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Abstract

Betweenness centrality is a quantity that is frequently used to measure how
‘central’ a vertex v is. It is defined as the sum, over pairs of vertices other
than v, of the proportions of shortest paths that pass through v. In this paper,
we study the distribution of the betweenness centrality in random trees and
related, subcritical graph families. Specifically, we prove that the betweenness
centrality of the root vertex in a simply generated tree is usually of linear order,
but has a mean of order n3/2. We also show that a randomly chosen vertex
typically also has linear-order betweenness centrality, and that the maximum
betweenness centrality in a simply generated tree is of order n2. We obtain
limiting distributions for the betweenness centrality of the root vertex and of
a randomly chosen vertex, as well as for the maximum betweenness centrality,
and we also show that the centroid has positive probability in the limit to be
the vertex of maximum betweenness centrality. Some similar results also hold
for subcritical graph classes, which will be briefly discussed. Finally, we study
random recursive trees and other families of increasing trees, where the situation
is quite different: here, the root betweenness centrality is of quadratic order, as
is the maximum betweenness centrality. The betweenness centrality of a random
vertex, on the other hand, is again of linear order. Again, we also have limiting
distributions upon suitable normalisation.

Keywords: betweenness centrality; random tree; simply generated tree;
subcritical graph class; increasing tree; centroid
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1. Introduction

Random models of graphs and trees are a subject of interest for a number
of reasons—network scientists have a desire to identify the underlying processes

1This material is based upon work supported by the National Research Foundation of
South Africa under grant number 96236.
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that give rise to certain characteristics of real-life complex networks (graphs);
combinatorialists are interested in enumerating graph-like structures and de-
scribing their shapes; and computer scientists commonly use certain kinds of
trees in practice, making their properties relevant for the analysis of algorithms.
This paper has ties of differing strengths to all three of these fields: the central-
ity measure we study is natural and widely used in network science; also, the
second half of the paper is concerned with random increasing trees, which are
linked to computer algorithms and data structures. However our main interest
here is really combinatorial in nature, as we derive a number of results that
characterise the betweenness centrality of vertices in simply generated and in-
creasing trees. These results then help to colour the already rich understanding
of the structural properties (height, degree distribution, path length, etc.) of
random trees.

Let G be a graph; then the betweenness centrality (b.c.) of a given vertex r
is defined as a sum over pairs {v, w} of vertices other than r, counting for each
pair the fraction bvw(r) of undirected shortest paths between them that pass
through r:

b(r) =
∑
{v,w}

bvw(r),

where 0 ≤ bvw(r) ≤ 1. If G = T is in fact a tree, then there is only one
path between any two vertices, and b(r) is the total number of paths that pass
through r. In this case, the b.c. can be expressed in terms of the branches of T
joined to r, which are the maximal subtrees of T not containing r:

b(r) =
∑
i<j

|Ti||Tj |. (1)

(Here Ti is a branch and |Ti| its vertex count, or size.) This is precisely the
number of ways to choose two unordered vertices from distinct branches of r,2

which is a neatly phrased combinatorial problem. It is worth briefly noting here
that the b.c. of any vertex in a graph is bounded from above by

(
n−1
2

)
. For

more on betweenness centrality, we refer the reader to [1], [2, Section 7.7], or [3]
for a practical application. A more mathematical survey is provided in [4]; [5]
studies the betweenness centrality in real-world networks.

A key observation that follows from equation (1) will yield a limiting dis-
tribution for b(r): if one of the branches of r (without loss of generality, T1)
is ‘large’, while the others combined contain a fixed number k of vertices, then
b(r) is dominated by paths between T1 and the other branches: if the branch
sizes are n− k − 1 = n1, n2, . . . , nd, so that n2 + · · ·+ nd = k remains fixed as
the size n of the tree tends to infinity, then we have

b(T ) = (n− k − 1)

d∑
i=2

ni +
∑

1<i<j

ninj = nk +O
(
k2
)
. (2)

2We will often refer to the branches of T joined to r as ‘the branches of r.’

2



As it turns out, this observation applies, with high probability, to one of the
random tree families we are interested in (simply generated trees).

The two broad families of random trees this paper is concerned with are sim-
ply generated (s.g.) and increasing trees, treated in Sections 2 and 4 respectively.
Both types of trees are amenable to common methods based on generating func-
tions (g.f.’s), but have markedly different combinatorial properties—the most
significant being that an increasing tree is typically well balanced, so that its ver-
tices are quite evenly distributed among the branches of its root vertex, whereas
a s.g. tree is not. In addition to these two families, and as an extension to the
study of s.g. trees, we also give some results derived for classes of subcritical
graphs, which are tree-like in nature, in Section 3.

We follow a single course of analysis, and repeat it for each tree family: firstly,
the moments of the b.c. of the root vertex are derived, and then a description
of its limiting distribution is given. For increasing trees, we also describe the
b.c. of the vertex with a given label. Secondly, a limiting distribution for the
b.c. of a random vertex is obtained. Lastly, we consider the distribution of the
maximum b.c. in a tree, along with the probability that the centroid vertex
attains this maximum.3 For s.g. trees, we rely on the continuum random tree
and its connection to triangulations of the circle.

Our results can be summarised as follows: The kth moment of the b.c. of
the root in a s.g. tree or subcritical graph of size n is Θ(n2k−(1/2)), however as
n→∞, it is the linearly scaled b.c. of the root (or any randomly chosen vertex)
which yields a limiting distribution, implying that vertices in a large s.g. tree
typically have b.c. of Θ(n). In an increasing tree, the kth moment of the b.c.
of any vertex with a fixed label is Θ(n2k), and its limiting distribution requires
scaling by n−2. The limiting distribution of a randomly chosen vertex, however,
is once again obtained via a scaling factor of n−1. The maximum b.c. in a s.g.
tree or increasing tree is always Θ(n2), and the probability that the centroid
attains this maximum tends to a positive constant.

1.1. Notation

A brief word on the notation used throughout this paper: we use Tn to refer
to those objects of size n in a class T , and [xn]y(x) to denote the coefficient of
xn in a g.f. y(x). When the vertices of a tree can be referred to directly (such
as in labelled trees), b(l) will refer to the b.c. of vertex l. Otherwise, b(T ) will
be used to implicitly denote the b.c. of T ’s root.

2. Simply generated trees

If one couples a non-negative weight φi to each vertex in a rooted tree ac-
cording to its out-degree i, and defines the weight ω(T ) of the entire tree to be

3We have not investigated the maximum b.c. in subcritical graphs (or its relation to the
centroid) here; this remains as possible future work.
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the product of these weights, then the resulting class of trees can be counted
using the g.f.

y(x) =
∑
T∈T

ω(T )x|T | = xφ(y(x)), (3)

where φ(u) =
∑∞
i=0 φiu

i. Such a class is called simply generated (see [6], [7,
Section VII.3] or [8, Section 1.2].4 In particular, one recovers the classes of
binary, plane, and labelled trees via the weight functions φ(u) = (1 + u)2,
(1− u)−1, and exp(u) respectively.

Under a few technical conditions on φ(u) (see [9, Theorem 2.1]), including
the existence of a unique positive solution τ of φ(τ) = τφ′(τ) within the radius
of convergence of φ, every class of s.g. trees has the characteristic property
that its g.f. y(x) has a dominant singularity at x = ρ, determined by ρ =
τ/φ(τ) = 1/φ′(τ). Furthermore, y(x) satisfies a square-root expansion around
this singularity:

y(x) = τ − γ
√

1− x

ρ
+O

(
1− x

ρ

)
, (4)

in which y(ρ) = τ and γ =
√

2φ(τ)/φ′′(τ). Because of this, many interesting
properties of s.g. trees can be deduced almost mechanically using singularity
analysis. The number of trees of size n, for example, is

yn = [xn]y(x) ∼ γρ−n

2
√
πn3

.

The expected height of one of these trees is Θ(
√
n), and the expected number

of nodes at a fixed distance k from the root is only linear in k [7]. Another
interesting result, considering that we are about to address the b.c. of the root
vertex, is that the root of a s.g. tree is known to have up to three ‘major’
branches, with mean sizes of orders n,

√
n, and log n [10]. In light of this, one

might expect that the b.c. of the root will be dominated by paths between the
two largest branches, of which there are Θ(n3/2). In the following section, we
show not only that this is the case, but also that the kth moment of the root’s
b.c. is Θ(n2k−(1/2)).

2.1. Moments of the betweenness centrality of the root

Theorem 1. If T is a class of s.g. trees, then the mean b.c. of the root vertices
in Tn is Θ(n3/2). More precisely:

En(b(T )) ∼ γ−1τ

2

√
πn3.

