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1. Introduction18

Identities between various minors of a matrix have a long tradition that19

dates back at least to the eighteenth century; the book of Muir [1] provides20

an excellent treatise on the theory of determinants. In combinatorics, deter-21

minants are frequently used to solve enumeration problems, in particular in22

the context of graph-theoretical problems: it is well-known that every mi-23

nor of the Laplace matrix of a graph can be interpreted as the number of24

certain spanning forests of the graph, see for example [2, 3, 4]. In particu-25

lar, the determinant of a matrix that is obtained by deleting any single row26

and any column of the Laplace matrix is, except possibly for the sign, the27

number of spanning trees of the corresponding graph—Kirchhoff’s celebrated28

Matrix-Tree Theorem [5]. Kirchhoff’s motivation was the study of electrical29

networks: an edge-weighted graph can be regarded as an electrical network,30

where the weights are the conductances of the respective edges. The effective31

conductance between two specific vertices v, w can be written as the quotient32

of the (weighted) number of spanning trees and the (weighted) number of so-33

called thickets, i.e. spanning forests with exactly two components and the34

property that each of the components contains precisely one of the vertices35

v, w [6]. By the aforementioned properties of the Laplace matrix, this can36

be rewritten as the quotient of two minors of the Laplace matrix.37

Noticing that an electrical network on n vertices is uniquely determined38

by
(

n
2

)

conductances, a natural question is: is it possible to reconstruct them39

from the
(

n
2

)

effective conductances? While the step from conductances to ef-40

fective conductances only involves the computation of certain determinants,41

the reverse step is not quite as obvious: it is known that the effective con-42

ductances determine the network uniquely, see for example [7], but a priori,43

determining all conductances amounts to solving a nonlinear system of equa-44

tions in
(

n
2

)

unknowns. To the best of our knowledge, nobody has ever treated45

the question whether an explicit formula for the conductances of an electrical46

network in terms of the effective conductances exists.47

In this paper, we will show that such a formula indeed exists and that48

it can be obtained from a determinant identity for Laplace matrices. This49

identity is actually more general: it relates any minor of a Laplace matrix50

to the specific minors that are obtained by deleting two rows and the corre-51

sponding columns. The proof of our identity is based on a classical result of52

Sylvester.53

Our second motivation is the problem of enumerating spanning trees in54
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graphs with a high degree of symmetry. In a recent paper by the authors [8],55

the following theorem was given as a byproduct:56

Theorem. Let G be a connected (multi-)graph, and let Θ ⊆ V be a subset of57

θ distinguished vertices. Suppose that G is strongly symmetric with respect58

to Θ, i.e. the restriction of the automorphism group of G to Θ is either the59

entire symmetric group or the alternating group. If r(A) denotes the number60

of all rooted spanning forests of G whose roots are the elements of A and61

τ(G) is the number of spanning trees of G, then we have62

r(A) = mρm−1θ1−mτ(G)

for all sets A ⊆ Θ of cardinality m. Here, ρ is the so-called resistance scaling63

factor of G with respect to Θ (for a precise definition, see Section 4).64

We will show that this is also a corollary of our determinant identity and65

that it even holds in the somewhat more general case that the automorphism66

group acts 2-homogeneously on the set Θ.67

In the last section, we will describe how our determinant identity can be68

exploited to provide a very general method for the enumeration of spanning69

trees; roughly stated, if any part of a graph is replaced by an electrically70

equivalent graph, the number of spanning trees only changes by a factor that71

is independent of the rest of the graph. This allows us to determine the72

number of spanning trees in a graph by the same methods that are used73

to simplify electrical networks. The described technique proves to be most74

useful if the graphs under consideration are highly symmetric; in particular,75

it can be applied to the enumeration of spanning trees in self-similar graphs76

such as the Sierpiński graphs, a problem which has recently gained attention77

in physics [9].78

2. Main result79

Let L be a square matrix. Given a set A = {a1, . . . , am} of row indices80

and a set B = {b1, . . . , bm} of column indices we write LA
B for the submatrix81

of L, where rows in A and columns in B are deleted, and write DA
B = det LA

B82

for the associated minor. For convenience, we write Dij
kl instead of D

{i,j}
{k,l}. We83

will make use of the following identity for minors of a matrix that is due to84

Sylvester, see [1, 10] and the references therein.85
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Theorem 1. Let A = {a1 < a2 < · · · < am} and B = {b1 < b2 < · · · < bm}86

be sets of row and column indices of the matrix L, respectively. Then, for87

any k and l,88

DA
B

(

Dak

bl

)m−2
= (−1)k+l

∑

π∈Sm

π(l)=k

sgn π
∏

1≤i≤m
i6=l

Daπiak

bibl
. (1)

