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Abstract. We call a tree parameter additive if it can be determined recursively as the sum
of the parameter values of all branches, plus a certain toll function. In this paper, we prove
central limit theorems for very general toll functions, provided that they are bounded and
small on average. Simply generated families of trees are considered as well as Pólya trees,
recursive trees and binary search trees, and the results are illustrated by several examples of
parameters for which we prove normal or log-normal limit laws.

1. Introduction

By an additive tree parameter, we mean a parameter F which satisfies a recursion of the
form

F (T ) =

k∑
i=1

F (Ti) + f(T ),

where T1, T2, . . . , Tk are the branches of the rooted tree T and f is a so-called toll function.
It is consistent with this recursion to set f(•) = F (•), where • denotes a tree consisting of
only a single vertex. A priori, every tree parameter is additive if no further assumptions on
the toll functions are made. In the literature, the following special cases have been treated
most extensively:

• the toll function only depends on the order of T ,
• the toll function only depends on the root degree of T ,

see also the following examples:

• The number of leaves [4, 5, 8, 13,31] is an additive parameter with toll function

f(T ) =

{
1 T = •,
0 otherwise.
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• More generally, the number of vertices of outdegree k [8, 20,31], with toll function

f(T ) =

{
1 if the root degree of T is k,

0 otherwise.

• The number of full subtrees (i.e., subtrees consisting of a vertex and all its successors)
of size k [1, 4, 5, 9, 13,15]. Here, the toll function is

f(T ) =

{
1 |T | = k,

0 otherwise.

• The path length [6, 23,32,33], with toll function

f(T ) = |T | − 1.

• The log-product of the subtree sizes, also called the shape parameter [10,12,26], whose
toll function is

f(T ) = log |T |.
• The number of subtrees [2, 22, 25, 29], i.e., all connected induced subgraphs. To turn

it into an additive parameter, we have to take the logarithm, and the toll function is
somewhat more complicated than in the previous examples.

Note how we distinguish between subtrees (all subgraphs that are themselves trees) and
full subtrees (subtrees consisting of a vertex and all its descendants). The number of subtrees
will be one of our toy examples throughout the paper to demonstrate our results, and more
examples will follow later in the text as well. In this paper, we are considering rather general
toll functions, but we make an assumption on the average growth of f that allows us to prove
central limit theorems for the associated tree parameters F under various different random
tree models: it is assumed that the average of |f |, taken over all trees of order n, goes to 0 at
an exponential rate. As we will see, this assumption is satisfied for many natural examples.

There are many existing results about additive parameters of various kinds. However,
as mentioned before, the toll functions are often assumed to depend either only on the tree
order or only on the root degree. We allow very general toll functions here, but the higher
degree of generality has a price in that we need to make rather strong assumptions on their
size – we will have to assume exponential decay on average.

In the conference article [35], the author proved a central limit theorem for additive pa-
rameters under the same assumptions as in the present paper, but only for the class of labelled
trees. The approach, which makes use of the method of moments, seems too complicated to
be applied to more general families of trees, so that a different method is used here. We will
consider the following families of (random) trees:

Simply generated families of trees. Simply generated families of trees – introduced by Meir
and Moon [24] more than 30 years ago – are of central interest in this paper: a simply
generated family F of trees is defined by a sequence φ0, φ1, . . . of nonnegative weights, with
the additional assumption that φ0 > 0 (typically, φ0 = 1) and φj > 0 for some j > 1. Let T
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be a rooted ordered tree (i.e., the order of the children of a vertex matters). We write Dj(T )
for the number of vertices whose outdegree is j, and we define the weight of T by

w(T ) =
∏
j≥0

φ
Dj(T )
j .

The weights define a natural probability distribution on trees of given order, where the prob-
ability of any tree is proportional to its weight. Amongst others, random plane trees (φj = 1
for all j), random rooted labelled trees (φj = 1/j!), random d-ary trees (φ0 = φd = 1 and

φj = 0 otherwise), random pruned d-ary trees (φj =
(
d
j

)
) and random unary-binary trees

(φ0 = φ1 = φ2 = 1, φj = 0 otherwise) can be generated in this way.

It is well known that the (weight) generating function T (x) of a simply generated family
of trees satisfies the functional equation

T (x) = xΦ(T (x)),

where Φ(t) =
∑∞

j=0 φjt
j . Under certain technical conditions, the asymptotic behaviour of the

coefficients of T (x) follows directly from this functional equation. The following theorem, due
to Meir and Moon, is classical:

Theorem 1 (cf. [7, Theorem 3.6]). Let R be the radius of convergence of Φ(t) =
∑∞

j=0 φjt
j,

and suppose that there exists some τ ∈ (0, R) with τΦ′(τ) = Φ(τ). Finally, let d be the gcd
of all indices j with φj > 0. Then T (x) has a square root at ρ = τ/Φ(τ) = Φ′(τ)−1 whose
asymptotic expansion starts

T (x) = τ −

√
2Φ(τ)

Φ′′(τ)
·
√

1− x/ρ+O(|1− x/ρ|). (1)

The following asymptotic formula for the coefficients of T (x) holds:

tn = [xn]T (x) = d

√
Φ(τ)

2πΦ′′(τ)
· ρ
−n

n3/2
(
1 +O(n−1)

)
.

Pólya trees and related families. Pólya trees are rooted unordered (and unlabelled) trees, i.e.,
the order of the branches is irrelevant. One can also regard them as isomorphism classes
of plane trees. It is a classical result (see [16, Eq. (3.1.4)] or [7, Theorem 3.8]) that their
generating function R(x) satisfies

R(x) = x exp

( ∞∑
k=1

1

k
R(xk)

)
,

which can be seen easily from the fact that a Pólya tree consists of the root and an unordered
collection of branches that are themselves Pólya trees.