The proof of the above theorem is quick if one recalls that the b.c. of a vertex
r is the number of ways to distinguish two unordered vertices from distinct
branches of r, and notes that the g.f. of a ‘pointed’ tree—in which a vertex has
been distinguished—is ŷ(x) = xy′(x).

4Because of the parallel between the recursive definition of s.g. trees and Galton-Watson
branching processes, these trees are also referred to as Galton-Watson trees.
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Proof. The g.f. of trees in which two of the root’s branches have been replaced
with pointed branches encodes the total b.c. over the roots of trees of size n,
and can be constructed explicitly:

H(x) =
∑
T∈T

b(T )x|T | = x
∑
i≥2

φi

(
i

2

)
y(x)i−2ŷ(x)2

=
x3

2
y′(x)2φ′′(y(x)).

Taking advantage of the square-root expansion of y(x) at x = ρ, and the fact
that φ(u) is analytic at u = τ , the asymptotic form of H(x) is

H(x) ∼ ρ

2

(γ
2

)2
φ′′(τ)

(
1− x

ρ

)−1
=
τ

4

(
1− x

ρ

)−1
.

Since [xn]H(x) =
∑
Tn b(T ), the result follows by computing [xn]H(x)/yn. �

Considering that the b.c. of a vertex is bounded by
(
n−1
2

)
= Θ(n2), and

that it is certainly possible to construct trees—stars, for example—in which the
root attains this bound, one can explain Theorem 1 intuitively by saying that
the rather unlikely event (whose probability is only of order n−1/2) of the root
having two large branches, each with a number of vertices linear in n, dominates
the asymptotic behaviour. By the same reasoning, one might then expect that
the kth moment of b(T ) will be of order n2k−(1/2).

In deriving these higher-order moments, the following lemma will prove use-
ful, both for s.g. trees and for subcritical graphs, the latter of which will be
treated in the following section.

Lemma 1. Let C be a ‘tree-like’ class, in that it is counted by a g.f. c(x) =
xφ(f(x)) such that both c(x) and f(x) permit square-root expansions around
a common singularity x = ρ and φ(u) is analytic at u = f(ρ). Then the
substitution of m branches f(x) of every tree with pointed branches—each of
which may possibly distinguish multiple vertices, and which in total contain
d distinguished vertices—yields a generating function whose dominant term is
Θ((1− (x/ρ))−d+(m/2)).

It follows from this lemma that when choosing d vertices from a s.g. tree, the
resulting asymptotic behaviour depends only on the configuration that affects
the fewest branches.

Proof. The g.f. obtained after substitution is a linear combination of terms of
the form

x

(
m∏
i=1

f̂di(x)

)
φ(m)(f(x)), (5)
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in which f̂di(x) is the g.f. of the ith substituted branch, which has di distin-
guished vertices:

f̂di(x) = x
d

dx
f̂di−1(x) =

di∑
l=1

{
di
l

}
xlf (l)(x),

where
{
j
l

}
denotes the Stirling numbers of the second kind. It is these branches

that determine the overall asymptotic behaviour of the expression in (5), since
f(x) permits a square-root expansion. Specifically, f (l)(x) is of order (1 −
(x/ρ))−l+(1/2), and

f̂di(x) ∼ xdif (di)(x) ∼ Kdi

(
1− x

ρ

)−di+(1/2)

for some constant Kdi . The result follows from equation (5) because
∑
i di = d

and φ(u) is analytic at u = f(ρ). �

Theorem 2. The kth moment of the b.c. of a root vertex in Tn is Θ(n2k−(1/2)),
and satisfies, for k ≥ 1,

En
(
b(T )k

)
∼ γ−1τ

24k−3

(
2k − 2

k − 1

)√
πn4k−1.

Proof. We are trying to derive the mean of the function b(T )k, which can be
expanded as

b(T )k =

∑
i<j

|Ti||Tj |

k

=
∑
i<j

|Ti|k|Tj |k + · · ·+K
∑

i1<···<i2k

|Ti1 | · · · |Ti2k |

(where K is some constant that depends on k), since b(T )k involves k chances
to choose a pair of branches. The mean of each of the sums in the above
equation can be computed by interpreting the sum as a selection of 2k vertices
from a number of branches, and then constructing the relevant g.f.; however
Lemma 1 tells us that the term involving the fewest branches will have the
greatest asymptotic order. With this in mind, we can simplify the g.f. that
sums b(T )k over trees of size n to

Hk(x) =
∑
T∈T

b(T )kx|T | ∼
∑
T∈T

∑
i<j

|Ti|k|Tj |k
x|T |.

This simply counts, for every tree, the number of ways to choose two branches
and distinguish k (not necessarily distinct) vertices in each, and is represented
symbolically as

Hk(x) ∼ x2k+1

2
y(k)(x)2φ′′(y(x))

∼ τ
(

(2k − 2)!

22k−1(k − 1)!

)2(
1− x

ρ

)−2k+1

.
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Tree φ(u) τ ρ γ En(b(T )) Vn(b(T ))

binary (1 + u)2 1 1/4 2
√
πn3/4

√
πn7/32

plane (1− u)−1 1/2 1/4 1/2
√
πn3/2

√
πn7/16

labelled exp(u) 1 1/e
√

2
√
πn3/8

√
πn7/512

Table 1: Lead-order asymptotics for the mean and variance of the b.c. of the root vertex in
selected s.g. trees.

As in the proof of Theorem 1, the desired quantity is [xn]Hk(x)/yn, which
one can extract using Theorem VI.1 of Flajolet and Sedgewick’s comprehensive
book [7]. �

The second moment of the b.c. of the root is asymptotically equivalent to
γ−1τ

√
πn7/16, and thus its variance is as well: Vn(b(T )) ∼ γ−1τ

√
πn7/16.

Table 1 gives some indicative values for a few common s.g. trees.

2.2. Limiting distribution of the betweenness centrality of the root

Although b.c.’s of order n2 appear to dominate the moments of b(T ), the
lagging factor of order n−1/2 suggests that these events become increasingly rare
as n → ∞. In this small section, we show by symbolic construction that there
is a limiting distribution for the linearly scaled b.c. of the root, b(T )/n. This
implies that trees with one large root branch—of size linear in n—are sufficient
to describe the distribution of b(T ) when n is large enough, which is in agreement
with known results about the unbalanced nature of s.g. trees [10, 11].

To prove this, we define subclasses of trees Lk ⊂ T in such a way that the
trees in Lk have one dominant branch, along with a few small branches of total
size k. Formally, (Lk)n consists of trees of Tn with one distinguished branch
of size n − k − 1. (Note that a tree may thus a priori belong to more than
one subclass.) For fixed k, the root vertices of trees in Lk have predictable,
linear-order b.c., and in the limit n → ∞, the classes (Lk)n together describe
Tn.

Theorem 3. The distribution of the linearly scaled b.c. of a root vertex in Tn
converges weakly, as n→∞, to the discrete distribution defined by

P(k) = pk = ρk+1[xk]φ′(y(x)).

Specifically, for fixed k and every 0 < ε < 1:

Pn(|(b(T )/n)− k| < ε) −−−−→
n→∞

pk.

Proof. Firstly, we reiterate that the b.c. of the root of a tree T ∈ (Lk)n is
of linear order for large n and constant k: if the root has a branch of size
n − k − 1, while the other branches contain k vertices, then by equation (2)
we have b(T ) = nk + O(k2). Secondly, note that for large enough n, any two
subclasses Lk and Ll are disjoint, since (Lk)n ∩ (Ll)n = ∅ if n > k + l + 1.
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Finally, one must show that the probability of a random tree T ∈ Tn belonging
to (Lk)n tends to the constant probability pk as n grows, and that the sum of
these limiting probability masses is 1.

Begin by considering the g.f. Lk(x) that counts the trees of a subclass Lk
according to their sizes: it must account for a single branch of variable size (and
its i possible points of attachment), as well as the [xk]y(x)i−1 configurations of
the remaining (non-root) vertices:

Lk(x) = xk+1y(x)
∑
i≥1

iφi [xk]y(x)i−1

= xk+1y(x) [xk]φ′(y(x)).

Note that the maximum root degree of a tree in Lk is k + 1, accounted for by
the fact that [xk]y(x)i−1 = 0 whenever i−1 > k. From this g.f., the probability
of a tree belonging to Lk tends to

pk = lim
n→∞

[xn]Lk(x)

yn
= ρk+1[xk]φ′(y(x)).

The sum of these constants is indeed 1:∑
k≥0

pk = ρ φ′(y(ρ)) = 1,

so that they describe a probability distribution. Thus the limiting distribution
of b(T ) can be fully described using only the limit behaviour of the subclasses
Lk. �

It is also worth pointing out that an expansion of φ(u) around u = τ = y(ρ)

gives pk ∼ γ−1τ/
√
πk3, as k →∞, for any s.g. family of trees.