In the following we always assume that the matrix L is symmetric and89

that it has zero row/column sum. Then L is a (weighted) Laplace matrix of90

a graph G with edge weights c(e), e ∈ EG. We note that all graphs under91

consideration are allowed to have parallel edges and loops. By the matrix-92

tree theorem the cofactors (−1)a+bDa
b are all equal and count the number of93

(weighted) spanning trees in G, as mentioned in the introduction. We denote94

their common value by τ = τ(G) = τ(G, c). More generally, the absolute95

value of DA
B counts (weighted) spanning forests each of which components96

contains exactly one vertex from A and one from B, see [2, 3, 4]. Whenever97

edge weights are given, the number of spanning trees and similar objects is98

always counted with respect to these weights.99

Using the symmetry condition and the zero row sum condition we express100

the left hand side DA
Bτm−2 of Equation (1) in terms of minors of the form101

Drs
rs. In order to state the following theorem, define G(A,B) to be the family102

of graphs Λ which satisfy the following properties:103

• The vertex set V Λ is A ∪ B.104

• The edge set EΛ has size m − 1.105

• The set of components consists of paths (including isolated vertices)106

and cycles (excluding loops, but allowing 2-cycles).107

• The vertices of cyclic components are contained in A ∩ B.108

• Path components of length 1 and more have one end-vertex in A and109

the other in B. All internal vertices are contained in A ∩ B.110

As a consequence a graph Λ in G(A,B) has exactly |A \B|+ 1 path compo-111

nents and there are unique vertices a ∈ A and b ∈ B (a = b is allowed) so112

that Λ + ab has constant degree 1 on the symmetric difference A △ B and113

constant degree 2 on A ∩ B.114
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Theorem 2. Let A and B be sets of row and column indices of the matrix115

L with |A| = |B| = m. Then116

DA
B τm−2 =

∑

Λ∈G(A,B)

α(Λ)
∏

rs∈EΛ

Drs
rs.

The coefficients α(Λ) are of the form ±
(

1
2

)ν
, where the sign and the non-117

negative integer ν can be computed in terms of Λ, see Lemma 6 and its proof.118

For the proof of this theorem, we need a sequence of lemmas. Note first119

that by symmetry DX
Y = DY

X for any index sets X and Y . For convenience120

we set Dii
kl = Dkl

ii = 0 for arbitrary (possibly equal) i, k, l. The following121

lemma expresses all minors DY
X with |X| = |Y | = 2 in terms of minors of the122

form Drs
rs.123

Lemma 3. If i ≤ j and k ≤ l, then124

Dij
kl = 1

2
(−1)i+j+k+l

(

Dil
il + Djk

jk − Dik
ik − Djl

jl

)

. (2)

Proof. If i = j and/or k = l then we get 0 on both sides. If i = k and j = l,125

then the statement is also trivial. For certain fixed indices r and s, denote126

by v1, v2, . . . the columns of Lrs (rows r and s are deleted). If now i < j < k,127

then we get128

0 = det(vi + vj + vk, v1, v2, . . . )

= det(vi, v1, v2, . . . ) + det(vj, v1, v2, . . . ) + det(vk, v1, v2, . . . )

= (−1)i−1Drs
jk + (−1)j−2Drs

ik + (−1)k−3Drs
ij

by the zero row sum property, where the columns vi, vj, vk are omitted in the129

sequence v1, v2 . . . inside determinants. Denote the right hand side of the130

last equation by RHS(r, s); then by symmetry131

0 = (−1)k−3 RHS(i, j) + (−1)j−2 RHS(i, k) − (−1)i−1 RHS(j, k)

= 2(−1)j+k+1Dij
ik + Dij

ij + Dik
ik − Djk

jk .

Solving this for Dij
ik yields132

Dij
ik = 1

2
(−1)j+k

(

Dij
ij + Dik

ik − Djk
jk

)

.
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By similar calculations we get133

Dij
jk = 1

2
(−1)i+k

(

Dik
ik − Dij

ij − Djk
jk

)

,

Dik
jk = 1

2
(−1)i+j

(

Dik
ik + Djk

jk − Dij
ij

)

.

Note that the three identities above match the statement of the lemma since134

Dii
ii = 0, etc. If i < j < k < l, then135

0 = RHS(k, l) = (−1)i−1Dkl
jk + (−1)j−2Dkl

ik + (−1)k−3Dkl
ij

= 1
2
(−1)i+j+l−1

(

Djl
jl − Djk

jk − Dkl
kl

)

+ 1
2
(−1)i+j+l−2

(

Dil
il − Dik

ik − Dkl
kl

)

+ (−1)k−3Dkl
ij

= 1
2
(−1)i+j+l

(

Dil
il + Djk

jk − Dik
ik − Djl

jl

)

+ (−1)k−3Dkl
ij

and therefore136

Dkl
ij = 1

2
(−1)i+j+k+l

(

Dil
il + Djk

jk − Dik
ik − Djl

jl

)

.

Similarly, considering the equations 0 = RHS(j, l) and 0 = RHS(i, l) yields137

the identity for Dik
jl and Dil

jk.138

Now we substitute (2) into Sylvester’s identity (1) for k = l = m and139

obtain140

DA
B τm−2 = (−1)ΣA+ΣB

(

−1
2

)m−1×
×

∑

π∈Sm−1

sgn π
∏

1≤i<m

(

Daπibi

aπibi
+ Dambm

ambm
− Daπibm

aπibm
− Dambi

ambi

)

(3)

after some simplification, where ΣA = a1 + · · ·+am and ΣB = b1 + · · ·+ bm.141

When the products are expanded, a fair amount of cancellation occurs. In a142

first step we temporarily consider the minors Drs
rs as a set of indeterminates143

which do not satisfy Drs
rs = Dsr

sr or Drr
rr = 0. Hence, whenever we come across144

a minor Drs
rs in the expanded right hand side of (3), we can conclude that145

r ∈ A and s ∈ B. It turns out that all cancellation already takes place in146

this first step. In a second step, we collect terms involving Drs
rs = Dsr

sr for147

r, s ∈ A ∩ B.148

First of all, let us expand the product149

∏

1≤i<m

(

Daπibi

aπibi
+ Dambm

ambm
− Daπibm

aπibm
− Dambi

ambi

)