Just like the generating function of simply generated trees, R(x) has a square root sin-
gularity at ρ ≈ 0.33832185, from which one obtains the asymptotic number of Pólya trees of
order n: it is

rn ≈ 0.43992401 · n−3/2 · 2.95576528n.
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Pólya trees are also an important step in the enumeration of unrooted unlabelled (“free”)
trees that is due to Otter [30]: their generating function is given by

T (x) = R(x)− 1

2

(
R(x)2 −R(x2)

)
,

and it follows that the number of unlabelled trees of order n is asymptotically

tn ≈ 0.53494961 · n−5/2 · 2.95576528n.

It is well known that Pólya trees behave like simply generated trees in many ways, although
they do not technically belong to the class of simply generated trees. As it turns out, this also
applies to our problems. We also study the related family of homeomorphically irreducible
trees, which do not have vertices of degree 2, motivated by a graph-theoretical question due
to Vince and Wang [34].

Recursive trees. Recursive trees [7, Section 1.3] can be generated by a simple probabilistic
model: in each step, vertex n is (randomly) attached to one of the previous n − 1 vertices.
This means that there are precisely (n− 1)! recursive trees of order n. Recursive trees belong
to the wider class of increasing trees [3]: starting at the root, the labels along any path are
increasing. Instead of a functional equation, the exponential generating function for increasing
trees satisfies a differential equation: for recursive trees, it is given by

T ′(x) = exp(T (x)),

with explicit solution T (x) = − log(1− x).

Binary search trees. A binary search tree of order n is obtained from a (random) permutation
π of {1, 2, . . . , n}: π(1) becomes the root, and π(2), π(3), . . . are inserted step by step in such
a way that labels that are smaller than the root label are stored in the left subtree, while
labels greater than the root label are stored in the right subtree.

Random binary search trees are equivalent to random binary increasing trees (trees with
increasing labels such that each vertex has either no child, or one left child, or one right child,
or two children), and they can also be regarded as an analytic model for the famous quicksort
algorithm. Our final section deals with additive parameters of binary search trees. Their
exponential generating function also satisfies a differential equation, namely

T ′(x) = (1 + T (x))2,

whose explicit solution is T (x) = x/(1− x).

Before we start with our analysis, let us review some results on additive parameters from
the literature. Parameters that only depend on vertex (out-)degrees are classical, see [7,
Section 3.2] for a thorough treatment. Their distribution is Gaussian under very general
conditions. In particular, the number of vertices of a certain degree d is normally distributed
in all of the aforementioned cases. The same is true for the number of occurrences of certain
patterns in random trees [7, Section 3.3]. However, not all additive parameters follow a
Gaussian distribution in the limit: the typical counterexample is the internal path length,
which was shown by Takács to follow an Airy distribution [32, 33]. This is also important in
the analysis of the Wiener index (the sum of all distances between pairs of vertices) [19] that
is essentially also an additive parameter.
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The distributional behaviour of additive tree parameters depends very much on the
growth of the associated toll functions. This becomes particularly clear in the paper of
Fill and Kapur [12] in which the special toll functions f(T ) = |T |α and f(T ) = log |T | are
studied for pruned binary trees (Catalan trees). Fill, Flajolet and Kapur [11] show how to
make use of Hadamard products to find the mean behaviour of additive parameters if the toll
function only depends on the tree order.

Hwang and Neininger [17] study the phase transitions that occur as the toll function
varies. They consider binary search trees (in disguise, by looking at the quicksort recursion)
with toll functions that only depend on the order, but may otherwise be random.

2. Simply generated families of trees

We start with our analysis of simply generated trees. The aim of this section is the proof
of the following theorem:

Theorem 2. Consider a simply generated family F of trees that satisfies the conditions of
Theorem 1, and assume that the toll function f satisfies∑

|T |=nw(T )|f(T )|∑
|T |=nw(T )

= O(cn)

for a constant c ∈ (0, 1).

Let Tn denote a random tree of order n in F . The mean µn = E(F (Tn)) of the parameter
F is asymptotically

µn = µn+O(1),

where the constant µ is given by

µ = τ−1
∑
T

w(T )f(T )ρ|T |.

The variance σ2n = V(F (Tn)) of F is asymptotically

σ2n = σ2n+O(1),

where

σ2 = µ2
(

1− Φ(τ)

τ2Φ′′(τ)

)
+

1

τ

∑
T

w(T )f(T )(2F (T )− f(T ))ρ|T | − 2µ

τ

∑
T

w(T )f(T )|T |ρ|T |.

Moreover, if σ 6= 0, the renormalised random variable

F (Tn)− µn
σn

converges weakly to a standard normal distribution.

Remark 1. There are instances of tree parameters where σ is indeed zero, e.g., the number of
leaves in binary trees.

Remark 2. This and all results for other tree classes remain true if the toll function f(T ) is
replaced by f(T ) +C for some constant C, for the simple reason that this only changes F (T )
by a deterministic quantity, namely C|T |.
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Our proof is based on an analysis of the bivariate generating function

Y (x, u) =
∑
T

w(T )x|T |uF (T ),

which satisfies

xΦ(Y (x, u)) = x
∑
j≥0

φj
∑

T1,T2,...,Tj

j∏
i=1

w(Ti)x
|Ti|uF (Ti)

=
∑
T

w(T )x|T |uF (T )−f(T ). (2)

The right hand side of this equation is “almost” equal to Y (x, u), except for the additional
term −f(T ) in the exponent. Of course, for u = 1, the equation reduces to

Y (x, 1) = xΦ(Y (x, 1)).

Since the toll function f can be rather arbitrary, the right hand side can usually not be ex-
pressed algebraically in terms of Y (x, u) and elementary functions. However, our assumption
on the toll function allows us to obtain analytic information as we will see later. We start with
a brief discussion of the moments, although this is technically not necessary since the general
theorem that we are going to apply actually covers mean and variance as well. Throughout
the proof we assume, without too much loss of generality, that the parameter d in Theorem 1
is 1.