2.3. Limiting distribution of the betweenness centrality of a random vertex

The previous sections dealt specifically with the b.c. of the root vertex in s.g.
trees, but the constructive idea of Section 2.2 can be used to obtain a limiting
distribution for the b.c. of a random vertex as well. In the exceptional case
of labelled trees (with φ(u) = exp(u)), all of the preceding results hold for
non-root vertices automatically, because there is a natural mapping between
unrooted and rooted labelled trees: each unrooted tree of size n gives rise to
n rooted trees—one for each label—implying that iteration over the vertices of
unrooted labelled trees is equivalent to iteration over the roots of rooted labelled
trees. In general, however, this mapping does not hold for other s.g. trees. Still,
we can show that like the root vertex, a randomly chosen vertex in a s.g. tree
usually has b.c. of linear order.

Theorem 4. The distribution of the linearly scaled b.c. of a randomly chosen
vertex v in a s.g. tree T ∈ Tn converges weakly as n → ∞ to the discrete
distribution given by

P(k) = qk =
ρk+1

τ
[xk+1]y(x).

8



Specifically, for fixed k and every 0 < ε < 1:

Pn(|(b(v)/n)− k| < ε) −−−−→
n→∞

qk.

The proof of Theorem 4 is similar to that of the corresponding result for root
vertices, Theorem 3, except that in addition to its descendent branches, a non-
root vertex v also has an ‘ancestral’ branch that contains the root. The idea is
to let this ancestral branch be large, and to share a fixed number k of vertices
among v’s other branches.

Proof. Any vertex v with k descendants in a s.g. tree T of size n can be viewed
as a leaf vertex of a rooted tree of size n − k (its ancestral branch) to which
a forest of size k (the descendent branches) has been grafted. If (Lk)n is the
resulting subclass of trees, its g.f. must account for the [xk]φ(y(x)) configurations
of the smaller branches, as well as the selection of a leaf from a tree of size n−k.
The latter part can be derived from a bivariate g.f. y(x, u) that marks the leaves
of every tree with an auxiliary variable u, by taking the partial derivative of
y(x, u) with respect to u, and then setting u = 1, yielding a g.f. that counts, for
each tree, the possible points of attachment for our forest of size k. The entire
g.f. of Lk is thus

Lk(x) =
(
[xk]φ(y(x))

)
xk × 1

φ0

d

du
y(x, u)

∣∣∣∣
u=1

,

in which y(x, u) = xφ(y(x, u)) + (u− 1)φ0x (c.f. [8, p. 84]), and the presence of
φ−10 removes the weight that was assigned to the chosen leaf vertex, since a new
weight will be assigned to it along with its grafted forest φ(y(x)).

As in the proof of Theorem 3, v has b.c. nk+O(k2), and any two subclasses
(Lk)n and (Ll)n (k 6= l) are disjoint. To see that in the limit n → ∞ a tree
of size n with a distinguished vertex has probability qk of belonging to Lk,
we need to express Lk(x) asymptotically. Quickly note that by differentiating

y(x) = xφ(y(x)), we have (1− xφ′(y(x)))
−1

= xy′(x)y(x)−1. With this in mind,
it follows that

d

du
y(x, u)

∣∣∣∣
u=1

= φ0x(1− xφ′(y(x)))
−1 ∼ φ0

ργ

2τ

(
1− x

ρ

)−1/2
as x → ρ, with which Lk(x) can be expressed, and the limiting probability qk
derived as

qk = lim
n→∞

[xn]Lk(x)

nyn
=
ρk+1

τ
[xk+1]y(x).

Note finally that the qk sum to 1:

∞∑
k=0

qk =
1

τ

∞∑
k=0

ρk+1[xk+1]y(x) =
1

τ
y(ρ) = 1.

�
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Tree φ(u) τ ρ pk qk
binary (1 + u)2 1 1/4 2−(2k+1) 1

k+1

(
2k
k

)
4−(k+1) 1

k+2

(
2k+2
k+1

)
plane (1− u)−1 1/2 1/4 4−(k+1) 1

k+2

(
2k+2
k+1

)
2−(2k+1) 1

k+1

(
2k
k

)
labelled exp(u) 1 1/e e−(k+1) (k+1)k−1

k! e−(k+1) (k+1)k−1

k!

Table 2: The limiting probabilities pk and qk of a root and random vertex, respectively, in a
s.g. tree of size n having b.c. that approaches nk.

It is once again worth pointing out that qk ∼ (2τ)−1γ/
√
πk3 as k → ∞ for

any family of s.g. trees.
Table 2 lists values of the limiting probabilities P(k) for root and random

vertices respectively, for some common trees. Observe that pk = qk for labelled
trees, as expected.

The final section on s.g. trees covers the b.c. of the centroid vertex and,
more generally, the maximum b.c. in a tree. The motivation for considering the
centroid is simple: vertices whose branch sizes are ‘balanced’ lead to high b.c.’s,
and the centroid is in a sense the most balanced vertex in a tree.

2.4. Maximum betweenness centrality and the centroid

Together, the previous few sections have shown that the average b.c. of a
root vertex in a s.g. tree is of order n3/2, but that both the root and a randomly
chosen vertex have ‘typical’ b.c. of only linear order. In contrast, the maximum
b.c. is always of quadratic order, as we will now show. (In fact, we already
know from Section 2.1 that root vertices with quadratic-order b.c., which are
comparatively rare, dominate the root moments.)

A trivial lower bound for the maximum b.c. in a given tree of size n is
(n2 − 2n)/4. This can be shown by considering the centroid of the tree: the
centroid consists of those vertices that minimise the total distance to all other
vertices. Equivalently, one can define a centroid vertex as a vertex with the
property that none of its branches contain more than half of the tree’s vertices.
It is well known that there is either a unique centroid vertex (in fact, this
happens asymptotically almost surely in a random tree), which we will simply
call the centroid, or two adjacent centroid vertices. In the latter case, removing
the edge between the two centroid vertices must leave two components of exact
size n/2. This was already shown by Jordan in 1869 [12]; see also [13, Chapter
4] or [14].

It is easy to see that the b.c. of a vertex decreases when vertices are trans-
ferred from one of its branches to another branch of greater or equal size. There-
fore, the smallest possible b.c. of the centroid occurs when there are only two
centroid branches whose sizes are b(n − 1)/2c and d(n − 1)/2e. In this case,
the b.c. is b(n − 1)2/4c ≥ (n2 − 2n)/4. This provides a lower bound for the
maximum b.c., as mentioned earlier.

Although a centroid vertex must necessarily have fairly large b.c., this does
not imply that it is always the vertex where the maximum is attained. As a
counterexample, consider a star of size n/3 with a path of length 2n/3 attached
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to it. The centroid has b.c. of about n2/4 in this case, while the centre of the
star has about 5n2/18.

In spite of this counterexample, the centroid will play a major role in our
analysis of the maximum b.c. As it turns out, the event that the centroid’s b.c. is
in fact the maximum has positive limiting probability, and we will also be able to
show that the maximum b.c. of a random s.g. tree, once rescaled by a factor n−2,
has a limiting distribution. This limiting distribution—unlike the distribution
of the b.c. of a randomly chosen vertex—is even independent of the specific class
of s.g. trees. Before we give a rigorous argument, let us provide some intuition.
To this end, let us review a connection to random triangulations of the circle
that is due to Aldous [15], as well as some results of Meir and Moon [9] on
centroid branches.

The limit object of s.g. trees is the celebrated continuum random tree (see
the work of Aldous [11, 16, 17] and [8, Section 4.1.3]), and its dual (in some
sense) is the random triangulation of a circle. This duality between trees and
triangulations is best seen in the case of binary trees, where one is the plane
dual of the other. Triangles in the limit correspond to vertices in the tree with
three ‘large’ branches (of linear order); the lengths of the three arcs defined by
a triangle correspond to the sizes of the branches.

The centroid corresponds to the triangle (almost surely, there is only one)
that contains the centre of the circle. If we associate to a triangle with arc
lengths a, b, c the weight ab+ bc+ ca, then this gives us (asymptotically up to a
scaling factor n2) the b.c. of the corresponding branching vertex. The maximum
b.c. corresponds to the maximum weight of a triangle, and the distribution
of this maximum is the limiting distribution of the b.c. We point out that a
maximum indeed exists almost surely: it is easy to see that any triangle with a
weight greater than that of the centroid triangle has to have a longer shortest arc
than the centroid triangle, and there are at most finitely many such triangles.