(4)
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for some π ∈ Sm−1. Then, for each 1 ≤ i < m, we heave four choices. We150

collect those indices i for which the first summand is chosen in a set M1,151

collect those indices i for which the second summand is chosen in a set M2,152

and so on. Then every term that we get after expansion of (4) can be written153

as154

Π(M,π) =
∏

i∈M1

Daπibi

aπibi

∏

i∈M2

Dambm

ambm

∏

i∈M3

Daπibm

aπibm

∏

i∈M4

Dambi

ambi

for M = (M1,M2,M3,M4). Therefore the product (4) is equal to155

∑

M

(−1)|M3|+|M4|Π(M,π),

where the sum is taken over all tuples M = (M1,M2,M3,M4) with the156

property that M1 ⊎M2 ⊎M3 ⊎M4 = {1, . . . ,m− 1}. We replace the product157

by this sum in (3) to obtain158

DA
B τm−2 = (−1)ΣA+ΣB

(

−1
2

)m−1
∑

M

(−1)|M3|+|M4|
∑

π∈Sm−1

sgn π Π(M,π) (5)

after changing the order of summation.159

Lemma 4. Let M = (M1,M2,M3,M4) be a tuple of index sets as before. If160

|M2| + |M4| ≥ 2, then161

∑

π∈Sm−1

sgn π Π(M,π) = 0.

Proof. If |M2| + |M4| ≥ 2, then there exist two distinct elements k, l ∈162

M2 ∪ M4. Write τ = (k, l) for the transposition of k and l. Note that aπk163

and aπl do not occur as indices of minors in Π(M,π) for any π ∈ Sm−1,164

since the summand that is chosen from the kth factor of the product (4)165

is either Dambk

ambk
or Dambm

ambm
in this case; the same holds analogously for l.166

Therefore we may freely interchange them without changing the monomials:167

Π(M,π) = Π(M,πτ) for all π ∈ Sm−1. We decompose Sm−1 into the disjoint168

sets Am−1 and Am−1τ and obtain169

∑

π∈Sm−1

sgn π Π(M,π) =
∑

π∈Am−1

(

sgn π Π(M,π) + sgn πτ Π(M,πτ)
)

=
∑

π∈Am−1

Π(M,π)
(

sgn π + sgn πτ
)

= 0.
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Performing all cancellations on the right hand side of (5), we obtain170

DA
B τm−2 = (−1)ΣA+ΣB

(

1
2

)m−1
∑

K

±
∏

(a,b)∈K

Dab
ab, (6)

where the sum is taken over certain sets K ⊆ A × B of size m − 1. By171

definition, every K in this sum covers a row index a ∈ A, a 6= am, at most172

once. The lemma above shows that am is also covered at most once by a set K173

involved in the sum. Since the rôles of rows and columns are interchangeable,174

the same must be true for all column indices in B: K covers every column175

index in B at most once. Therefore, the sum in Equation (6) is taken over all176

partial matchings K ⊆ A×B of size m−1. In other words, after cancellation177

the sum in Equation (5) runs over all M = (M1,M2,M3,M4) which satisfy178

M1 ⊎ M2 ⊎ M3 ⊎ M4 = {1, . . . ,m − 1} and |M2| + |M3| < 2 as well as179

|M2| + |M4| < 2.180

Lemma 5. We have181

DA
B τm−2 = (−1)ΣA+ΣB

(

−1
2

)m−1
∑

σ∈Sm

sgn σ
m

∑

k=1

m
∏

i=1
i6=k

Daσibi

aσibi
. (7)

Proof. We claim that the right hand side of (7) is equal to the right hand182

side of (5), which will prove the statement. Given a pair (σ, k) with σ ∈ Sm183

and 1 ≤ k ≤ m we associate a permutation π ∈ Sm−1 and a tuple M =184

(M1,M2,M3,M4), so that185

sgn σ

m
∏

i=1
i6=k

Daσibi

aσibi
= (−1)|M3|+|M4| sgn π Π(M,π) (8)

