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Abstract. A segment of a tree is a path whose ends are branching vertices
(vertices of degree greater than 2) or leaves, while all other vertices have degree

2. The lengths of all the segments of a tree form its segment sequence.

In this note we consider the problem of maximizing the Wiener index among
trees with given segment sequence or number of segments, answering two ques-

tions proposed in a recent paper on the subject. We show that the maximum

is always obtained for a so-called quasi-caterpillar, and we also further char-
acterize its structure.

1. Introduction

The Wiener index of a graph G is defined as the sum of all distances between
pairs of vertices in G:

W (G) =
∑

{u,v}⊆V (G)

dG(u, v)

where dG(u, v) (or simply d(u, v) when there is no ambiguity) is the distance be-
tween u and v. Introduced in 1947 [18], the Wiener index has received much
attention in the past decades, and several variants and generalizations have been
proposed as well. Extremal problems in particular have been studied extensively.
Here, the general question is: given a family of graphs, what can be said about the
maximum and minimum values of the Wiener index and the graphs for which these
are attained? It is very well known that the maximum and minimum are attained
by the path and the star respectively (see [2, Equation (3)]) if the family of all
trees is considered. Much further work has been done, however, on characterizing
the trees that maximize or minimize the Wiener index under various additional
conditions: given maximum degree [4,14,17], degree sequence [13,15,16,19], diam-
eter [11, 12, 17], independence or matching number [1, 3, 10], and many more [5–8].
Here, we will specifically be interested in the family of trees with a given segment
sequence, as studied in a recent paper by Lin and Song [9].

A segment of a tree T is a path in T with the property that each of the ends
is either a leaf or a branching vertex (vertex whose degree is at least 3) and that
all internal vertices of the path have degree 2. The segment sequence of T is the
non-increasing sequence of the lengths of all segments of T , in analogy to the degree
sequence. There are several formulas that allow for the efficient calculation of the
Wiener index based on segment lengths, see [2, Section 5]. To give one example,
let us denote the length of a segment S by `S and the number of vertices in the
two components that result when all internal vertices and edges of S are removed
by n1(S) and n2(S) respectively. Then (see [2, Theorem 10])

W (T ) =
∑
S

`Sn1(S)n2(S) +
1

6

∑
S

`S(`S − 1)(3n− 2`S + 1),
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where both sums are taken over all segments of T . This relation between the Wiener
index and segments was also the motivation for considering extremal problems
based on segments. Specifically: given the segment sequence of a tree, what are the
maximum and minimum values of the Wiener index, and what are the corresponding
extremal trees?

For a given segment sequence (l1, l2, . . . , lm), the starlike tree S(l1, l2, . . . , lm) is
the tree with exactly one vertex of degree ≥ 3 formed by identifying one end of
each of the m segments. It was shown in a recent paper [9] that S(l1, l2, . . . , lm)
minimizes the Wiener index among all trees with segment sequence (l1, l2, . . . , lm).

This leaves the natural question which trees with segment sequence (l1, l2, . . . , lm)
maximize the Wiener index. The answer to this question seems to be much more
complicated, but the authors of [9] presented a conjecture. Specifically, they asked
for the following:

Question 1.1. Define a quasi-caterpillar to be a tree with the property that all its
branching vertices (vertices of degree greater than 2) lie on a path (see Figure 1).
Does the tree maximizing the Wiener index among all trees with a given segment
sequence always have to be a quasi-caterpillar?

Figure 1. A quasi-caterpillar with segment sequence (5,5,3,3,2,2,2,2,1,1,1,1,1,1).

Also in [9], the tree with minimal Wiener index among all trees with given
number of segments is characterized. Again, we are interested in the analogous
question for the maximum, for which a conjecture was presented in [9] as well.

For given n and m, we define trees O(n,m) (for odd m) and E(n,m) (for even
m) respectively. The graph O(n,m) is obtained from a path v0v1 . . . v` of length
` = n − m+1

2 by attaching a total of m−1
2 leaves to vertices v1, v2, . . . , vb(m−1)/4c

and v`−1, v`−2, . . . , v`−d(m−1)/4e, see Figure 2 (left) for the case n = 11, m = 7.
Note that O(n,m) has exactly m segments.