2.1. Moments. In order to determine the asymptotic behaviour of the moments (with precise
error terms, as stated in the theorem), we need to consider the partial derivatives with respect
to u. Differentiating (2) with respect to u and setting u = 1, we get

xΦ′(Y (x, 1))Yu(x, 1) =
∑
T

w(T )(F (T )− f(T ))x|T | = Yu(x, 1)−
∑
T

w(T )f(T )x|T |.

On the other hand, differentiating with respect to x yields

Φ(Y (x, 1)) + xΦ′(Y (x, 1))Yx(x, 1) = Yx(x, 1).

Comparing the two, we find that

Yu(x, 1) =
xYx(x, 1)

Y (x, 1)

∑
T

w(T )f(T )x|T |.

The same can be done with the second derivative: differentiating (2) with respect to u twice
and setting u = 1 yields

xΦ′′(Y (x, 1))Yu(x, 1)2 + xΦ′(Y (x, 1))Yuu(x, 1) =
∑
T

w(T )(F (T )− f(T ))(F (T )− f(T )− 1)x|T |

= Yuu(x, 1)−
∑
T

w(T )f(T )(2F (T )− f(T )− 1)x|T |.

Set H1(x) =
∑

T w(T )f(T )x|T | and H2(x) =
∑

T w(T )f(T )(2F (T ) − f(T ) − 1)x|T |. By the
assumptions on the toll function, H1 has a larger radius of convergence than Y (x, 1), and so
it is analytic at the dominating singularity ρ of Y (x, 1). The same is true for H2(x), since
|F (T )| = O(|T |) by the boundedness of f . Now the asymptotic expansion of Y (x, 1) around
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the dominating singularity (Y (x, 1) = T (x) in the notation of (1)) gives us the asymptotic
behaviour of Yu(x, 1) as well: since H1(x) is analytic at ρ, we have

Yu(x, 1) ∼ H1(ρ)

τ
xYx(x, 1) ∼ 1

2τ

√
2Φ(τ)

Φ′′(τ)
H1(ρ)

(
1− x

ρ

)−1/2
.

It follows now by means of singularity analysis [14, Chapter VI] that the mean is asymptoti-
cally equal to τ−1H1(ρ)n+O(1). The variance can be treated similarly.

2.2. Limiting distribution. To prove convergence to a Gaussian limit distribution, we make
use of the following general result (see [7, Theorem 2.23]):

Lemma 3. Suppose that F (x, y, u) =
∑∞

n,m=0 Fn,m(u)xnym is an analytic function in x, y

and u around (0, 0, 1) such that F (0, y, u) ≡ 0, F (x, 0, u) ≡ 0 and all coefficients Fn,m(1) of
F (x, y, 1) are real and nonnegative. Moreover, let y = (x, u) be the unique solution of the
functional equation

y = F (x, y, u)

with y(0, u) = 0. Assume further that there exist positive solutions x = x0 and y = y0 of the
system of equations

y = F (x, y, 1),

1 = Fy(x, y, 1),

with Fx(x0, y0, 1) 6= 0 and Fyy(x0, y0, 1) 6= 0. Let the sequence of random variables X1, X2, . . .
be defined by their probability generating functions

E(uXn) =
[xn]y(x, u)

[xn]y(x, 1)
.

Then there are constants µ ≥ 0 and σ2 ≥ 0 such that

E(Xn) = µn+O(1) and V(Xn) = σ2n+O(1).

Here, µ = Fu(x0, y0, 1)/(x0Fx(x0, y0, 1)), and σ2 can also be represented in terms of partial
derivatives of F at (x0, y0, 1).

Going back to the functional equation (2), let us rewrite it as

xΦ(Y (x, u)) =
∑
T

w(T )x|T |uF (T )−f(T ) = Y (x, u)−
∑
T

w(T )x|T |uF (T )(1− u−f(T )).

By the boundedness of f , we have

|1− u−f(T )| = O(|f(T )|)

if u is restricted to a fixed interval around 1. It follows (once again by the exponential decay
of the average of |f(T )|) that the function∑

T

w(T )x|T |uF (T )(1− u−f(T ))
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is analytic in x in a circle of radius R(δ) > ρ around the origin if |u − 1| < δ for a suitable
δ > 0, which makes Lemma 3 applicable. The function F (x, y, u) is given by

F (x, y, u) = xφ(y) +
∑
T

w(T )x|T |uF (T )(1− u−f(T ))

in this specific case, and all technical conditions are easily verified.

2.3. Examples. Let us know consider a couple of examples that show how our main theorem
is applied. As a first example, we study the case of the number of leaves (and generalisations
thereof), which is quite simple and also well known. The other examples are new and do not
seem to be covered by other results in the literature.

2.3.1. The number of leaves and generalisations. The number of leaves is perhaps the simplest
and most classical example of an additive tree parameter. Recall that the corresponding toll
function is given by

f(T ) =

{
1 T = •,
0 otherwise.

Obviously, all conditions are satisfied, which means that we obtain the well-known central
limit theorem for the number of leaves (cf. [7, Theorem 3.13]) as a special case of Theorem 2.
Explicit values of mean and variance are given in the table below.

Tree family µ σ2

Labelled trees, Φ(t) = et 1
e

e−2
e2

Plane trees, Φ(t) = (1− t)−1 1
2

1
8

Pruned d-ary trees, Φ(t) = (1 + t)d (d−1d )d (d−1d )d − 2d−1
d−1 (d−1d )2d

unary-binary trees, Φ(t) = 1 + t+ t2 1
3

1
18

This example can be generalised in many different ways, for example to the number of
full subtrees of order k/at most k (equivalently, the number of vertices with exactly k − 1 or
at most k − 1 descendants). The associated toll functions are

f(T ) =

{
1 |T | = k,

0 otherwise,

and

f(T ) =

{
1 |T | ≤ k,
0 otherwise,

respectively. Even more generally, if S is a set of trees (sufficiently “sparse”; otherwise, no
conditions on S need to be made), then the toll function

f(T ) =

{
1 T ∈ S,
0 otherwise

gives rise to a tree parameter F that counts the number of all full subtrees in S. For instance,
is S if the set of all stars (rooted at their centres), then F counts the number of vertices
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whose children are all leaves. For plane trees, the constants µ and σ2 associated with this
parameter are

µ = 2

∞∑
n=2

4−n =
1

6

and

σ2 =
11

216
.