holds. First note that the indices aσk and bk do not occur on the left hand186

side of the equation above. The rough idea is that the left hand side was187

generated by choosing the second, third or fourth summand in the expansion188

of Equation (3) when i = k and/or πi = σk. To make this precise we have189

to distinguish several cases:190

Case 1 : k = m and σm = m. This corresponds to the case that the first191

summand Daπibi

aπibi
is always chosen in the expansion. Accordingly, we set192

π = σ regarding π as a permutation in Sm−1 and set M2 = M3 = M4 =193

∅.194

8



Case 2 : k = m and σm 6= m. This amounts to the case that the fourth195

summand Dambi

ambi
is chosen when i = σ−1m and the first one in all other196

cases. Hence we set π = (σm,m)◦σ and M4 = {σ−1m}, M2 = M3 = ∅.197

Case 3 : k 6= m and σk = m. In this case the third summand Daπibm

aπibm
is chosen198

when i = k and the first one otherwise. Thus we set π = σ ◦ (k,m) and199

M3 = {k}, M2 = M4 = ∅.200

Case 4 : k 6= m and σk 6= m and σm = m. This corresponds to the case201

that the second summand Dambm

ambm
is chosen when i = k and the first in202

all other cases. Therefore we set π = σ and M2 = {k}, M3 = M4 = ∅.203

Case 5 : k 6= m and σk 6= m and σm 6= m. In this final case, the third204

summand is chosen when i = k, the fourth summand when i = σ−1m,205

and the first in all remaining cases. Consequently we set π = (σk,m) ◦206

σ ◦ (k,m) and M3 = {k}, M4 = {σ−1m}, M2 = ∅.207

In all cases M1 is defined to be {1, . . . ,m−1}\(M2∪M3∪M4). It is now easy208

to see that Equation (8) holds. Furthermore, the map (σ, k) 7→ (π,M) is a209

one-to-one correspondence between Sm×{1, . . . ,m} and Sm−1 times the set of210

tuples M = (M1,M2,M3,M4) satisfying M1⊎M2⊎M3⊎M4 = {1, . . . ,m−1},211

|M2| + |M3| < 2, and |M2| + |M4| < 2. This proves the claim.212

In a second step of simplifying the right hand side of Equation (3), we213

collect terms on the right hand side of (7). If A ∩ B 6= ∅, then any minor214

Drs
rs with r, s ∈ A ∩ B also occurs in the form Dsr

sr . Now we regard them as215

equal again and also use the convention that Drr
rr = 0. Given σ ∈ Sm and216

1 ≤ k ≤ m consider the monomial217

m
∏

i=1
i6=k

Daσibi

aσibi
=

m
∏

(a,b)∈K

Dab
ab

where K = {(aσi, bi) : 1 ≤ i ≤ m, i 6= k}. If K contains an element (r, r) for218

some r ∈ A ∩ B, then the monomial above is 0, since Drr
rr = 0. Otherwise,219

regarding the elements of K as unordered pairs, K is the edge (multi-)set of220

a graph in G(A,B). Therefore221

DA
B τm−2 =

∑

Λ∈G(A,B)

α(Λ)
m
∏

rs∈EΛ

Drs
rs
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for suitable coefficients α(Λ). Recall that all cyclic components of a graph in222

G(A,B) are contained in A ∩ B.223

Lemma 6. Let Λ ∈ G(A,B), then224

α(Λ) = ±
(

1
2

)m−1
∏

C∈CΛ

β(C),

where CΛ is the set of all components of Λ and β(C) is given as follows:225

β(C) = 1 if C is a single vertex, a 2-cycle, or a path of length ℓ ≥ 0 with a226

vertex in A△B, whereas β(C) = 2 if C is a cycle of length ℓ ≥ 3, or a path227

of length ℓ ≥ 1 in A ∩ B. Additionally, the sign of α(Λ) can be computed in228

terms of Λ.229

Proof. We may assume that ai = bi for i = 1, . . . , |A∩B|. Otherwise reorder230

rows and columns appropriately. Note that this yields a global factor ±1.231

For σ ∈ Sm define a directed graph Xσ as follows: the vertex set of Xσ is232

A ∪ B and the edges are (aσi, bi) for 1 ≤ i ≤ m. Obviously, Xσ has constant233

out-degree 1 on A and constant in-degree 1 on B, and σ 7→ Xσ is one-to-one.234

Let Λ ∈ G(A,B). There are unique indices a ∈ A and b ∈ B such that235

Λ + ab has constant degree 1 on A△B and constant degree 2 on A∩B. We236

determine the number of permutations σ ∈ Sm with237

m
∏

i=1
i6=k

Daσibi

aσibi
=

m
∏

rs∈EΛ

Drs
rs (9)

and show that they all have the same sign. Assume that σ ∈ Sm satisfies238

(9). Then Xσ is an orientation of Λ + ab. Since a path component in Λ + ab239

has one end-vertex in A \B and the other in B \A, there is only one allowed240

orientation of the component. Thus σ is uniquely determined by Λ + ab on241

indices i, so that bi is contained in a path component of Λ + ab. If C is a242

cyclic component of Λ + ab, then a cyclic orientation of C is a component243

of Xσ too. As a cyclic component of Xσ defines a cycle of σ of the same244

length, the cyclic structure and thus the sign of σ are determined by Λ + ab.245

The number of cyclic orientations of cyclic components in Λ + ab explains246

the value of β(C) (there are two possible orientations for a cycle unless it is247

a 2-cycle or a loop), with one exception: if C is a 2-cycle of Λ + ab so that248

ab is an edge of C, then we have two choices for the edge ab, which yields a249

factor 2 in this case, although there is only one cyclic orientation.250

This finishes the proof of Theorem 2.251
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3. A special case252

In this section we study the case A = B, since we can write down a253

very explicit formula for the coefficients α(Λ) in terms of components. The254

following result was conjectured by the authors, see [11].255

Corollary 7. The number DA
A of rooted spanning forests with root set A of256

size m ≥ 2 satisfies257

DA
A τm−2 =

∑

Λ∈G(A,A)

α(Λ)
∏

rs∈EΛ

Drs
rs.

