and the formula for κ we obtain

µ =
τ(Y )

τ(X)sρ(X)κ
=
(
2d (d+ 1)2−d

) d−1
2
.

Since ρ(X0) = 1 and ρ(X1) = d+3
d+1 , the parameter λ is given by λ = d+3

d+1 . Now, Theorem 29 can
be applied: It is well-known that τ(X0) = τ(Kd+1) = (d+ 1)d−1, which gives

τ(Xn) =
(
2d((d+1)n−1) (d+ 1)(d+1)n+1+d(n+1)−1 (d+ 3)(d+1)n−dn−1

) d−1
2d

. (10)

Note that this is a generalization of the formula for spanning trees of 2-dimensional Sierpiński
graphs obtained by the authors in [43].

Finally, we remark that the spectrum of the Dirichlet-Laplace operator ∆0
n = ΠHn

∆nΠ
∗
Hn

with boundary ϕn(Θ) can be described exactly using the so-called method of spectral decimation,
see [18, 38, 41]. Here ∆n is the combinatorial Laplacian of Xn and Hn = VXn \ ϕn(Θ). Let us
quickly state this result: Set p(x) = x(d+ 3− x) and

m±(i) = d+1
2

(
(d− 1)(d+ 1)i−1 ± 1

)
.

Then the spectrum of ∆0
n is given by the following table:

Eigenvalue x Multiplicity of x

x = 2(d+ 1) m−(n)
x ∈ p−n+1(2) 1
x ∈ p−i(d+ 1) for i ∈ {0, . . . , n− 2} m−(n− i− 1)
x ∈ p−i(d+ 3) for i ∈ {0, . . . , n− 1} m+(n− i− 1)

Here p−k(u) is the set of all k-fold backward iterates of u. The multiplicity of some values x might
be zero, in which case x is of course not an eigenvalue of ∆0

n. Note that, by Vieta’s theorem, we
have ∏

x∈p−i(y)

x = y,

so that we also obtain an explicit formula for det(∆0
n), which is equal to the product of all eigen-

values of ∆0
n. Theorem 8 implies

det(∆0
n) = RXn(ϕn(Θ)) = (d+ 3)dn(d+ 1)1−d−dnτ(Xn).

Thus, the above description of the eigenvalues provides a different way to derive formula (10) for
the complexity τ(Xn).

This procedure is always applicable if spectral decimation works (generally, p is a rational func-
tion, which does not change too much). Unfortunately, spectral decimation is a rather restricted
tool, see [31, 39] for further details. For instance, it does not work for the sequence of Austria
graphs, which we are going to investigate next. Even if the method of spectral decimation applies,
it needs a little more work depending on the graph sequence to obtain the explicit description of
the complete spectrum.
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4.5.2. Austria graphs. The Austria graphs of Section 3.2.2 provide an example for the fact that
no symmetry at all is needed in the case θ = 2. Furthermore, two distinct orientations of the
substitutions σ1, . . . , σ4 yield different graph sequences, but this does not alter the complexity by
our considerations. It is not difficult to determine the polynomial Q:

Q

(
x21

x12

)
=

(
3x3

21 x12

5x2
21 x2

12

)
.

This leads to the closed formula

τ(Xn) = 3
1
9 (2·4n+3n−2) · 5 1

9 (4n−3n−1),

which also follows from Theorem 29 using the parameters θ = 2, s = 4, κ = 1, λ = 5
3 , µ = 3, and

ρ(X0) = τ(X0) = 1.

4.5.3. A multigraph example. This example (Section 3.2.3) shows that all our calculations are valid
even in the case of multigraphs. Here the polynomial Q is given by

Q

 x31

x2111

x13

 =

32x31 x3
2111 + 6x2

31 x2111 x13

8x4
2111 + 4x31 x2

2111 x13

8x3
2111 x13

 .

A short computation gives µ = 50
27 , yielding the formula

τ(Xn) = 3 · 2 2
3 (4n−1)−n · 5 1

3 (4n−1)+n.

4.5.4. An example without full symmetry. The maximal invariant group of this example is the
alternating group Alt({1, 2, 3}) of degree 3, see Section 3.2.4. (It is not difficult, however, to
construct similar examples yielding the maximal invariant group Alt({1, . . . , θ}) for arbitrary θ.)

We obtain the following expression for the polynomial Q:

Q

 x31

x2111

x13

 =

 160x4
31 x3

2111 + 12x5
31 x2111 x13

212x3
31 x4

2111 + 57x4
31 x2

2111 x13 + x5
31 x2

13

792x2
31 x5

2111 + 412x3
31 x3

2111 x13 + 36x4
31 x2111 x2

13

 .

Now, it is easy to determine the value of µ, which is 196
27 in this case. Together with θ = 3, s = 7,

and κ = 3, we obtain the formula

τ(Xn) = 2
1
12 (5·7n−6n−5) · 3 1

2 (7n+1) · 7 1
3 (7n−1)

from Theorem 29.

5. Conclusions

Our main result, Theorem 29, reveals strong connections between the complexity on finite
self-similar graphs and the study of Laplace operators. Polynomials Q and R both cover the
information of the resistance scaling factor. Hence it is likely that these polynomials are closely
related to the renormalization map, which is usually used in the definition for the resistance scaling
factor (see [33]). The Dirichlet- or Neumann-spectrum of Laplace operators on self-similar graphs
are well understood and described by the dynamics of a multi-dimensional polynomial, see [37].
Likewise, the complexity is governed by the polynomial Q. It is plausible that these two dynamical
systems are linked.

Let X0, X1, . . . be a sequence of finite self-similar graphs, denote by ∆n the combinatorial
Laplacian on Xn and by Pn its characteristic polynomial. Then Theorem 29 yields a closed formula
for the coefficient [x]Pn(x) of the linear term of Pn due to the formula [x]Pn(x) = −|VXn| τ(Xn).
Using similar considerations the computation of further coefficients seems to be possible. In the
case of 2-dimensional Sierpiński graphs a lengthy calculation shows that the coefficient [x2]Pn(x)
of the quadratic term is given by(

1
40 (14 · 15n − 3 · 9n + 39 · 5n + 6 · 3n + 4) + 1

2

(
5
3

)n)
τ(Xn).
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Note that Proposition 15 generalizes readily to the case when no symmetry condition is satis-
fied at all. But it seems to be difficult to generalize the further analysis too (especially Corollary 19),
although similar results on the complexity are expected to hold more general. However, there is
some evidence that Theorem 8 holds under less restricted symmetry assumptions.

Finally, we remark that in [42] it is conjectured that the number of connected subgraphs of
Xn asymptotically involves the resistance scaling factor. Our main result proves this conjecture
for the number of spanning trees.
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