For labelled trees, the values µ = e−1(e1/e− 1) and σ2 = e−3(e1/e− 1)(e2 + 2e− 2(e+ 1)e1/e)
have already been determined in [35]. Generalising further, we can for example consider the
number of vertices in plane trees for which the longest path to a leaf has length k (equivalently,
the full subtree S rooted at the vertex has height h(S) = k): it turns out that their number
satisfies a central limit theorem with

µh = 2
∑

T :h(T )=k

4−|T | =
1

(k + 1)(k + 2)
.

2.3.2. The number of antichains and subtrees. The number of antichains in plane trees was
studied, amongst other parameters, in a paper of Klazar [21,22]: we are considering a rooted
tree as the Hasse diagram of a poset in this context, and we are counting all possible vertex
subsets that form an antichain. Klazar proved that the average number of antichains in a
random plane tree of order n is asymptotically equal to 4√

15
·
(
25
16

)n
. Our goal here is to show

that it asymptotically follows a log-normal distribution, even for arbitrary simply generated
families of trees.

Let a(T ) denote the number of (nonempty) antichains of a rooted tree T whose branches
are T1, T2, . . . , Tk. An antichain either consists only of the root or of a union of arbitrary
(possibly empty) antichains in all the branches, hence we have

a(T ) =

k∏
i=1

(1 + a(Ti)).

Note here that the product counts all possible combinations of antichains in the branches,
including the empty set. However, the antichain consisting only of the root makes up for it.
We can rewrite the recursion as

log(a(T ) + 1) =

k∑
i=1

log(1 + a(Ti)) + log(1 + a(T )−1).

Hence log(a(T ) + 1) can be seen as an additive parameter with toll function f(T ) = log(1 +
a(T )−1). This may seem useless, since the toll function in itself depends on the parameter a.
However, a priori estimates are sufficient to show that the toll function does indeed satisfy
our conditions. It is clearly bounded, since a(T ) ≥ 1 for all trees T . Moreover, since a(T ) is
exponentially large for most trees, f(T ) is small on average. To see why this is true, note that

every set of leaves is an antichain. Hence if `(T ) is the number of leaves, we have a(T ) ≥ 2`(T )

and thus
0 < f(T ) = log(1 + a(T )−1) < 2−`(T ).

We have already considered the number of leaves in the previous example and found that it
is linear in |T | on average, hence it follows from this inequality that f(T ) is exponentially
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small on average. Let us discuss the details in the special case of pruned binary trees (Φ(t) =
(1 + t)2), other simply generated families can be treated in the same way. The bivariate
generating function, where u marks the number of leaves, is∑

T

x|T |u`(T ) =
1− 2x−

√
(1− 2x)2 − 4x2u

2x
.

For our purposes, we need the special case u = 1/2:∑
|T |=n

|f(T )| ≤
∑
|T |=n

2−`(T ) = [xn]
1− 2x−

√
1− 4x+ 2x2

2x
.

The dominating singularity is 1− 1√
2
. Singularity analysis yields

[xn]
1− 2x−

√
1− 4x+ 2x2

2x
∼
√

1 +
√

2

2
√
πn3/2

· (2 +
√

2)n.

Since the number of pruned binary trees of order n is 1
n+1

(
2n
n

)
∼ π−1/2n−3/24n, we obtain∑

|T |=n f(T )∑
|T |=n 1

= O

((
2 +
√

2

4

)n)
,

which proves that the conditions of Theorem 2 are satisfied. The difference between log a(T )
and log(a(T )+1) is of course small, so it follows that the number of antichains is asymptotically
log-normally distributed for pruned binary trees (and other simply generated families as well
by the same argument). The numerical values of µ and σ2 for pruned binary trees are

µ ≈ 0.272, σ2 ≈ 0.034.

Remark 3. It should be mentioned how the numerical values are computed. The series for the
mean and the variance both converge at an exponential rate, so their values can be determined
quite accurately from only a few terms: we compute the values of a(T ) for trees of small order
(up to about 15 to 20 vertices) explicitly and ignore all other trees in the expressions for mean
and variance (or replace them by upper and lower bounds). We can make the estimates for the
toll function effective to bound the resulting error. However, it is quite difficult to compute
the constants with higher accuracy than just a few digits, since explicitly calculating a(T ) for
all trees up to a certain order is only feasible if this order is small. All numerical values here
and in the following are given to the highest accuracy that we were able to obtain by means
of this method.

The number of subtrees is closely related to the number of antichains. Indeed, there is a
trivial bijection between antichains and subtrees that contain the root: for any subtree of a
rooted tree that contains the root, the leaves form an antichain (we only count the root as a
leaf in this context if it is the only vertex of the subtree), and this can easily be reversed.

The enumeration of subtrees in specific families of simply generated trees has been studied
quite extensively by Meir and Moon [25], Baron and Drmota [2] and Moon [29]. There are
even many nice exact counting formulas in this context, but no results on the distribution so
far. It turns out that the distributions of the number of antichains and the number of subtrees
are (upon taking the logarithm) essentially identical. If s(T ) denotes the number of subtrees,
then clearly a(T ) ≤ s(T ) by the bijection between antichains and subtrees containing the root
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described above. On the other hand, we also have s(T ) ≤ |T |a(T ), as can be seen by another
simple argument: any subtree of T is uniquely characterised by its root (the closest vertex to
the root of T ) and its leaves (again counting the root only as a leaf if it is the only vertex).
The set of leaves can be any antichain, and there are at most |T | choices for the subtree root,
so the inequality follows immediately.

We conclude that log s(T ) = log a(T ) + O(log |T |), which means that the central limit
theorem carries over to the number of subtrees, with the same constants: µ ≈ 0.272 and
σ2 ≈ 0.034 for pruned binary trees. For labelled trees, the values µ ≈ 0.35 and σ2 ≈ 0.04
have already been determined in [35].