The coefficient α(Λ) is given by258

α(Λ) = (−1)|CΛ|−1
(

1
2

)m−1
∏

C∈CΛ

β(C),

where CΛ is the set of all components of Λ and β(C) is given in Lemma 6.259

Proof. Except for the sign of α(Λ) the statement follows from Theorem 2 and260

Lemma 6. It remains to determine the sign. Let Λ be a graph in G(A,A).261

Note that Λ has exactly one path component; hence there are unique elements262

a, b ∈ A such that Λ+ ab is 2-regular. If σ ∈ Sm satisfies (9), then (as shown263

in the proof of Lemma 6) the cycle structure of σ is completely determined264

by the cyclic components of Λ+ab. Since Λ and Λ+ab have the same number265

of components, we get sgn σ = (−1)m+|CΛ|, which proves the statement.266

4. Electrical networks267

Let G be a graph with loops and parallel edges and let c : EG → [0,∞)268

define weights (conductances) on the edges. The Laplace matrix L = L(G)269

is defined by its entries270

Lx,y = −
∑

e∈EG
e connects x,y

c(e) and Lx,x = −
∑

z∈V G
z 6=x

Lx,z

where x, y are vertices in V G, x 6= y. We say that two edge-weighted graphs271

(networks) G and H are electrically equivalent with respect to Θ ⊆ V G∩V H,272

if they cannot be distinguished by applying voltages to Θ and measuring the273

resulting currents on Θ. By Kirchhoff’s current law this means that the274
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rows corresponding to Θ of LGHV G
Θ and LHHV H

Θ are equal, where HV G
Θ is275

the matrix associated to harmonic extension, see for instance [7, 12]. If276

u, v ∈ V G are vertices in G and H is the complete graph with vertex set277

{u, v}, then there exists a conductance ceff(u, v) on the single edge of H,278

so that G and H equipped with ceff(u, v) are equivalent with respect to279

{u, v}. The number ceff(u, v) is called effective conductance and the number280

reff(u, v) = ceff(u, v)−1 is called effective resistance of u and v. By Kirchhoff’s281

famous result connecting currents and spanning trees (see for example [6]),282

the effective resistance is given by283

reff(u, v) = τ−1 Duv
uv , (10)

where Duv
uv counts rooted spanning forests with root set {u, v} (so-called284

thickets, see [6]), and τ is the number of spanning trees in G. Given all285

effective resistances on a simple graph (no loops or parallel edges), one may286

ask whether it is possible to reconstruct the edge weights. Indeed, this is287

possible, as it is shown in [7, Section 2.1] using an inductive argument. As288

a consequence of Theorem 2 we can give an explicit solution to this inverse289

problem. Without loss of generality we may assume that our network forms a290

complete graph, since non-existent edges can be regarded as edges of weight291

0.292

Corollary 8. Let G be a complete graph with three or more vertices and let c :293

EG → [0,∞) define conductances, so that τ 6= 0. If all effective resistances294

are known, then it is possible to reconstruct the original conductances on G;295

assume that V G = {1, . . . , n}; then the edge weight c(e) of the edge e = kl296

(k, l ∈ V G, k 6= l) can be computed as follows: Set A = V G \ {k} and297

B = V G \ {l}, define edge weights c̃(e) by298

c̃(e) =
∑

Λ∈G(A,B)

α(Λ)
∏

rs∈EΛ

reff(r, s),

and write τ̃ to denote the number of spanning trees in G with respect to the299

weights c̃. Then300

c(e) = τ̃−1/(n−2) c̃(e).

Proof. Since c(e) = DA
B and Drs

rs = τreff(r, s), Theorem 2 implies301

c(e) = τ
∑

Λ∈G(A,B)

α(Λ)
∏

rs∈EΛ

reff(r, s) = τ c̃(e).
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By the matrix-tree theorem it follows that τ = τ̃ τn−1, which yields the302

statement.303

Remark 1. We note that in the situation of the corollary above, the sign of304

α(Λ) for Λ ∈ G(A,B) is given by (−1)|CΛ|+ε, where305

ε =

{

1 if k and l are connected by a path in Λ,

0 otherwise.

Remark 2. If τ = 0 in the situation of the previous corollary, then we restrict306

ourselves to components induced by edges of positive weight. Note that these307

components can be determined from the effective resistances as well.308

In combinatorics unit conductances are of great interest because of the309

well-known relation between electrical networks and the number of spanning310

trees. Let G be a graph and cG be unit conductances on the edges of G. We311

say that G has resistance scaling factor ρ = ρΘ with respect to Θ ⊆ V G, if312

(G, cG) is electrically equivalent to (H, ρ−1cH), where H is a complete graph313

with vertex set V H = Θ and cH are unit conductances on H. Note that314

the effective resistance of vertices u and v in a graph with unit conductances315

is exactly the resistance scaling factor with respect to {u, v}. The following316

result was proved by the authors in [8] under stronger assumptions, whereas317

the form here seems to be best possible.318

Corollary 9. Let G be a connected graph and let Θ ⊆ V G be a subset of319

θ distinguished vertices. Suppose that the restriction of the automorphism320

group of G to Θ is 2-homogeneous, i.e. for all u, v, w, x ∈ Θ with u 6= v and321

w 6= x there is an automorphism ϕ with ϕ(Θ) = Θ and ϕ({u, v}) = {w, x}.322

Then we have323

DA
A = mρm−1θ1−mτ

for all sets A ⊆ Θ of cardinality m, where ρ is the resistance scaling factor324

of G with respect to Θ.325

Proof. Let H be a complete graph with vertex set Θ and unit resistances.326

By assumption, we have rG
eff(r, s) = ρ rH

eff(r, s) for r, s ∈ Θ. Then, using the327

identity (10) and Theorem 2, we get328

DA
A(G)

τ(G)
=

∑

Λ∈G(A,B)

α(Λ)
∏

rs∈EΛ

rG
eff(r, s) = ρm−1 · DA

A(H)

τ(H)
.