Likewise, E(n,m) is a tree with n vertices and m segments obtained from a
path v0v1 . . . v` of length ` = n − m

2 − 1 by attaching a total of m
2 leaves to ver-

tices v1, v2, . . . , vb(m−2)/4c and v`−1, v`−2, . . . , v`−d(m−2)/4e, where two leaves are
attached to vertex v1 (so that it becomes the only vertex of degree 4), see Figure 2
(right) for the case n = 11, m = 8.

Figure 2. The trees O(11, 7) and E(11, 8).
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Question 1.2. Do O(n,m) (if m is odd) and E(n,m) (if m is even) always max-
imize the Wiener index among all trees of order n with m segments?

In this note positive answers are provided to both questions. We also present
some further characterization of the extremal quasi-caterpillars.

2. Trees with given segment sequence

In this section, we answer Question 1.1 affirmatively. The main theorem reads
as follows:

Theorem 2.1. If a tree T maximizes the Wiener index among all trees with the
same segment sequence, then it must be a quasi-caterpillar.

Proof. Before we start with the actual proof, let us fix some terminology and no-
tation. We will call a tree with maximum Wiener index among all trees with the
same segment sequence an optimal tree. We also write P (v, w) for the unique path
between vertices v and w in a tree T (which does not necessarily have to be a
segment).

Now let T be an optimal tree, and let P be a path with the greatest possible
number of segments on it. Clearly, the two ends of P have to be leaves; we will
denote the ends of P by v0 and vk and the branching vertices on P by v1, v2, . . . , vk−1
(in the order of their distances from v0). For each i (1 ≤ i ≤ k − 1), let the
neighbors of vi that do not lie on P be vi1, . . . , vili , and let Tij (1 ≤ j ≤ li) denote
the component containing vij after removing the edge between vi and vij .

In each of the subtrees Tij , consider the branching vertex (or leaf if there is
no branching vertex) closest to vi and call it uij . Finally, we write Sij for the
component containing uij in T − E(P (vi, uij)) (Figure 3).

v0 vkvi

vi2

ui2

Si2

Ti2

ui1

Si1

uili

Sili
. . .

Figure 3. The labeling of T

If Sij is a single vertex for every i and j, then T is a quasi-caterpillar, and we
are done.

Otherwise, let S = Si0j0 have the greatest number of vertices among all Sij

(1 ≤ i ≤ k, 1 ≤ j ≤ li). Let T≤i0 denote the component containing vi0 in T −
E(P (vi0 , vi0+1)) and T>i0 the component containing vi0+1 in T −E(P (vi0 , vi0+1)).
The subtrees T<i0 and T≥i0 are defined analogously. Suppose, without loss of
generality, that

|T<i0 | ≥ |T>i0 |. (1)

Moreover, we can assume that |S| > |Sij | for all i > i0 and all j; for if not, we could
consider a subtree Sij with |Sij | = |S| for which the index i is maximal instead of
S itself, and (1) still holds.

By our choice of the path P = P (v0, vk) as a path with the greatest number of
segments on it, i0 6= k − 1, i.e., vi0 cannot be the last branching vertex (since then
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there would be a path through ui0j0 rather than vk that contains more segments).
Thus vi0+1 is still a branching vertex. Consider the subtree Ti0+1,1 consisting of
the path from vi0+1 to ui0+1,1 and the subtree S′ = Si0+1,1 (Figure 4).

v0 vi0

p

ui0j0

S

Ti0j0

vkvi0+1

p′

ui0+1,1

S′

Ti0+1,1

Figure 4. The branches that are switched.

Consider two cases, depending on the lengths of the paths P (vi0 , ui0j0) and
P (vi0+1, ui0+1,1), which we denote by p and p′ respectively:

(1) If p ≥ p′, let T ′ be obtained from T by switching Ti0j0 and T(i0+1),1.
(2) If p < p′, let T ′ be obtained from T by switching S and S′.

It is easy to see that in either case T ′ has the same segment sequence as T . Let
us determine how the Wiener index changes through these operations.

• In the first case, the changes from T to T ′ are:
– the distance between any vertex in Ti0j0 and any vertex in T≤i0−Ti0j0

increases by d(vi0 , vi0+1);
– the distance between any vertex in Ti0j0 and any vertex in T>i0 −
T(i0+1),1 decreases by d(vi0 , vi0+1);

– the distance between any vertex in T(i0+1),1 and any vertex in T≤i0 −
Ti0j0 decreases by d(vi0 , vi0+1);

– the distance between any vertex in T(i0+1),1 and any vertex in T>i0 −
T(i0+1),1 increases by d(vi0 , vi0+1);

– the distances between vertices of Ti0j0 and the vertices on the segment
between vi0 and vi0+1 change, but the total contribution to the Wiener
index remains the same; the same is true for Ti0+1,1.