2.3.3. The number of maximal antichains. This example is also taken from Klazar’s paper [22]
– an antichain is maximal if it is not a proper subset of another antichain. Let m(T ) denote
the number of maximal antichains of a tree T . The parameter m can be computed recursively
from the branches T1, T2, . . . , Tk as follows:

m(T ) = 1 +
k∏
i=1

m(Ti),

since a maximal antichain is either a collection of maximal antichains in all the branches or
consists of the root only. As in the previous example, we can rewrite this as

logm(T ) =
k∑
i=1

logm(Ti)− log(1−m(T )−1),

which means that logm(T ) is an additive parameter with toll function

f(T ) =

{
0 T = •,
− log(1−m(T )−1) otherwise.

Theorem 2 shows that the limiting distribution is again a log-normal law; the technical
conditions can be verified in the same way as in the previous section (in the place of the
number of leaves, one can use the number of full subtrees of order 2 in the argument). The
constants µ and σ2 in this example are (for pruned binary trees)

µ ≈ 0.175, σ2 ≈ 0.03.

2.3.4. The shape guessing game. This (perhaps not totally serious) example shows that our
theorems can deal with toll functions that are defined in a rather complicated way. Let a
plane tree T be given. A player plays the following guessing game: she tries to predict the
precise shape of T . If she succeeds, her score is the size of the tree. If not, she is given the root
degree and the sizes of the branches, and repeats the guessing game for each of the branches.
She receives the sum of the branch scores as her total score. It is clear that some trees (e.g.,
a star) are much easier “guessable” in this way than others (e.g., a path). What can be said
about the distribution of the expected score?

Let S denote the expected total score, and let s be the associated toll function. Moreover,
we write tn for the total number of plane trees of order n. For a tree T of order n with branches
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T1, T2, . . . , Tk, we have

s(T ) =
1

tn

(
n−

k∑
i=1

S(Ti)

)
,

since the probability of guessing correctly is 1
tn

, in which case the score is n rather than the

otherwise expected
∑k

i=1 S(Ti). Clearly, 0 < s(T ) < n/tn, and since tn grows exponentially,
the conditions of Theorem 2 are satisfied. We find that the expected score associated with a
tree is asymptotically normally distributed with mean ∼ 0.6698n and variance ∼ 0.1193n.

3. Pólya trees and similar families

3.1. Pólya trees. Our technique also applies to the family of Pólya trees. The analogue of
the functional equation (2) is now

x exp

( ∞∑
k=1

1

k
T (xk, uk)

)
=
∑
T

x|T |uF (T )−f(T ). (3)

The key observation in the analysis of Pólya trees is the fact that only the term k = 1 in
the infinite series matters asymptotically, since the rest of the sum has a larger radius of
convergence. This allows us to prove an analogue of Theorem 2 for Pólya trees:

Theorem 4. Let tn denote the number of Pólya trees of order n. Assume that the toll function
f satisfies ∑

|T |=n |f(T )|
tn

= O(cn)

for a constant c ∈ (0, 1), the sum being over all Pólya trees of order n.

Let Tn denote a random Pólya tree of order n. The mean µn = E(F (Tn)) of the parameter
F is asymptotically

µn = µn+O(1),

where the constant µ is given by

µ =

∑
T

(
f(T )ρ|T | + F (T ) ρ2|T |

1−ρ|T |

)
1 +

∑∞
n=1 ntn

ρ2n

1−ρn
.

The variance σ2n = V(F (Tn)) of F is asymptotically

σ2n = σ2n+O(1)

for a constant σ2 ≥ 0. Moreover, if σ 6= 0, the renormalised random variable

F (Tn)− µn
σn

converges weakly to a standard normal distribution.

Remark 4. The most remarkable difference to Theorem 2 is perhaps the formula for the
constant µ. An explicit expression can be given for the variance as well, but it is rather long
and complicated.
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Proof. One can solve the equation (3) “explicitly” for T (x, u): setting

U(x, u) =
∞∑
k=2

1

k
T (xk, uk)

and

H(x, u) =
∑
T

x|T |uF (T )(1− u−f(T )),

we have

T (x, u) = R(xeH(x,u)+U(x,u)) +H(x, u) = −W (−xeH(x,u)+U(x,u)) +H(x, u), (4)

where

R(x) =

∞∑
n=1

nn−1

n!
xn

is the exponential generating function for rooted labelled trees, and W (x) is the closely
related Lambert W -function. They satisfy the functional equations R(x) = x exp(R(x)) and
x = W (x) exp(W (x)) respectively. It is well known that R(x) has a square root singularity
at x = 1/e with R(1/e) = 1, which carries over to T (x, u) – in particular, T (x, 1) has a
singularity at ρ ≈ with T (ρ, 1) = 1.

The treatment of mean and variance is analogous to simply generating trees: differenti-
ating (3) with respect to u and plugging in u = 1, we obtain

T (x, 1)

Tu(x, 1) +
∑
k≥2

Tu(xk, 1)

 = Tu(x, 1)−
∑
T

f(T )x|T |,

thus

Tu(x, 1) =

∑
T f(T )x|T | + T (x, 1)

∑
k≥2 Tu(xk, 1)

1− T (x, 1)
.

Likewise,

xTx(x, 1) =
T (x, 1)

(
1 +

∑
k≥2 x

kTx(xk, 1)
)

1− T (x, 1)

and thus

Tu(x, 1) = xTx(x, 1) ·
∑

T f(T )x|T | + T (x, 1)
∑

k≥2 Tu(xk, 1)

T (x, 1)
(

1 +
∑

k≥2 x
kTx(xk, 1)

) .

The value of the fraction at x = ρ is exactly the constant µ as stated in the theorem (as can
be seen by some elementary manipulations, making also use of the fact that T (ρ, 1) = 1). The
asymptotic formula for the mean can now be obtained by another application of singularity
analysis.