Meir and Moon [9] showed, among other things, that the average b.c. of the
centroid of a random s.g. tree is asymptotically equal to (1 − (1/

√
2))n2 (they

formulated it in terms of the probability that the path between two randomly
chosen vertices contains the centroid). Note that 1 − (1/

√
2) ≈ 0.293. This

result implies an asymptotic lower bound for the average maximum b.c., and it
turns out that this is actually not far from the truth.

Let us now make these ideas more rigorous. For ease of presentation, we
stick to the special case of labelled trees, but the same arguments apply (mutatis
mutandis) also to other families of s.g. trees, and lead to the same result (in
fact, with the same limiting distribution). Let us start with some technical
preliminaries:

Lemma 2. Fix ε with 0 < ε < 1
12 . With probability tending to 1, there is no

vertex in a random labelled tree with n vertices for which three of its branches
all contain at least n1−ε vertices, and the rest of the tree (all except for those
three branches) contains at least n1−ε vertices as well.

Proof. This is achieved by means of the first moment method: we prove that
the mean number of such vertices tends to zero by counting all rooted trees
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whose root has the stated property. Let n1, n2, n3 and m = n − n1 − n2 − n3
be the sizes of the three branches and the remaining tree respectively. Each of
them is a rooted labelled tree, so the total number of possible trees is(

n

n1, n2, n3,m

)
nn1−1
1 nn2−1

2 nn3−1
3 mm−1 = Θ

(
nn+(1/2)n

−3/2
1 n

−3/2
2 n

−3/2
3 m−3/2

)
,

the asymptotic estimate being a simple consequence of Stirling’s formula. Since
the number of choices of n1, n2, n3,m is Θ(n3), we obtain that the total number
of rooted trees with the property that three branches and the rest of the tree
all have size at least n1−ε is

O
(
nn+(7/2)

(
n−3(1−ε)/2

)4)
= O

(
nn−(5/2)+6ε

)
.

Since the number of labelled trees is nn−2, we find that the average number of
vertices with the property given in the lemma is O(n6ε−(1/2)), which completes
the proof. �

Lemma 3. Fix constants α, β, ε with 0 < α < β ≤ 1
4 and ε > 0, and assume

that n is sufficiently large. Let T be a tree with n vertices and a centroid vertex
with three branches of size at least βn. If v is a non-centroid vertex with the
property that all but at most n1−ε vertices belong to the three largest branches
and the third-largest branch has at most αn vertices, then v has smaller b.c.
than the centroid vertex.

Proof. Recall that the b.c. of a vertex decreases when vertices are transferred
from one of its branches to another branch of greater or equal size. This, together
with the definition of a centroid, shows that the b.c. of the centroid is at least
equal to

1 + 2β − 4β2

4
n2,

corresponding to three branches of sizes βn, (n/2) − βn, n/2 respectively. On
the other hand, the b.c. of vertex v is at most

1 + 2α− 4α2

4
n2 +O(n2−ε).

Since α < β and the function x 7→ (1 + 2x − 4x2)/4 is increasing, the lemma
follows immediately. �

Lemma 4. Fix a constant α > 0. A tree T with n vertices has no more than
(1/α) − 2 vertices with at least three branches that each contain at least αn
vertices.

Proof. We call a vertex with three or more branches containing at least αn
vertices a “big” vertex, while other vertices are called “small”. Consider the
tree R that is obtained as follows: take the tree consisting of all big vertices
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and the paths between them. Now suppress all small vertices, thereby reducing
paths between large vertices that only contain small vertices to single edges.

Suppose that this tree has a total of r vertices, of which aj have degree j.
We note that vertices of degree 1 in this tree have to have two branches of size
at least αn in T not containing any of the other vertices of R, while vertices of
degree 2 in R have to have at least one such branch in T . This gives us a total
of 2a1 + a2 disjoint branches of at least αn vertices, so 2a1 + a2 ≤ 1/α. On the
other hand, since ∑

k≥1

ak = r and
∑
k≥1

kak = 2(r − 1),

we have
1

α
≥ 2a1 + a2 ≥

∑
k≥1

(3− k)ak = r + 2,

which proves the statement. �

In addition to Lemmas 2 to 4, we need the following result from the afore-
mentioned papers of Aldous [15] and Meir and Moon [9]:

Lemma 5. Let (X1,n, X2,n, X3,n) denote the sizes of the three largest centroid
branches of a random labelled tree with n vertices. Then the normalised random
vector

n−1(X1,n, X2,n, X3,n)

converges in distribution to a vector with density (12π)−1(x1x2x3)−3/2 on the
set of triples (x1, x2, x3) such that 0 < x1, x2, x3 < 1/2 and x1 + x2 + x3 = 1.

Now we are ready for a formal proof of the following theorem that we alluded
to earlier:

Theorem 5. The maximum b.c. of a random labelled tree of size n, divided by
n2, converges weakly to a limiting distribution. The probability that the maxi-
mum b.c. is attained by the centroid tends to a positive constant.

Proof. Consider the event that every vertex with maximum b.c. has at least
three branches of size at least αn. Combining Lemmas 5, 3 and 2, we see that
for n > Nα, this event has a probability bounded below by 1−f(α), where f(α)
is a function that goes to zero as α does.

So for fixed α > 0, we can focus on vertices with three branches of size at
least αn, of which there are, by Lemma 4, only a bounded number, and for which
there are only a finite number of potential configurations with a nonzero limiting
probability. Such a configuration can be seen as a labelled tree with r ≤ (1/α)−2
vertices, no vertices of degree greater than 3, with edges representing birooted
connecting trees (possibly empty, and the two roots may coincide), and vertices
of degree k < 3 having 3 − k ‘large’ branches (rooted trees with at least αn
vertices) attached to them, see Figure 9 for an example. Note that each of the
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Figure 1: A configuration as described in the proof of Theorem 5. Edges represent (birooted)
connecting trees, dashed triangles ‘large’ branches of size at least αn.

vertices may also have smaller branches with a total of at most O(n1−ε) vertices.
Let the sizes of the birooted trees and the sizes of the additional large branches
be x1, x2, . . . , xr−1 and y1, y2, . . . , yr+2 respectively. Using the fact that there

are x
xj

j possible birooted trees for each j and y
yj−1
j possible rooted trees for

each j, we obtain an asymptotic expression for the number of possible trees
corresponding to each configuration. We remark that there might actually be
further vertices with three branches of size αn or more for a given configuration
of r vertices inside the birooted connecting trees and large branches, which one
can account for by means of an inclusion-exclusion argument.

In the end, one finds that the sizes of the connecting trees and large branches,
scaled by a factor n, converge to a limiting distribution with an explicitly com-
putable density for each configuration (as in Lemma 5). Since the b.c.’s of the
vertices with three ‘large’ branches only depend on these sizes up to O(n2−ε),
we can infer the limiting distribution of the maximum b.c. of vertices with at
least three branches of size αn or more, as well as a limiting probability that
this maximum is attained by the centroid, for each fixed α > 0. Letting α go
to 0 now yields the desired result on the limiting distribution of the maximum
b.c., and also shows that there must be a limiting probability for the centroid
to attain the maximum b.c. To show that this probability is in fact positive, we
can use a simple argument: Suppose that all three centroid branches have fewer
than ((4/9)− δ)n vertices (for some small δ > 0), which happens with positive
limiting probability by Lemma 5. Then the b.c. of the centroid is at least((

4

9
− δ
)2

+ 2

(
4

9
− δ
)(

1

9
+ 2δ

)
+ o(1)

)
n2 =

(
8

27
+

2δ

3
− 3δ2 + o(1)

)
n2,

which is obtained when the branches are as “unbalanced” as possible. On the
other hand, every other vertex v has to have a branch of size at least ((5/9) +
δ)n (take the branch of v containing the centroid), and since with probability
negligibly close to 1 v has at most 3 branches of size linear in n, an upped bound
for its b.c. occurs when its second and third branches each contain ((4/9)−δ)n/2
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Figure 2: The cumulative distribution function of the limiting distribution of maximum b.c.
in s.g. trees.

vertices:((
2

9
− δ

2

)2

+ 2

(
2

9
− δ

2

)(
5

9
+ δ

)
+ o(1)

)
n2 =

(
8

27
− δ

3
− 3δ2

4
+ o(1)

)
n2,

which (for suitably small δ and then sufficiently large n) is strictly smaller than
that of the centroid. This completes the proof. �

An argument similar to the final paragraph shows that the probability for
the centroid to have maximum b.c. is strictly less than 1, and one can also show
in the same fashion that the limiting random variable of the maximum b.c. has
the interval [1/4, 1/3] as its support.

Numerically, the average maximum is asymptotically equal to 0.303n2 (the
numerical value of the constant was determined by Monte Carlo sampling; it
might be possible to obtain an explicit expression for the constant, but this does
not seem to be a trivial task). Moreover, the probability that the centroid is in
fact also the vertex with maximum b.c. converges to a constant whose numerical
value is 0.621. The limiting distribution function of the normalised maximum
b.c. is shown in Figure 2. Just like the aforementioned constants, it was obtained
by means of Monte Carlo sampling in view of the rather complicated nature of
the limiting distribution.