It is well known that τ(H) = θθ−2, and DA
A(H) = m θθ−m−1. Putting every-329

thing together yields the statement.330
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5. Counting spanning trees331

In this section, we show how our determinant identity can be applied to332

the enumeration of spanning trees. Specifically, we prove that if a subgraph333

of a graph G is replaced by an electrically equivalent graph, the number of334

spanning trees only changes by a factor that does not depend on G. This335

allows us to employ techniques from the theory of electrical networks—such336

as the Wye-Delta transform—to determine the number of spanning trees of337

a graph. This is particularly useful when one is working with graphs with338

a high degree of symmetry; several examples are given at the end of this339

section. Formally, the main result of this section reads as follows:340

Theorem 10. Suppose that X is a (possibly edge-weighted) graph that is341

decomposed into two graphs G and H in the following way: EX = EG⊎EH342

(i.e. the edge set of X is partitioned into the edge sets of G and H) and343

V X = V G ∪ V H, where V G ∩ V H = M . Furthermore, we assume that344

τ(X) 6= 0 and τ(H) 6= 0. Now suppose that H ′ is another graph with the345

property that EG ∩EH ′ = ∅ and V G ∩ V H ′ = M , and suppose that H and346

H ′ are electrically equivalent with respect to M . Finally, set X ′ = G ∪ H ′.347

Then, the following formula holds:348

τ(X ′)

τ(X)
=

τ(H ′)

τ(H)
.

Proof. Any spanning tree of X induces spanning forests on G and H; these349

spanning forests must have the additional property that any of their com-350

ponents contains a vertex of M . For a fixed spanning forest F on G with351

this property, let σF (H) be the number of spanning forests F ′ on H with the352

property that F ∪ F ′ is a spanning tree on X. Then353

τ(X) =
∑

F

σF (H),

where the sum is taken over all possible forests F . We will show that σF (H)354

is proportional to τ(H), given the effective resistances of H with respect to355

the vertex set M that G and H have in common.356

The connected components of F induce certain connections on M ; If we357

contract the vertices that are connected by F to single vertices, we obtain a358

new graph HF ; this contraction may result in additional parallel edges. It is359

easy to see that spanning forests F ′ in H with the aforementioned property360

14



correspond exactly to spanning trees in the contracted graph HF , and so361

we have σF (H) = τ(HF ). The effect of the contraction on the Laplace362

matrix is also quite simple: the rows respectively columns of contracted363

vertices are added to form a single row respectively column. Because of the364

multilinearity of the determinant, the determinant of the new Laplace matrix365

(i.e. the Laplace matrix of HF ), reduced by one row and one column (so that366

it gives exactly τ(HF ), can be written as the sum of minors of the original367

Laplace matrix of H, where only rows and columns corresponding to vertices368

in M are removed. By Theorem 2, each of these minors can be written as369

τ(H) · P (reff(H)), where P is a polynomial and reff(H) is the vector of all370

effective resistances of H with respect to M . Hence, there exists a polynomial371

ΣF such that372

σF (H) = τ(HF ) = τ(H) · ΣF (reff(H)).

Since H and H ′ were assumed to be electrically equivalent with respect to373

M , we obtain374

σF (H ′) = τ(H ′) · ΣF (reff(H ′)) = τ(H ′) · ΣF (reff(H)) =
τ(H ′)

τ(H)
· σF (H).

Summing over all possible forests F finally yields the desired result.375

In the following, we list the effect of some simple transformations on the376

number of spanning trees:377

1. Parallel edges: If two parallel edges with conductances a and b are378

merged into a single edge with conductance a+b, the (weighted) number379

of spanning trees remains the same.380

2. Serial edges: If two serial edges with conductances a and b are merged381

into a single edge with conductance ab
a+b

, the weighted number of span-382

ning trees changes as follows:383

τ(X ′) =
1

a + b
· τ(X).

3. Wye-Delta transform: if a star with conductances a, b, c (see Figure 1)384

is changed into an electrically equivalent triangle with conductances385

x = bc
a+b+c

, y = ac
a+b+c

and z = ab
a+b+c

, the weighted number of spanning386

trees changes as follows:387

τ(X ′) =
1

a + b + c
· τ(X).

388
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a

b c

x

yz

Figure 1: Wye-Delta transform.

4. Delta-Wye transform: if a triangle with conductances a, b, c (see Fig-389

ure 2) is changed into an electrically equivalent star with conductances390

x = ab+bc+ca
a

, y = ab+bc+ca
b

and z = ab+bc+ca
c

, the weighted number of391

spanning trees changes as follows:392

τ(X ′) =
(ab + bc + ca)2

abc
· τ(X).

a

bc x
y z

Figure 2: Delta-Wye transform.

393

Let us apply these simple transforms to determine the number of spanning394

trees of a small graph.395

Example 1. Consider the graph that is shown in Figure 3; a few applications396

of the aforementioned transformations suffice to determine the correct num-397

ber of spanning trees. It is clear that the weighted number of spanning trees

1

1

1

1

1 1

1

3

3
3

3
4

3
4

3
3
2 3

Figure 3: A simple example.