The variance is again treated in a similar fashion, and the limiting distribution follows
either from the explicit representation (4) by direct singularity analysis and the quasi-power
theorem, or by means of Lemma 3 again. �
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3.1.1. Antichains and subtrees in Pólya trees. Let us apply our general result to the example
of the number of antichains and subtrees in Pólya trees now. The technical conditions on
the toll function are satisfied for the same reason, and the step from antichains/subtrees
containing the root to all subtrees can be performed in the same way. The result is essentially
the same: the logarithm of the number of antichains (or the number of subtrees that contain
the root) asymptotically follows a Gaussian distribution, and the mean and variance are of
linear order with constants that differ only slightly from labelled trees: µ ≈ 0.38, σ2 ≈ 0.04.
The same is true for the number of all subtrees (that do not necessarily contain the root) for
the same reason as for simply generated trees (see Section 2.3.2). It can also be carried over
easily to unrooted (free) trees.

3.2. Homeomorphically irreducible trees and a question of Vince and Wang. The
same techniques apply to other similar classes of trees as well. As an example, let us consider
homeomorphically irreducible trees, i.e., trees that do not have vertices of degree 2, motivated
by a question posed by Vince and Wang [34]: they were considering the average subtree order
of trees (the average subtree order, first studied by Jamison [18], is the arithmetic mean of the
orders of all subtrees), and asked for the average of this parameter over all homeomorphically
irreducible trees (which play a special role in this context). They mention that Meir and Moon
proved the average to be 1− e−1 ≈ .6321 for labelled trees. However, this is only true under
a rather unintuitive probabilistic model that involves taking all subtrees of all labelled trees
of given order and drawing one of them randomly. It seems much more natural to generate
a random tree fist and to determine the mean subtree order afterwards, which makes a small
yet noticeable difference.

The aim of this section is to provide an answer to the question of Vince and Wang. As
it was already outlined in [35], the average subtree order is also an additive parameter that
satisfies our conditions.

The enumeration of homeomorphically irreducible trees is nicely described in [16, Section
3.3]. First of all, one has to consider Pólya trees with the property that no vertex has
outdegree 1. The functional equation only changes slightly:

x exp

( ∞∑
k=1

1

k
T (xk, uk)

)
− xT (x, u) =

∑
T

x|T |uF (T )−f(T ),

so Lemma 3 is still applicable. Now let us verify that the average subtree order does indeed
satisfy the required conditions. For a rooted tree T with branches T1, T2, . . . , Tk, we write
a(T ) for the number of subtrees that contain the root (which, as we know, is equal to the
number of antichains) and b(T ) for the sum of their orders. Then

a(T ) =

k∏
i=1

(1 + a(T ))

as in Section 2.3.2, and

b(T ) = a(T ) +

k∑
i=1

b(Ti)
∏
j 6=i

(1 + a(Tj)).
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The first term takes the root into account, the i-th term in the sum counts the total number
of vertices in branch Ti in all subtrees of T that contain the root. This simplifies to

b(T )

a(T )
= 1 +

n∑
i=1

b(Ti)

1 + a(Ti)
.

Thus the fraction b(T )/(a(T ) + 1) is an additive parameter with toll function

f(T ) = 1 +
b(T )

a(T )
− b(T )

1 + a(T )
= 1 +

b(T )

a(T )(1 + a(T ))
.

Clearly, b(T )/a(T ) ≤ |T |. Recall also that a(T ) ≥ 2`(T ), where `(T ) is the number of
leaves. For trees without vertices of outdegree 1, the number of leaves is at least (|T |+ 1)/2,
thus f(T ) − 1 is exponentially small. By Remark 2, this means that our auxiliary function
b(T )/(a(T ) + 1) satisfies the necessary conditions and thus a central limit theorem.

The difference between a(T )/b(T ) and a(T )/(b(T ) + 1) is exponentially small and thus
irrelevant for the distribution. However, so far we have only taken subtrees into account
that contain the root. To complete the argument, one has to make use of an idea that was
outlined in [35]: a random unrooted homeomorphically irreducible tree has almost surely a
unique centroid, and this centroid has at least three branches of linear order (see [27, 28] on
distributional properties of centroids and their branches; homeomorphically irreducible trees
are not specifically mentioned there, but the results are the same). Because of that, only a
proportion of the subtrees that is exponentially small does not contain the centroid, so that
all others can be ignored. Conditioned on the size of the centroid branches, each of them can
be regarded as a random rooted (Pólya) tree without vertices of outdegree 1, and the branches
are independent of each other. Thus the mean subtree order in the whole tree is essentially
(up to a small error term) the sum of the mean subtree orders in the centroid branches, and
these summands are all independent. Since the convolution of independent Gaussian random
variables is still Gaussian, this completes the argument.

Summing up: the mean subtree order in a random homeomorphically irreducible tree is
asymptotically normally distributed with mean and variance of linear order. The answer to
the question of Vince and Wang is: the average of the mean subtree order over all homeomor-
phically irreducible tree is asymptotically ∼ µn, where µ ≈ 0.625. This should be compared
to ordinary Pólya trees (or also unrooted trees), where the mean is slightly higher (µ ≈ 0.648).

4. Recursive trees and binary search trees

A result analogous to Theorem 2 also holds for recursive trees. It is somewhat more
complicated to extend it to more general families of increasing trees [3], since the singularity
type of the generating function strongly depends on the family of trees that is considered. We
only treat the case of recursive trees and binary search trees in more detail, two important
special cases that have been studied extensively. Let us begin with a theorem for recursive
trees.

Theorem 5. Assume that the toll function f satisfies∑
|T |=n |f(T )|
(n− 1)!

= O(cn)
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for a constant c ∈ (0, 1), the sum being over all recursive trees T of order n.

Let Tn denote a random recursive tree of order n. The mean µn = E(F (Tn)) of the
parameter F is asymptotically

µn = µn+O(αn)

for any α ∈ (c, 1), where the constant µ is given by

µ =
∑
T

f(T )

(|T |+ 1)!
.