One way to perform this Monte Carlo simulation is to first generate the
centroid branch sizes according to the density given in Lemma 5; then one
repeats this recursively for all branches. Once it is no longer possible to obtain
vertices with b.c. greater than the current maximum (which must happen after
a finite number of steps with probability 1), one can stop the process.

3. Subcritical graphs

There are classes of tree-like graphs that are in some ways similar to s.g.
trees, called subcritical graphs. In particular, outerplanar, series-parallel, and
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cacti graphs are all special cases of subcritical graphs [18].5

By defining the blocks of a graph to be its maximal 2-connected subgraphs
(a graph is k-connected if at least k of its vertices must be deleted before it
becomes disconnected), every graph can be decomposed into its blocks, cut
vertices (vertices whose removal disconnects the graph), and the induced edge
set that links cut vertices to their incident blocks, leading to a bipartite tree
known as the block-cut vertex tree. A class of graphs is called block-stable if it
contains the two-vertex one-edge ‘link’ graph, and satisfies the property that a
graph belongs to the class if and only if all of its blocks do as well.

Let C be a block-stable class of rooted, labelled, connected graphs whose
blocks form the set B. Then the bipartite block decomposition described above
implies a symbolic definition of C: start with a root vertex, and graft a set
of blocks to it by removing a vertex from each block and fitting the detached
edges to the root. Then graft sets of blocks to every newly added vertex in the
same way, and continue. The g.f. that counts graphs of C according to their size
captures this construction:

C(x) = x exp(B′(C(x))),

where B′(x) is the g.f. of the class B′ of blocks with one removed vertex.
The ‘subcriticality’ property of subcritical graphs is a technical condition

that requires the radii of convergence of C(x) and B(y), ρ and η respectively, to
satisfy C(ρ) < η. This implies that B′(y) is analytic at y = τ = C(ρ), and that
C(x) permits a square-root expansion around its singularity x = ρ, much like in
the case of s.g. trees (see [18]). In particular, we have ρ−1 = exp(B′(τ))B′′(τ)
and

B′(y) = B′(τ) +B′′(τ)(y − τ) +O
(
(y − τ)2

)
, (6)

C(x) = τ − µ
√

1− x

ρ
+O

(
1− x

ρ

)
, (7)

in which µ =
√

2/(B′′(τ)2 +B(3)(τ)).
Our goal is again to investigate the b.c. of the root vertex, however because

we are considering labelled graphs in which any vertex can be distinguished as
the root, our results hold for a randomly chosen vertex as well. The only real
caveat when working with subcritical graphs is that the b.c. of a vertex v is no
longer solely determined by paths between its branches (here, branches take the
form of blocks with one vertex removed and subgraphs rooted to their remaining
vertices, and have the g.f. W (x) = B′(C(x))). In addition to the usual inter-
branch paths, we must also consider shortest paths between subgraphs of each
branch’s root block, since it may be the case that these pass through v.

Consider one of the root’s branches W , along with its root block B ∈ B′.
Because shortest paths within blocks are not necessarily unique, the contribution

5Although the vertices of subcritical graphs can be either labelled or unlabelled, we consider
only the labelled case here.
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of paths between the subgraphs of W to b(C), the b.c. of the root vertex, is∑
v<w

bvw(B)|Cv||Cw|,

where v, w is a pair of non-root vertices in B, such that
∑
bvw(B) = b(B) is

the b.c. of B’s removed vertex with respect to paths contained within B, and
Cv and Cw are the subgraphs rooted at v and w.

The full expression of the b.c. of a graph’s root is then

b(C) =
∑
a<b

|Wa||Wb|+
∑
B

∑
v<w

bvw(B)|Cv||Cw|

= b1(C) + b2(C), (8)

the first sum being over all pairs of root branches and the second sum being
over all root blocks.

3.1. Moments of the betweenness centrality of the root

When deriving the moments of b(C), we can handle the two terms in equa-
tion (8) individually. The contribution of b1(C) is identical, conceptually, to
the b.c. of the root of a tree, so one need only count graphs with two distin-
guished vertices from distinct branches. A g.f.

∑
C b2(C)x|C| for the second term

can be derived in essentially the same way, as long as we note that every path
between two subgraphs Cv and Cw rooted to a block B must be weighted by
bvw(B). These observations lead to a relatively straightforward derivation of
the expected b.c. of the root vertex.

Theorem 6. Let C be the class of labelled subcritical graphs constructed from a
block class B. Then the root vertices in Cn have mean b.c. of order n3/2:

En(b(C)) ∼ K
√
πn3,

where

K =
µ

2

(
τ

2
B′′(τ)2 +

1

τ
M(τ)

)
and M(y) =

∑
B b(B)y|B| is the cumulative g.f. of b(B) over blocks B in B.

Proof. We desire the g.f. H(x) =
∑
C b(C)x|C|, which can be written as the

sum of the corresponding g.f.’s for b1(C) and b2(C). The first of these two
generating functions is

U1(x) =
∑
C∈C

b1(C)x|C| =
x3

2
W ′(x)2 exp(W (x)) =

x2

2
W ′(x)2C(x).

From the expansions of B′(y) and C(x) given in equations (6) and (7), we can
derive an expansion for W (x):

W (x) = B′(τ)− µB′′(τ)

√
1− x

ρ
+O

(
1− x

ρ

)
,
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so that U1(x) satisfies

U1(x) ∼ τ

2

(µ
2
B′′(τ)

)2(
1− x

ρ

)−1
. (9)

The g.f. of b2(C) requires two stages of substitution, since we must first derive
the g.f. L(x) that describes branches that have had two vertices distinguished
from their subgraphs. We will then have

U2(x) =
∑
C∈C

b2(C)x|C| = xL(x) exp(W (x)) = L(x)C(x).

To obtain L(x), recall that the paths between subgraphs of a branch’s root block
must be weighted; then:

L(x) =
∑
B∈B

∑
v<w

bvw(B)C(x)|B|−2(xC ′(x))2

= (xC ′(x))2
∑
B∈B

b(B)C(x)|B|−2

= M(C(x))
(xC ′(x))2

C(x)2
,

where
M(y) =

∑
B∈B

b(B)y|B| = m2y
2 +m3y

3 + · · · .

We remark that M(y) has the same (or possibly even greater) radius of conver-

gence as B(y), since b(B) can be bounded trivially by |B|2. Noting that C(x)−1

also permits a square-root expansion around x = ρ, beginning (1/τ) + · · · , the
asymptotic form of the second g.f. is

U2(x) ∼ 1

τ

(µ
2

)2
M(τ)

(
1− x

ρ

)−1
. (10)

Equations (9) and (10) imply that both kinds of paths contribute equally in
order to the b.c. of the root vertex, and the expected b.c. of the root of a graph
of size n is [xn](U1(x) + U2(x))/|Cn|. �

The higher-order moments of b(C) are more interesting, because they involve
the function

b(C)k = (b1(C) + b2(C))
k

=

k∑
j=0

(
k

j

)
b1(C)k−jb2(C)j . (11)

In the case of s.g. trees, b(T )k could be interpreted as a selection of 2k vertices
from between 2 and 2k distinct branches, and we could restrict our calculation
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to the case of exactly 2 branches due to Lemma 1. This basic concept holds
once again, for both b1(C)k and b2(C)k, so that

b1(C)k ∼
∑
a<b

|Wa|k|Wb|k,

b2(C)k ∼
∑
B∈B

∑
v<w

bvw(B)k|Cv|k|Cw|k.

Both of these terms lead to g.f.’s (of the form
∑
C bi(C)kx|C|) that are dominated

by a term of order (1 − (x/ρ))−2k+1. The question, however, is whether the
remaining terms in equation (11)—which involve a product of powers of b1(C)
and b2(C)—are of lower or equal order. Note that the smallest number of
substitutions of branches and subgraphs with pointed structures that can be
made when constructing a g.f. involving both b1(C) and b2(C) is three: some
vertices must be chosen from at least two branches, and the rest from at least
two subgraphs. At best, subgraphs from one of the pointed branches could be
affected, leading to three substitutions. Lemma 1 implies that the replacement
of a branch or subgraph with one in which d vertices have been distinguished
contributes (1− (x/ρ))−d+(1/2) to the final order of the g.f., which tells us that
the ‘mixed’ terms of b(C)k grow at a slower rate than those involving only b1(C)
or b2(C). This simplifies the asymptotic behaviour of b(C)k greatly:

En
(
b(C)k

)
∼ En

(
b1(C)k

)
+ En

(
b2(C)k

)
.