– all distances between other pairs of vertices stay the same.
Consequently, the total change is

W (T ′)−W (T ) = d(vi0 , vi0+1)
(
|Ti0j0 |−|T(i0+1),1|

)(
|T≤i0−Ti0j0 |−|T>i0−T(i0+1),1|

)
.

Note that

|T≤i0 − Ti0j0 | > |T<i0 | ≥ |T>i0 | > |T>i0 − Ti0+1,1|,
and that |S| > |S′| by the assumptions on S = Si0j0 that we made, so
|Ti0j0 | > |T(i0+1),1| . Thus W (T ′) > W (T ), a contradiction.

• In the second case, we only need to consider the change of distance between
vertices in S and S′ and the rest of the tree. In the same way as before, we
obtain

W (T ′)−W (T ) =
(
d(vi0 , vi0+1)+p′−p

)(
|S|−|S′|

)(
|T≤i0−Ti0j0 |−|T>i0−T(i0+1),1|

)
,

which is again positive, and we reach another contradiction.

In both cases, we see that T cannot be optimal, which completes our proof.
�
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3. Further characterization of the extremal quasi-caterpillar

Let the longest path of a quasi-caterpillar containing all the branching vertices
be called the backbone; all segments that do not lie on the backbone (and thus
connect a leaf with a branching vertex) are called pendant segments. Let a segment
sequence (l1, l2, . . . , lm) be given; we know from Theorem 2.1 that the maximum of
the Wiener index can only be attained for a quasi-caterpillar. In this section, we
present some further characteristics of extremal quasi-caterpillars. The technical
details are somewhat similar to the proof of Theorem 2.1, and we skip some details.

Theorem 3.1. A quasi-caterpillar that maximizes the Wiener index among trees
with segment sequence (l1, l2, . . . , lm) must satisfy the following:

(1) If the number of segments is odd, all branching vertices have degree exactly
3; If the number of segments is even, all but one branching vertices have
degree 3. The only exception must be a branching vertex of degree 4, which
must be the first (or last) branching vertex on the backbone. This also means
that the number of segments on the backbone is k = b(m+1)/2c, the number
of pendant segments is k′ = d(m− 1)/2e.

(2) The lengths of the segments on the backbone, listed from one end to the
other, form a unimodal sequence r1, r2, . . . , rk, i.e.,

r1 ≤ r2 ≤ · · · ≤ rj ≥ · · · ≥ rk
for some j ∈ {1, 2, . . . , k};

(3) The lengths of the pendant segments, starting from one end of the backbone
towards the other, form a sequence of values s1, s2, . . . , sk′ such that

s1 ≥ s2 ≥ · · · ≥ sj′ ≤ · · · ≤ sk′

for some j′ ∈ {1, 2, . . . , k′}.

Proof. We provide justification for each of the above claims as follows:

(1) Let the backbone be the path P (v0, vk) between leaves v0 and vk with branching
vertices v1, v2, . . . , vk−1 (in the order of their distances from v0). First we claim
that no branching vertex is of degree greater than 4. Otherwise, let vi be of degree
at least 5 with neighbors vi1, vi2, vi3, . . . not on P (v0, vk). Let T<i (T>i) denote
the component containing vi−1 (vi+1) in T − E(P (vi−1, vi+1)) as before, and let
T≤i = T<i+1 and T≥i = T>i−1 be defined as in the proof of Theorem 2.1 as
well. Finally, let Ti1, Ti2, Ti3 be the pendant segments at vi containing vi1, vi2, vi3
respectively.

Suppose, without loss of generality, that

|T<i| ≥ |T>i|,
so that

|T≤i − Ti1 − Ti2| > |T>i|.
Let T ′ be obtained from T by detaching Ti1 and Ti2 from vi and reattaching

them to vi+1. Note that T ′ has the same segment sequence as T , even if i =
k − 1. The same argument as in the proof of Theorem 2.1 shows that W (T ′) −
W (T ) = d(vi, vi+1) (|Ti1|+ |Ti2|) · (|T≤i − Ti1 − Ti2| − |T>i|) > 0, and we reach a
contradiction.