398

in the final graph is 3
2
· 3 = 9

2
. The factors that we obtain from the three399

transformations are 1
9
, 42 and 1, which shows that the original graph has400

1

9
· 42 · 1 · 9

2
= 8
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spanning trees.401

Admittedly, the exhibited method is unnecessarily complicated in this402

example, and ad-hoc reasoning would be much faster, but the technique of403

replacing parts of a graph by electrically equivalent graphs becomes powerful404

when one is working with symmetric graphs; to this end, we extend our list of405

operations a little further: a star K1,n is electrically equivalent to a complete406

graph Kn with conductances 1
n
, which yields the following:407

5. if a star K1,n with conductances a is changed into an electrically equiv-408

alent complete graph Kn with conductances a
n
, the weighted number409

of spanning trees changes as follows:410

τ(X ′) =
(a/n)n−1τ(Kn)

an
· τ(X) =

1

an
· τ(X).

The factor (a/n)n−1 arises from the fact that every spanning tree of the411

complete graph Kn has exactly n − 1 edges, whose associated conductances412

are all a
n

in this case. Note that this operation is essentially a generalization413

of the Wye-Delta transform (in the case that all conductances are the same).414

Of course there is also an analogous reverse operation. The well-known for-415

mula for the number of spanning trees in a complete bipartite graph follows416

immediately as an example:417

Example 2. Consider the complete bipartite graph Kn,m (n ≥ 2); it can be418

seen as the union of m stars with n edges each. Replace each of these stars by419

an electrically equivalent complete graph with n vertices and conductances420

1
n
. The resulting graph is a complete graph with n vertices and conductances421

m
n
; now we obtain from Theorem 10 that τ(Kn,m) is given by422

τ(Kn,m) = nm ·
(m

n

)n−1

τ(Kn) = mn−1nm−n+1nn−2 = mn−1nm−1.

It is actually even possible to deduce Cayley’s formula for the number of423

spanning trees in a complete graph in this vein without circular reasoning:424

Example 3. Consider the complete graph Kn (n ≥ 3); replace the star that425

is formed by all edges going out from a certain vertex by a complete graph426

with conductances 1
n−1

. The resulting graph is a complete graph with con-427

ductances 1 + 1
n−1

= n
n−1

; hence its weighted number of spanning trees is428

(

n
n−1

)n−2
τ(Kn−1). Now Theorem 10 yields429

τ(Kn) =
1

(n − 1)−(n−2)τ(Kn−1)
·
(

n

n − 1

)n−2

τ(Kn−1) = nn−2.
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Note that the precise value of τ(Kn−1) was not actually used, since it cancels430

in our calculation.431

In the following example, we show how the number of spanning trees of432

the Petersen graph can be determined by hand in three simple steps without433

having to compute a single determinant:434

Figure 4: Petersen graph.

Example 4. In the Petersen graph (Figure 4), replace four stars by triangles435

(the centers are indicated in the figure) to obtain a complete graph with six436

vertices; all edges have conductance 1
3

(indicated by dashed lines in Figure 5),437

except for three remaining edges whose conductances are still equal to 1. We

≃

Figure 5: First step in the reduction of the Petersen graph.

438

regard each of them as two parallel edges with conductances 1
3

and 2
3

and439

replace the complete graph that is formed by all edges with conductance440

1
3

by a star with conductances equal to two. The resulting graph consists441

of three triangles joined at a common vertex (Figure 6); the last step is to442

determine the number of its spanning trees; it would be possible to reduce443

further, but it is easy enough to determine the number directly: a spanning444
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2
3

2
3

2
3

22

2

2

2

2

Figure 6: Second step in the reduction of the Petersen graph.

tree in this graph must consist of spanning trees in each of the three triangles,445

which shows that the weighted number of spanning trees is (22 + 2 · 2 · 2
3
)3 =446

8000
27

. The factors that we obtain from the two transformations are 34 and 1
12

447

respectively, which shows that the number of spanning trees of the Petersen448

graph is449

34 · 1

12
· 8000

27
= 2000.

PG0

PG1

PG2

Figure 7: The Pentagasket: a pentagonal analogue of the Sierpiński gasket.

Example 5. Finally we would like to exhibit the type of problem where our450

transformation theorem proves to be most useful: self-similar graphs such as451

the Pentagasket that is shown in Figure 7: it has been shown [13] that the452

level-n Pentagasket PGn is electrically equivalent to a pentagon (in graph-453

theoretic terms, a complete graph K5) whose outer edges have conductance an454

and whose diagonal edges have conductance bn; (an, bn) are given as iterates455

of the following map:456

R(a, b) =

(

5(8a + 7b)(a2 + 3ab + b2)

176a2 + 228ab + 71b2
,
5(4a + b)(a2 + 3ab + b2)

176a2 + 228ab + 71b2

)

. (11)
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The initial values are (a0, b0) = (1, 0). Since PGn+1 is made up of five copies457

of PGn, we may replace each of these parts by an electrically equivalent458

pentagon with conductances an and bn. The weighted number of spanning459

trees of the resulting graph (denoted by Yn) is easily determined explicitly by460

means of a computer (since it only consists of 20 vertices). The same applies461

to the weighted pentagon (denoted by Zn), so that we obtain the following462

formula that is a direct consequence of Theorem 10:463

τ(PGn+1) =
τ(Yn)

τ(Zn)5
· τ(PGn)5

=
6250(2an + 3bn)(a2

n + 3anbn + b2
n)9

(5(a2
n + 3anbn + b2

n)2)5
· τ(PGn)5

=
2(2an + 3bn)

a2
n + 3anbn + b2

n

· τ(PGn)5.