We find that the kth moment of the b.c. of the root vertex satisfies an
expression that is very similar to the one derived for s.g. trees. The second
moment is once again of order n7/2, so that the variance of b(C) is as well.

Theorem 7. If C is a class of labelled subcritical graphs with block class B, then
the kth moment of the b.c. of a root vertex in Cn is Θ(n2k−(1/2)). Specifically,
for k ≥ 1:

En
(
b(C)k

)
∼ Kk

√
πn4k−1,

for a constant Kk that depends on C.

Proof. The asymptotic behaviour of Hk(x) =
∑
C b(C)kx|C| is

Hk(x) ∼ τ

2

(
µ(2k − 3)!!

2k
B′′(τ)

)2(
1− x

ρ

)−2k+1

+
1

τ

(
µ(2k − 3)!!

2k

)2

Mk(τ)

(
1− x

ρ

)−2k+1

,

in which
Mk(y) =

∑
B∈B

∑
v<w

bvw(B)ky|B|.

The desired moment is [xn]Hk(x)/|Cn|, so the theorem follows with

Kk =
µ

24k−3

(
2k − 2

k − 1

)(
τ

2
B′′(τ)2 +

1

τ
Mk(τ)

)
.

�
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3.2. Limiting behaviour of the betweenness centrality of the root

Since the moments of the b.c. of the root vertex in a subcritical graph behave
similarly to those found for s.g. trees, it is probably unsurprising that we can
show that the majority of these root vertices (in subcritical graphs) have linear-
order b.c., and that the balanced graphs which lead to quadratic-order b.c.
become increasingly rare as n→∞.

To do so, we repeat the procedure of Section 2.2, defining unbalanced sub-
classes Lk,m ⊂ C that not only have k non-root vertices outside their largest
branch, but also have a dominant subgraph within that branch. This subgraph
includes all but m of the large branch’s vertices. If we let

Λk,m =
[
[xk] exp(W (x))

][
[xm]B′′(C(x))

]
be the number of ways in which the minor branches and subgraphs can be
configured, then the g.f. of Lk,m can be written as

Lk,m(x) = Λk,mx
k+m+1C(x).

From this g.f., the limiting probability of a random graph C belonging to
Lk,m is shown to be a function of k and m:

lim
n→∞

Pn(C ∈ (Lk,m)n) = Λk,mρ
k+m+1.

As expected, these proportions account for the entire limiting distribution:∑
k≥0

∑
m≥0

lim
n→∞

Pn(C ∈ (Lk,m)n) = ρ exp(W (ρ))B′′(C(ρ)) = 1.

Finally, the b.c. of the root of a graph C in subclass (Lk,m)n is of linear order,
since there are linearly many of the two kinds of paths through the root: if ki
(i = 2, . . . , α) and mj (j = 2, . . . , β) are the minor branch and subgraph sizes
respectively, we have

b(C) ∼ (n− k −m− 1)

 α∑
i=2

ki +

β∑
j=2

bvwj
(B)mj


= nk + n

β∑
j=2

bvwj
(B)mj +O

(
(k +m)2

)
.

Noting that 0 ≤ bvwj
(B) ≤ 1, we have a linear bound on b(C):

k ≤ lim
n→∞

b(C)

n
≤ k +m.

This gives us the following theorem, which is a qualitative analogue of Theo-
rem 3, albeit less precise:
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Theorem 8. Let the graph C be randomly chosen from a labelled subcritical
graph class C. For every ε > 0, there exists a real number M such that

lim sup
n→∞

Pn(b(C) > Mn) < ε.

In short, Theorem 8 says that b(Cn)/n is bounded in probability: b(C) = Op(n).
If more information on the blocks of the specific class of subcritical graphs—

and in particular their b.c.’s—is available, it is also possible to provide a more
precise limit law, as for s.g. trees. We also remark again that the distribution
is the same for a random vertex: as in the case of random labelled trees, every
vertex of a random labelled subcritical graph has the same probability to be the
root.

This brings to a close the first part of the paper, which dealt with s.g.
trees and subcritical graphs. Both of these structures are characteristically
unbalanced, or ‘skinny’, implying that their vertices will typically have b.c. that
is linear in the size of the object. In the remainder of the paper we consider
increasing trees, which, although superficially similar to s.g. trees (in terms of
their global g.f.), have a markedly more balanced shape.

4. Increasing trees

An increasing tree is a rooted, labelled tree in which the labels along any
path away from the root form an increasing sequence. Unlike labelled s.g. trees,
in which labels are assigned somewhat arbitrarily, the labels in an increasing
tree are quite significant—the root is always given the label 1, and one can
expect the largest labels to be found close to the tree’s fringes. In some sense
this makes the investigation of a vertex’s b.c. more satisfying than it was in the
case of s.g. trees, because we can examine the b.c. b(l) of each labelled vertex l
individually.

The fact that the vertices of all increasing trees are labelled according to
the order in which they were attached to the tree leads to a general form for
their g.f.’s, somewhat like the g.f. for s.g. trees given in equation (3). Let the
weight function φ(u) =

∑∞
0 φiu

i once again encode a sequence of non-negative
out-degree weights {φi}, such that φ0 6= 0 and φi > 0 for some i ≥ 2. Then,
recalling that the act of removing the vertex with the lowest label from every
object in a class is represented by the differentiated g.f. y′(x), the g.f. of a class
of increasing trees T 6 satisfies

y′(x) =
∑
T∈T

w(T )

|T |!
x|T | = φ(y(x)), (12)

where w(T ) is again the product of the weights assigned to T ’s vertices. Due
to the fact that the generating functions of increasing trees satisfy differential

6Note that all generating functions in this section are exponential generating functions.
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equations rather than functional equations, it is not always possible to carry
out general analyses quite as thoroughly as it is for s.g. trees. Apart from the
broad special case of increasing trees that have polynomial weight functions, it is
usually necessary to specify φ in order to complete an application of singularity
analysis to a parameter of interest in an increasing tree class [19].

Fortunately, there are a few particularly important varieties of increasing
trees that have been well studied—namely recursive, d-ary recursive, and plane-
oriented recursive trees (PORTs), and these special cases, along with the poly-
nomial varieties mentioned above, tend to share important structural charac-
teristics. For example, they have a mean path length of Θ(n log n) [19], and the
expected distance from the root of a randomly chosen vertex in one of these
classes is Θ(log n). The expected height of a tree from one of the three ‘recur-
sive’ cases mentioned above is also Θ(log n) [8], as opposed to the Θ(

√
n) of

s.g. trees. The weight functions that give rise to recursive trees, d-ary recursive
trees, and PORTs are φ(u) = exp(u), (1 + u)d, and (1− u)−1 respectively.

Recursive trees, d-ary recursive trees and PORTs can also be obtained by
means of a growth process (see [20]): in the simplest case of recursive trees, the
process starts with a single vertex labelled 1 (the root), and at each step, vertex
n is attached to one of the n−1 previous vertices, selected uniformly at random.
PORTs and d-ary recursive trees can be obtained by a similar process, where
the probabilities are however not uniform, but depend on the outdegrees.

With nothing but the known balanced nature of increasing trees to go on,
one can perhaps anticipate that the kth moment of the b.c. of the root vertex
in an increasing tree of size n will be of order n2. This is indeed the case.
However, instead of deriving first the mean and then the higher-order moments
of the root vertex as we did in Sections 2 and 3, we consider immediately the
more general problem of the kth moment of the b.c. of vertex l,7 when l is
fixed while n → ∞. Once this analysis is complete, we make use of a recent
result of Fuchs [21] to show that a randomly chosen vertex in a tree from one
of the three commonly considered classes typically has linear-order b.c. Then in
the final section of the paper, we consider the maximum b.c. in recursive trees
specifically, and the probability that the centroid obtains this maximum.

4.1. Moments of the betweenness centrality of a vertex with a given label
To estimate a parameter of the lth vertex in an increasing tree, one first

needs to describe the tree relative to vertex l. We do this here by fixing the
subtree containing vertices 1 to l and noting that the rest of the tree is simply a
sequence of l forests, each one the descendent branches of a vertex in the subtree.
The g.f. that models trees in this way is y(l)(x), since it ‘disregards’ the subtree
containing the first l vertices, so that although their possible configurations are
still counted, they no longer contribute to the overall size of the tree.

Take for example the class of recursive trees, whose g.f. satisfies

y′(x) = exp(y(x)) = (1− x)−1.

7That is, the vertex with label l.
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We have
y(l)(x) = (l − 1)! (1− x)−l = (l − 1)! y′(x)l;

and since we know that the descendent branches of vertex l are counted by
y′(x), this tells us that l’s ancestral branch—which contains the root—has g.f.
(l − 1)! y′(x)l−1. In general, the g.f. of this ancestral branch is y(l)(x)/φ(y(x)).