Now we know that all branching vertices are of degree 3 or 4. We can repeat the
same argument as before with a vertex vi of degree 4 (moving only one segment
instead of two) to obtain a contradiction, unless vi = v1 or vi = vk−1 (in which case
we would have to move a single segment to the end of the backbone, which changes
the segment sequence). Thus the only branching vertices that could possibly have
degree 4 are v1 and vk−1.
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Now assume that both v1 and vk−1 are vertices of degree 4. Let S = T11 and
S′ = Tk−1,1 be two segments attached to v1 and vk−1 respectively, and let R be
obtained from T by removing these two segments (Figure 5). Suppose, without loss
of generality, that ∑

v∈V (R)

d(vk, v) ≤
∑

v∈V (R)

d(v0, v).

v0 v1

S

vkvk−1

S′

R

Figure 5. The segments S and S′ and the rest of the tree (denoted R).

Let T ′ be obtained from T by removing both S and S′ and attaching them to
v0. Evidently, T ′ and T have the same segment sequence. Let us again see how the
Wiener index changes:

• the distance between any two vertices in S, any two vertices in S′, or any
two vertices in R does not change;

• the total distance between all vertices in S and all vertices in S′ decreases
by d(v1, vk−1)|S||S′|;

• the total distance between vertices in S and P (v0, v1) does not change,
while the total distance between vertices in S and the rest of R increases
by d(v0, v1)(|R| − d(v0, v1)− 1)|S|;

• if S′ is moved to vk, the total distance between vertices in S′ and R increases
by d(vk−1, vk)(|R| − d(vk−1, vk)− 1)|S′| as before;

• moving S′ further to v0 changes the total distance further by

|S′|
( ∑
v∈V (R)

d(v0, v)−
∑

v∈V (R)

d(vk, v)
)
.

Since the backbone is the longest path that contains all the branching vertices, we
have |S| ≤ d(v0, v1) and |S′| ≤ d(vk−1, vk). Moreover, we trivially have

|R| > d(v0, vk) + 1 = d(v0, v1) + d(v1, vk−1) + d(vk−1, vk) + 1.

Thus the total change is

W (T ′)−W (T ) = |S′|
( ∑
v∈V (R)

d(v0, v)−
∑

v∈V (R)

d(vk+1, v)
)

+ d(vk−1, vk)
(
|R| − d(vk−1, vk)− 1

)
|S′|

+ d(v0, v1)
(
|R| − d(v0, v1)− 1

)
|S| − d(v1, vk−1)|S||S′|

> d(vk−1, vk)
(
d(v0, v1) + d(v1, vk−1)

)
|S′|

+ d(v0, v1)
(
d(v1, vk−1) + d(vk−1, vk)

)
|S| − d(v1, vk−1)|S||S′|

> d(v1, vk−1)
(
|S′|2 + |S|2 − |S||S′|

)
> 0.
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Consequently W (T ′) > W (T ), a contradiction. Thus there is at most one vertex of
degree 4, and it has to be either v1 or vk−1 (if there is such a vertex at all, which
happens if and only if the number of segments is even).

(2) Consider the segments P (v0, v1), P (v1, v2), . . . , P (vk−1, vk) on the backbone, let
r1, r2, . . . , rk be the lengths of these segments, and let M be be the maximum length
of a backbone segment. Let j be the smallest index such that rj = d(vj−1, vj) =
M > rj+1 = d(vj , vj+1). Such an index always exists (if necessary, after reversing
the backbone) unless all segments on the backbone have the same length. In this
case, however, there is nothing to prove.

Moreover, let T≤j−1, Tj and T≥j+1 denote the components containing vj−1, vj
and vj+1 respectively in T −E(P (vj−1, vj+1)) (Figure 6). We must have |T≤j−1| ≥
|T≥j+1|, for otherwise interchanging T≤j−1 and T≥j+1 will increase the Wiener
index by

(|Tj | − 1)(rj − rj+1)
(
|T≥j+1| − |T≤j−1|

)
> 0.

vjvj−1T≤j−1
vj+1 T≥j+1

Tj

Figure 6. The subtrees T≤j−1, Tj and T≥j+1.

Consequently, we must also have

|T≤i−1| > |T≤j−1| ≥ |T≥j+1| > |T≥i+1|

for any i > j, implying that ri ≥ ri+1 by the same argument. It follows that
rj ≥ rj+1 ≥ · · · . Similarly, one can show that r1 ≤ · · · ≤ rj .