(12)

Set qn = 2(2an+3bn)
a2

n+3anbn+b2n
; it is not difficult to check that qn satisfies the recurrence464

qn = 9
5
qn−1 + 4

5
qn−2,

with initial values q0 = 4 and q1 = 56
5
. Thus465

qn =
(

2 + 38√
161

)

ρn +
(

2 − 38√
161

)

ρ̄n,

where466

ρ = 1
10

(

9 +
√

161
)

and ρ̄ = 1
10

(

9 −
√

161
)

are the roots of the characteristic equation. Now iteration yields467

τ(PGn) = τ(PG0)
5n ·

n−1
∏

k=0

q5n−k−1

k = 55n ·
n−1
∏

k=0

q5n−k−1

k .

It is also possible to deduce the asymptotic behavior from this formula: take468

logarithms to obtain469

log τ(PGn) = 5n log 5 + 5n

∞
∑

k=0

5−k−1 log qk −
∞

∑

k=n

5n−k−1 log qk.

The infinite sum converges, since470

log qk = k log ρ + c + O(εk),
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where c = log
(

2 + 38√
161

)

and ε = |ρ̄/ρ| < 1. Furthermore,471

∞
∑

k=n

5n−k−1 log qk = 1
4
n log ρ + 1

16
(log ρ + 4c) + O(εn).

Finally, we obtain472

τ(PGn) = exp
(

− 1
16

(log ρ + 4c) − 1
4
n log ρ

)

· C5n

(1 + O(εn))

= A · ρ−n/4 · C5n

(1 + O(εn)) ,

where the numerical values of A and C are given by473

A
.
= 0.637317153240 and B

.
= 7.514181930576.

Remark 3. The method that was shown in this example does not only apply474

to the specific example of the Pentagasket; it can be used to any sequence475

X0, X1, . . . of self-similar graphs that is defined in a similar way; we refer476

to [7, 14, 15] for precise definitions. Roughly speaking, we start with X0 =477

Kθ and say that all θ vertices are “boundary” vertices. Now, given Xn478

and θ boundary vertices of Xn, we construct Xn+1 as the union of s copies479

of Xn, where some boundary vertices are glued together by a prescribed480

rule. Additionally, θ boundary vertices of Xn+1 are chosen according to a481

prescribed rule, too. The boundary vertices are ordered by the rule, so that482

we may speak about the first, second, etc. boundary vertex of Xn.483

Given some conductances c0 on X0, the graphs X1, X2, . . . inherit weights484

in a natural way from X0 (every edge in Xn is a copied version of a unique485

edge in X0). Especially, we write S(c0) to denote the conductances on X1486

inherited from (X0, c0). On the other hand, given conductances c1 on X1487

there are unique weights c̄1 on the complete graph X̄1 whose vertices are488

the boundary vertices of X1, so that the networks (X1, c1) and (X̄1, c̄1) are489

electrically equivalent with respect to the boundary vertices. (X̄1, c̄1) is often490

called the trace of X1 with respect to the boundary vertices. The so-called491

renormalization map R is the composition of copying conductances from X0492

to X1, taking the trace from X1 to X̄1, and identifying X̄1 with X0 using493

the ordering of boundary vertices. Consequently, R maps conductances of X0494

into itself. If we write T (c1) for the conductances which emerge by taking the495

trace, we have R = T ◦S up to identification. In the case of the Pentagasket496

the map R is given by Equation (11).497
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Let c0 be some conductances on X0 and denote by cn the conductances498

on Xn inherited from X0. Then it is easy to see that (Xn, cn) is electrically499

equivalent to (X0, R
n(c0)) with respect to the boundary vertices, where Rn

500

denotes the n-fold iterate of R. The method employed above can be gener-501

alized as follows: Fix some initial conductances c0. The graph Xn+1 is an502

amalgamation of s copies of Xn. If we replace each copy by the electrically503

equivalent network (X0, R
n(c0)), we get (X1, S(Rn(c0))), where the conduc-504

tances S(Rn(c0)) on X1 are inherited from (X0, R
n(c0)). Using Theorem 2505

we obtain506

τ(Xn+1) =
τ(X1, S(Rn(c0)))

τ(X0, Rn(c0))s
· τ(Xn)s,

which is the general form of Equation (12). Therefore the counting problem507

is closely related to the dynamical behavior of the renormalization map R.508

Whenever there are a factor ρ and conductances c∞ on X0 solving the non-509

linear eigenvalue problem c∞ = ρR(c∞), so that ρnRn(c0) converges to c∞,510

then511

τ(Xn) ∼ A · ρ−n/(s−1) · Csn

,

by the reasoning of the example above, where A,C are constants. The num-512

ber ρ solving the non-linear eigenvalue problem is called resistance scaling513

factor, see [14]. The dynamical behavior of R was studied in [15] (see also514

the references therein). In the case where the sequence X0, X1, . . . satisfies515

a strong symmetry condition, a closed formula for the number of spanning516

trees was shown before in [8].517
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