We phrase the following theorem in a relatively general way, framed by the
two assumptions that allow us to extract the desired moments using singularity
analysis. In particular, it covers the cases of recursive (with r = λ = 1), d-ary
recursive (r = d, λ = d− 1), and plane-oriented recursive trees (r = 1, λ = 2).

Theorem 9. Let T be a class of increasing trees that has a g.f. y(x) for which
the following two assumptions hold:

1. For positive r and λ:

y′(x) = φ(y(x)) = (1− λx)−r/λ.

2. For all c > 0, there is a constant Kc(r, λ) (possibly 0 for large enough c)
such that

φ(c)(y(x)) ∼ Kc(r, λ)(1− λx)−c+((c−1)r/λ)

Then for fixed l > 0, the kth moment of the b.c. of the vertex with label l in Tn
is of order n2k. Specifically, for k ≥ 1:

En(b(l)k) ∼ n2kΓ(r/λ)

λl−12k

k∑
m=0

(
k

m

)
(−1)m

Γ(l + 2m− 1 + (r/λ))
Dl(m)

for some constants Dl(m) that depend on T (detailed below in equation (14), in
square brackets).

Proof. As in Section 2, the b.c. function b(l) can be interpreted symbolically
as the act of choosing vertices from the branches of l. Unfortunately, there is
no analogue of Lemma 1 that holds for increasing trees, and instead of reducing
b(l)k to a selection of vertices from exactly two branches, we will have to consider
all possible selections if we wish to accurately derive the constant factors present
in the moments of b(l)k. To make this computation a bit simpler, we reduce

b(l) to a form involving a sum b̃(l) =
∑
i|Ti|

2
over single branches, instead of

branch pairs:

b(l)k =

∑
i<j

|Ti||Tj |

k

=
1

2k

(∑
i

|Ti|

)2

−
∑
i

|Ti|2
k

=
1

2k

(
(n− 1)2 − b̃(l)

)k
=

1

2k

k∑
m=0

(
k

m

)
(−1)mb̃(l)m(n− 1)2(k−m). (13)
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The new function b̃(l)m counts selections (with replacement) of 2m vertices
from any number of branches, with the restriction that vertices are chosen two
at a time. More specifically, since all labelled branches (whether ordered or
unordered) can be numbered deterministically, every selection can be regarded

as a composition of the integer m. This means that the g.f.
∑
T b̃(l)

mx|T | can
be constructed in a piecewise fashion, per composition.

Let l’s ancestral branch, represented by the g.f. Al(x) = y(l)(x)/y′(x), appear

in i of the factors of b̃(l)m, with the remaining factors being distributed among
c descendent branches according to the composition a1 + · · · + ac = m − i. If
Âl,i(x) denotes the g.f. of an ancestral branch from which i vertices have been
selected (with replacement), and ŷj(x) symbolises the selection of j vertices

from a descendent branch, then the cumulative g.f. of b̃(l)m is

∑
T∈T

b̃(l)m
x|T |−l

(|T | − l)!
=

m∑
i=0

(
m

i

)
Âl,2i(x)

m−i∑
c=0

1

c!
φ(c)(y(x))

×
∑

gc(m−i)

(
m− i

a1, . . . , ac

)
ŷ2a1(x) · · · ŷ2ac(x),

where gc(m) enumerates the compositions ofm into c parts, and the contribution
to the sum over c from c = 0 vanishes unless i = m, in which case φ(0)(y(x)) =
y′(x) (that is, K0(r, λ) = 1) and the last sum is 1.

Under the assumptions of the theorem, ŷj(x) ∼ xjy(j)(x) (see the proof of
Lemma 1). Furthermore, we also have

y(l)(x) = (1− λx)−(l−1)−(r/λ) ·
l−2∏
t=0

(r + tλ),

ŷj(x) ∼ (1− λx)−(j−1)−(r/λ) · λ−j
j−2∏
t=0

(r + tλ),

Âl,i(x) ∼ (1− λx)−(l+i−1) · (l − 1)i
l−2∏
t=0

(r + tλ),

where (·)i denotes the ith rising factorial power, and the asymptotic expressions
hold as x→ 1/λ. These approximations, along with the second assumption, can
be used to reduce the g.f. to (note the implicit nesting of the sums over i, c, and
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gc(m− i)):∑
T∈T

b̃(l)m
x|T |−l

(|T | − l)!
∼ (1− λx)−(2m+l−1+(r/λ))

×

[
λ−2m

(
l−2∏
t=0

(r + tλ)

)
m∑
i=0

λ2i
(
m

i

)
(l − 1)2i

×
m−i∑
c=0

Kc(r, λ)

c!

∑
gc(m−i)

(
m− i

a1, . . . , ac

) c∏
j=1

2aj−2∏
t=0

(r + tλ)

]
= (1− λx)−(2m+l−1+(r/λ)) ·Dl(m).

(14)

Of course the quantity we really seek is the sum of b(l)k over trees of size n,
of which there are

n! [xn]y(x) ∼ λn−1n!
n−2+(r/λ)

Γ(r/λ)
.

We have, from equation (13):

En
(
b(l)k

)
=

(n− l)!
n! [xn]y(x)

[xn−l]
∑
T∈T

b(l)k
x|T |−l

(|T | − l)!

∼ n2kΓ(r/λ)

λl−12k

k∑
m=0

(
k

m

)
(−1)m

Γ(l + 2m− 1 + (r/λ))
Dl(m).

�

A few example values that were obtained using Theorem 9 are given in
Table 3. In addition, we can be slightly more explicit when considering specific
classes of increasing trees: For recursive trees, with r = λ = 1,

Kc(r, λ) = 1 and

l−2∏
t=0

(r + tλ) = (l − 1)!;

for plane-oriented recursive trees, with r = 1 and λ = 2,

Kc(r, λ) = c! and

l−2∏
t=0

(r + tλ) = (2l − 3)!!;

and for d-ary recursive trees, with r = d and λ = d− 1,

Kc(r, λ) = (d)c and

l−2∏
t=0

(r + tλ) =

l−1∏
t=1

(td− (t− 1)),

where (·)c denotes the cth falling factorial power.
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Tree r λ En(b(1))/n2 Vn(b(1))/n4 En(b(2))/n2

recursive 1 1 1/4 1/96 1/4
PORT 1 2 1/3 4/315 1/5
binary 2 1 1/6 1/180 1/4

Table 3: Asymptotic expressions for the means and variances of the b.c.’s of some labelled
vertices in increasing trees.

Although it is not possible to obtain the limiting distribution of a vertex’s
b.c. by a construction similar to that of Section 2.2, we do see that all the
moments of the scaled random variable b(l)/n2 converge to a limit:

lim
n→∞

En
(
b(l)k

n2k

)
= ck,l.

Since the b.c. of any vertex is trivially bounded by
(
n−1
2

)
, we automatically

obtain ck,l ≤ 2−k, which means that the g.f. of the constants ck,l converges
in a neighbourhood of 0 and represents a moment g.f. This implies, in view
of Theorem C.2 of [7], that b(l)/n2 converges weakly to a distribution that is
characterised by the moments ck:

Theorem 10. Under the assumptions of Theorem 9, the distribution of b(l)/n2

converges weakly to a limiting distribution.

4.2. Limiting behaviour of the betweenness centrality of a random vertex

Because increasing trees are generally well balanced, the majority of vertices
in any given one will lie near its fringes. These extremal vertices have few
descendants, which implies that their b.c.’s will be relatively small—linear in
the size of the tree. So in contrast with the quadratic b.c. that arises by fixing a
vertex label l and letting n tend to infinity, we would expect the distribution of
a randomly chosen vertex in an increasing tree to be dominated by linear-order
values.

To show that this is indeed the case, one can count vertices with a fixed
number of descendants in a subclass of trees of size n, because the proportion of
vertices in Tn that have m descendants is an approximation of the probability
that a randomly chosen vertex has b.c. of roughly nm. Letting n tend to infinity
makes this approximation more accurate, and yields the limiting distribution of
the b.c. of a randomly chosen vertex.

We note that the expected number of vertices with a given number of
descendants—referred to as the subtree size profile of a tree—has been recently
studied for the case of increasing trees. In fact, the expected proportion of ver-
tices with m descendants in a tree of size n has been given explicitly for the
most interesting classes of increasing trees [21, Theorem 4.1], and from these
expressions, limiting distributions for b.c. follow directly.