The variance σ2n = V(F (Tn)) of F is asymptotically

σ2n = σ2n+O(αn),

again for any α ∈ (c, 1). Here, the constant σ2 is given by

σ2 =
∑
T

f(T )(2F (T )− f(T ))

(|T |+ 1)!
+
∑
T1

∑
T2

f(T1)f(T2)

(|T1|+ 1)!(|T2|+ 1)!

(
|T1||T2|

|T1|+ |T2|+ 1
− |T1| − |T2|

)
,

all sums being over all recursive trees. Moreover, if σ2 6= 0, then the renormalised random
variable

F (Tn)− µn
σn

converges weakly to a standard normal distribution.

Once again, we make use of a bivariate generating function, which is now necessarily an
exponential generating function:

Y (x, u) =
∑
T

1

|T |!
x|T |uF (T ),

the sum being over all recursive trees. The analogue of (2), which is obtained in the same
way, reads

exp(Y (x, u)) =
∑
T

1

(|T | − 1)!
x|T |−1uF (T )−f(T ). (5)

For u = 1, this becomes the familiar differential equation

Yx(x, 1) = exp(Y (x, 1)).

4.1. Moments. Differentiating (5) with respect to u and plugging in u = 1, we obtain

exp(Y (x, 1))Yu(x, 1) =
∑
T

1

(|T | − 1)!
(F (T )− f(T ))x|T |−1 = Yux(x, 1)−

∑
T

f(T )

(|T | − 1)!
x|T |−1,

which is a linear differential equation in Yu(x, 1). Now recall that the exponential generating
function for recursive trees is Y (x, 1) = − log(1− x). Then we are left with

Yux(x, 1) =
Yu(x, 1)

1− x
+
∑
T

f(T )

(|T | − 1)!
x|T |−1,
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and the solution to this differential equation is given by

Yu(x, 1) =
1

1− x

∫ x

0
(1− v)

∑
T

f(T )

(|T | − 1)!
v|T |−1 dv

=
1

1− x
∑
T

f(T )

(|T |+ 1)!
(|T |+ 1− |T |x)x|T |

=
1

1− x
∑
T

f(T )

(|T |+ 1)!
x|T | +

∑
T

f(T )|T |
(|T |+ 1)!

x|T |.

In the same way, we obtain

Yuu(x, 1) =
1

1− x

∫ x

0

(
Yu(v, 1)2 + (1− v)

∑
T

f(T )

(|T | − 1)!
(2F (T )− f(T )− 1)v|T |−1

)
dv

=
x

(1− x)2

(∑
T

f(T )

(|T |+ 1)!
x|T |

)2

+
1

1− x

∫ x

0

((∑
T

f(T )|T |
(|T |+ 1)!

v|T |
)2

+ (1− v)
∑
T

f(T )

(|T | − 1)!
(2F (T )− f(T )− 1)v|T |−1

)
dv.

In view of our assumptions on the toll function, the radius of convergence of the series∑
T

f(T )|T |
(|T |+ 1)!

x|T |

is at least c−1 > 1, so it represents an analytic function in the circle around 0 of radius
c−1, in particular at 1. The same holds for all the series over all recursive trees in the two
formulas above. Singularity analysis (in the meromorphic setting, thus with strong error
term; see [14, Theorem IV.10]) now shows that

[xn]Yu(x, 1) =
∑
T

f(T )

(|T |+ 1)!
+O(αn)

for every α ∈ (c, 1), so we also have

µn = µn+O(αn)

for every α ∈ (c, 1), where

µ =
∑
T

f(T )

(|T |+ 1)!
.

Applying singularity analysis to Yuu(x, 1) as well, we obtain an asymptotic formula for the
variance:

σ2n = σ2n+O(αn)

for every α ∈ (c, 1), where

σ2 =
∑
T

f(T )(2F (T )− f(T ))

(|T |+ 1)!
+
∑
T1

∑
T2

f(T1)f(T2)

(|T1|+ 1)!(|T2|+ 1)!

(
|T1||T2|

|T1|+ |T2|+ 1
− |T1| − |T2|

)
.
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4.2. Limiting distribution. In order to prove the convergence to a limiting distribution,
we split the right hand side of (5) in very much the same way as we did in the case of simply
generated families of trees: we have

exp(Y (x, u)) = Yx(x, u)−
∑
T

1

(|T | − 1)!
x|T |−1uF (T )(1− u−f(T )).

Now define

H(x, u) =
∑
T

1

|T |!
x|T |uF (T )(1− u−f(T )),

so that
∂

∂x
(Y (x, u)−H(x, u)) = exp(Y (x, u)).

H(x, u) is analytic (as a function of x in a larger region than Y (x, 1) if u lies in a suitable
neighbourhood of 1, by the same arguments that we used for simply generated families of
trees. If we substitute U(x, u) = Y (x, u)−H(x, u), we are left with

Ux(x, u) = exp(U(x, u) +H(x, u))

and U(0, u) = 0. The solution to this differential equation is given by

U(x, u) = − log

(
1−

∫ x

0
exp(H(v, u)) dv

)
.

Obviously, H(v, 1) = 0 is constant, so that we get U(x, 1) = Y (x, 1) = − log(1−x) as it should
be. Note that the type of the singularity is still logarithmic, and the dominating singularity
is located at the point ρ = ρ(u) for which∫ ρ

0
exp(H(v, u)) dv = 1.

Note also that
d

dx

∫ x

0
exp(H(v, u)) dv = exp(H(x, u)) 6= 0,

hence if u is restricted to a suitable neighbourhood around 1, ρ is unique and analytic as a
function of u. The asymptotic expansion of U around the dominating singularity ρ is found
as follows:

U(x, u) = − log

(
1−

∫ x

0
exp(H(v, u)) dv

)
= − log

(∫ ρ

x
exp(H(v, u)) dv

)
= − log

(
exp(H(ρ, u))(ρ− x) +O(|ρ− x|2)

)
= − log(ρ− x)−H(ρ, u) +O(|x− ρ|).