(3) We only consider the case of an odd number of segments in T (the even case
can be argued in exactly the same way). Then all branching vertices have degree
3. Let Si denote the pendant segment at vi (1 ≤ i ≤ k′ = k − 1), let si denote the
length of Si, and let µ be the minimum length of all pendant segments.

Let j′ be the smallest index such that sj′ = µ < sj′+1 (again, such an index
exists, if necessary after reversing the backbone, unless all branching segments
have the same length), and let T≤j′ and T≥j′+1 denote the components containing
vj′ , and vj′+1 respectively in T − E(P (vj′ , vj′ + 1)).

Then we have |T≤j′−Sj′ | ≥ |T≥j′+1−Sj′+1|, or interchanging Sj′ and Sj′+1 will
increase the Wiener index by

d(vj′ , vj′+1)(sj′+1 − sj′)
(
|T≥j′+1 − Sj′+1| − |T≤j′ − Sj′ |

)
> 0.

Thus

|T≤i − Si| ≥ |T≤j′ | > |T≤j′ − Sj′ | ≥ |T≥j′+1 − Sj′+1| ≥ |T≥i+1| > |T≥i+1 − Si+1|

for any i > j′, which implies that si+1 ≥ si by the same argument. It follows that
sj ≤ sj+1 ≤ · · · . Similarly, one can show that s1 ≥ · · · ≥ sj′ .

�
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4. Trees with given number of segments

In this section, we answer Question 1.2 affirmatively by proving the following
theorem:

Theorem 4.1. Among all trees of order n with m segments, O(n,m) (E(n,m))
maximizes the Wiener index if m is odd (even).

Proof. We only consider the case of odd m, the other case is similar. Let T be an
optimal tree, given the number of vertices and segments.

From Theorems 2.1 and 3.1, it is clear that T has to be a quasi-caterpillar, and
that every branching vertex has degree 3. Let the backbone be the path P (v0, vk),
and let v1, v2, . . . , vk−1 be the branching vertices on the backbone. Note that the
total number of segments is m = 2k − 1. Moreover, let a and b be the lengths of
P (v0, v1) and the other pendant segment ending at v1, and let T ′ be the tree that
remains when those two segments (including v1) are removed.

Suppose that min(a, b) > 1. If we replace the two segments by segments of
lengths 1 and a + b − 1, the Wiener index increases by (a − 1)(b − 1)|T ′|, and we
reach a contradiction to the choice of T .

Thus the pendant segment at v1 (and by the same argument, the pendent seg-
ment at vk−1) has to have length 1, and by statement (3) of Theorem 3.1, alll
pendent segments have length 1. In other words, T is a caterpillar.

From the (partial) characterization of trees with given degree sequence that max-
imize the Wiener index (see [13, Theorem 3.3]), we also know that the degrees of the
internal vertices along the backbone have to be decreasing at first, then increasing,
i.e., the sequence of degrees has to be of the form 3, 3, . . . , 3, 2, 2, . . . , 2, 2, 3, 3, . . . , 3.
It only remains to show that the number of vertices of degree 3 on the two sides
is as equal as possible (difference at most 1). Let us rename the vertices on the
backbone as follows: u0 = v0, u1, u2, . . . , un−k = vk; this includes all vertices, not
just the branching vertices. Assume that there is a leaf attached to u1, u2, . . . , ux
and un−k−1, un−k−2, . . . , un−k−y, where x+ y = k− 1. If k− 1 = n− k− 1 (equiv-
alently, n = 2k = m+ 1), there is nothing to prove, as there is only one possibility
left for T : all vertices on the backbone have to have degree 3. Otherwise, assume
that |x− y| > 1; without loss of generality, x > y+ 1. If we move the one leaf from
ux to un−k−y−1, the Wiener index increases by 2(x− y − 1)(n− 2k), and we reach
yet another contradiction. Thus |x− y| ≤ 1, which means that T is isomorphic to
O(n,m). �

5. Conclusion

We found that a tree maximizing the Wiener index, given the segment sequence,
has to be a quasi-caterpillar, and we managed to characterize the structure some-
what further. A complete characterization of the extremal trees seems difficult,
as it is for the problem of maximizing the Wiener index of trees given the degree
sequence. For the problem of maximizing the Wiener index among trees with a
given number of vertices and segments, however, we did prove such a complete
characterization.

It is quite probable that similar results hold for other graph invariants (in par-
ticular, distance-based invariants), and we think that it would be worthwhile to
further pursue this line of research.
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