Theorem 11. The distribution of the linearly scaled b.c. of a randomly chosen
vertex v in an increasing tree of size n converges weakly to a limiting distribution
as n→∞. For 0 < ε < 1, we have,
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1. for recursive trees,

Pn(|b(v)/n−m| < ε) −−−−→
n→∞

1

(m+ 1)(m+ 2)
;

2. for plane-oriented recursive trees,

Pn(|b(v)/n−m| < ε) −−−−→
n→∞

2

(2m+ 1)(2m+ 3)
;

3. and for d-ary recursive trees,

Pn(|b(v)/n−m| < ε) −−−−→
n→∞

d(d− 1)

((d− 1)m+ 2d− 1)((d− 1)m+ d)
.

Proof. We consider e.g. recursive trees. The expected number of vertices with
m descendants (m is fixed) in a tree of size n is

sn(m) =
n

(m+ 1)(m+ 2)
,

and scaling by n, we obtain a limiting proportion:

s(m) = lim
n→∞

sn(m)

n
=

1

(m+ 1)(m+ 2)
.

Since the s(m) sum to 1, and limn→∞ b(v)/n = m for a vertex v with m de-
scendants, the result follows in the same way as Theorem 3. �

The idea that a vertex near to the fringes of an increasing tree must have
small b.c. is intuitive, and from it, one can reason that a vertex with a large
label—which is likely to be far from the root—should have small b.c. as well. In
the next section, we derive an explicit bound on the probability, in a recursive
tree, that a vertex with a given label can attain a significantly large b.c. This
bound allows us to numerically determine the expected maximum b.c. in a
random recursive tree, as well as the probability that the centroid has maximal
b.c.

4.3. Maximum betweenness centrality and the centroid

For the rest of this chapter, we focus on recursive trees, although analogous
statements can be obtained for other varieties of increasing trees in the same
manner.

Our first goal in this section is to show that the vertex of maximal b.c. in
a recursive tree is unlikely to have a large number as its label. Specifically, if
Qn is a random variable over the label of this vertex, we wish to show that
as the size of the tree tends to infinity, the probability distribution P(Qn = l)
converges weakly to a discrete limiting distribution.

Intuitively, this concentration property should hold, because the vertex of
maximal b.c. cannot have any particularly large branches—including its ances-
tral branch—and thus is likely to have a large number of descendants. The
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chance of this being true of a vertex with label l should decrease exponentially
as l increases, so we would expect P(Qn = l) to decrease exponentially as well.

To be more specific, we have the following result:

Lemma 6. The probability P(Qn ≥ L) that the maximum b.c. is attained by a
vertex whose label is at least L can be bounded above as follows:

P(Qn ≥ L) < 16
(L

3
+ 1
)(3

4

)L
.

Proof. First of all, we note that a vertex l which has ml−1 descendants cannot
possibly have maximal b.c. if ml < n/4. To see why this assertion holds, recall
from Section 2.4 that a lower bound on the maximum b.c. in a tree is given by
the lower bound on the centroid’s b.c., n(n − 2)/4. Then note that the b.c. of
vertex l in a tree of size n ≥ 2 is at most

(n−ml)(ml − 1) +

(
ml − 1

2

)
= ml(n− 2)− 1

2
(m2

l − 3ml − 2)− n

≤ ml(n− 2),

which is strictly less than n(n− 2)/4 whenever ml < n/4.
Such small subtrees, however, become more likely as l is increased, and in

fact Pn(ml ≥ n/4) < (l − 1)(3/4)l−1. This is also simple to prove: firstly, let
l > 1, and recall that the tree can be viewed as a sequence of l subtrees, each
one rooted to one of the first l vertices. The number of sequences in which the
lth subtree is of size ml is(

n− l
ml − 1

)
(ml − 1)!

(
n−ml − 1

l − 2

)
(n− l −ml + 1)!,

because the number of ways to organise the remaining subtree sizes according
to the composition m1 + · · ·+ml−1 = n−ml is(

n− l −ml + 1

m1 − 1, . . . ,ml−1 − 1

)
(m1 − 1)! · · · (ml−1 − 1)! = (n− l −ml + 1)!,

which is independent of the composition—of which there are
(
n−ml−1
l−2

)
. Since

there are
(
n−1
l−1
)
(n− l)! sequences overall, the probability of l’s subtree being of

size m is

P(ml = m) =

(
n−m− 1

l − 2

)/(
n− 1

l − 1

)
.
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The result follows with a bit of algebra:

P(ml ≥ n/4) =

[(
b3n/4c − 1

l − 2

)
+

(
b3n/4c − 2

l − 2

)
+ · · ·+

(
l − 2

l − 2

)]/(
n− 1

l − 1

)
< (b3n/4c − l + 2)

(
b3n/4c
l − 2

)/(
n− 1

l − 1

)
= (l − 1)

(b3n/4c)l−1
(n− 1)l−1

< (l − 1)

(
b3n/4c
n

)l−1
≤ (l − 1)

(
3

4

)l−1
.

Thus we have

P(Qn = l) ≤ P(ml ≥ n/4) < (l − 1)

(
3

4

)l−1
,

and a bound on the tail probabilities follows immediately, for any n:

Pn(Qn ≥ L) =
∑
l≥L

Pn(Qn = l) <
∑
l≥L

l

(
3

4

)l−1

= 16

(
L

3
+ 1

)(
3

4

)L
.

This completes the proof of the lemma. �

The upper bound on Pn(Qn ≥ L) is important firstly because it is independent
of n, which means that regardless of the size of the tree, the probability of the
maximum b.c. being attained at a label L or greater is bounded from above, and
secondly because it approaches 0 as L → ∞. Conversely, this means that for
any reasonably large finite tree, Pn(Qn < L) is positively bounded from below
(independently of n).

Now we can follow a similar approach as in the proof of Theorem 5, and in
fact the technical details are somewhat simpler. Before we formulate and prove
our final result, let us consider the limit distribution of the root b.c. established
in Theorem 10. A recursive tree decomposes naturally into the first root branch
(that is, the branch containing label 2), and the rest. The number of trees of
size n in which this branch has n1 vertices is(

n− 2

n1 − 1

)
(n1 − 1)! (n− n1 − 1)! = (n− 2)!,

implying that the size of the first branch is uniformly distributed. Conditioned
on the size, each of the two pieces is again a uniformly random recursive tree.
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Figure 3: The cumulative distribution function of the limiting distribution of root b.c. in
recursive trees.

If we let X be a random variable representing the limiting distribution of the
root b.c., then we obtain from this decomposition that

X
(d)
= U2X̃ + U(1− U),

where U follows a uniform distribution on [0, 1] and X̃ follows the same distri-
bution as X and is independent of U . Making use of the ‘smoothing’ influence
of the uniform distribution, one can use this decomposition also to prove that
X is continuous (see Figure 3 for a plot of the distribution function).

A more general decomposition will yield the following theorem:

Theorem 12. The maximum b.c. of a random recursive tree of size n, divided
by n2, converges weakly to a limiting distribution. The probability that the maxi-
mum b.c. is attained by the centroid tends to a positive constant, and the random
variable Qn giving the label of the vertex with maximum b.c. converges to a dis-
crete limiting distribution.

Proof. Instead of the maximum b.c. of an arbitrary vertex, we only consider
the maximum among the first l vertices. By virtue of Lemma 6, we can then
let l go to infinity.

If we fix the tree formed by the first l vertices (for which there are only finitely
many possibilities), it decomposes naturally into l disjoint recursive trees. Let
n1, n2, . . . , nl be the sizes of these trees (nj being the order of the tree rooted
at j). Given all these sizes, there are(

n− l
n1 − 1, n2 − 1, . . . , nl − 1

)
· (n1 − 1)!(n2 − 1)! · · · (nl − 1)! = (n− l)!

possible trees. This is independent of the values of n1, n2, . . . , nl and also of
the shape of the tree formed by the first l labels. Therefore, the vector formed
by the sizes of these l trees converges, upon normalisation by a factor n−1,
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to a uniformly random composition (U1, U2, . . . , Ul) of 1. The root b.c.’s, of
the l trees converge, again upon suitable normalisation, to random variables
X1, X2, . . . , Xl that all follow the same limiting distribution (described earlier).
The normalised limits of the b.c.’s of vertices 1, 2, . . . , l are simple functionals
of U1, U2, . . . , Ul and X1, X2, . . . , Xl (also depending on the shape of the tree
formed by vertices 1, 2, . . . , l), so the theorem follows. �

With the help of a numerical simulation, we find that the expected max-
imum b.c. in a recursive tree is asymptotically equal to 0.35n2, and that the
probability of the centroid vertex also being a vertex of maximal b.c. is roughly
0.87. In addition, it appears that the expected label of the vertex of maximal
b.c. (breaking ties in favour of the vertex with the smaller label if necessary,
although this occurs with asymptotic probability 0) is 2.57, and that its mean
distance from the root is 1.03.8
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