Using singularity analysis and the quasi-power theorem once again, we obtain the desired
central limit theorem.
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4.2.1. Subtrees of recursive trees. As an application, let us consider the number of subtrees as
an example again. The technical conditions are satisfied for the same reason as in Section 2.3.2.
Once again, we find that the distribution of the number of subtrees is asymptotically log-
normal. Plugging into the formulas for mean and variance, we arrive at the numerical values
µ ≈ 0.4505 and σ2 ≈ 0.017, which shows that recursive trees tend to have more subtrees than
labelled trees, binary trees or Pólya trees (it is well known that they are flatter and wider
and thus more star-like than Galton-Watson trees; stars have the largest number of subtrees
among all trees of given order) and that the distribution is more concentrated.

4.3. Binary search trees. Let us finally study binary search trees (which are also equivalent
to binary increasing trees). Again, a completely analogous theorem holds:

Theorem 6. Assume that the toll function f satisfies∑
|T |=n |f(T )|

n!
= O(cn)

for a constant c ∈ (0, 1), the sum being over all binary search trees T of order n.

Let Tn denote a random binary search tree of order n. The mean µn = E(F (Tn)) of the
parameter F is asymptotically

µn = µ(n+ 1) +O(αn)

for any α ∈ (c, 1), where the constant µ is given by

µ =
∑
T

2f(T )

(|T |+ 2)!
.

The variance σ2n = V(F (Tn)) of F is asymptotically

σ2n = σ2(n+ 1) +O(αn),

again for any α ∈ (c, 1). Here, the constant σ2 is given by

σ2 =
∑
T

2f(T )(2F (T )− f(T ))

(|T |+ 2)!
−µ2+

∑
T1

∑
T2

4f(T1)f(T2)

(|T1|+ 2)!(|T2|+ 2)!

(
|T1||T2|

|T1|+ |T2|+ 1
−|T1|−|T2|

+
|T1||T2|

(|T1|+ |T2|+ 2)(|T1|+ |T2|+ 3)
+

|T1|2|T2|2

(|T1|+ |T2|+ 1)(|T1|+ |T2|+ 2)(|T1|+ |T2|+ 3)

)
,

all sums being over all binary search trees. Moreover, if σ2 6= 0, then the renormalised random
variable

F (Tn)− µn
σn

converges weakly to a standard normal distribution.

Remark 5. The strong, exponentially small error terms in Theorems 5 and 6 are quite remark-
able – they stem from the fact that the generating functions have pole singularities rather
than square root singularities.
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Proof. For binary search trees, the approach is similar to recursive trees, albeit slightly dif-
ferent. The treatment of mean and variance is fully analogous, so we focus on the limiting
distribution. Once again, we consider the bivariate generating function Y (x, u), which satisfies
the equation

(Y (x, u) + 1)2 =
∑
T

1

(|T | − 1)!
x|T |−1uF (T )−f(T ).

It is convenient to work with U(x, u) = Y (x, u) + 1, which satisfies the differential equation

U(x, u)2 = Ux(x, u) +
∑
T

1

(|T | − 1)!
x|T |−1uF (T )(u−f(T ) − 1).

Let us denote the sum on the right hand side by H(x, u); once again, if u is restricted to a
suitable neighbourhood of 1, this function is analytic (as a function of x) in a larger region
than U(x, u). The differential equation is of Riccati type, and we solve it by means of the
substitution

U(x, u) = −Vx(x, u)

V (x, u)
.

The differential equation then simplifies to

Vxx(x, u)

V (x, u)
= H(x, u)

or

Vxx(x, u) = H(x, u)V (x, u). (6)

Recall that by our conditions on the toll function, the coefficients hn = hn(u) = [xn]H(x, u)
satisfy hn = O(αn) for some α < 1 uniformly in u if u is restricted to a suitable neighbourhood
of 1. Without loss of generality, we can choose v0 = [x0]V (x, u) = 1, and since U(0, u) = 1,
we must have v1 = [x1]V (x, u) = −1. The remaining coefficients v2, v3, . . . of V (x, u) can be
calculated recursively from (6):

vj =
1

j(j − 1)

j−2∑
i=0

hivj−2−i.

An easy induction shows that vj = O(αn), uniformly in u. Thus we can write

Y (x, u) = −1− Vx(x, u)

V (x, u)
,

where V (x, u) is analytic in a circle of radius α−1 > 1 around 0, uniformly in u, and V (x, 1) =
1−x. Hence the dominating singularity of Y (x, u) is a simple pole at a point ρ = ρ(u), which
is the solution to

V (x, u) = 0.

Note in particular that ρ(1) = 1. Once again, we can apply singularity analysis and the
quasi-power theorem now to conclude the proof of the central limit theorem. �
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4.3.1. How often does quicksort encounter a sorted list? As an example of an additive tree
parameter for binary search trees, we consider a question that can also be interpreted in terms
of the quicksort algorithm. Binary increasing trees can serve as a model for quicksort in the
following way: the root stands for the pivot, the left and right branches stand for the two
sublists to which quicksort is applied recursively.

Given a random permutation to which quicksort is applied, we are interested in the
number of times that quicksort is called in the process with a perfectly sorted list as argument.
Let us assume that the pivot is always the first element of the list. Then we can simply
associate the binary search tree of order n in which each vertex has only a right child (we
denote this tree by Rn) to a sorted list.

The toll function associated with our problem is

f(T ) =

{
1 T = Rn for some n,

0 otherwise,

and it clearly satisfies our condition. Thus we obtain a central limit theorem for our parameter,
and the constants are easily calculated as µ = 2e− 5 and σ2 = (55− 12e− 3e2)/2.

5. Conclusion

We have seen that a central limit theorem holds for rather general additive parameters
in various classes of trees, provided that the associated toll function is (at least on average)
very small as the size of the trees goes to infinity. The assumption of exponential decay that
we made throughout this paper is still rather strong and can probably be replaced by a much
weaker condition. It is not clear, however, where exactly to draw the line between Gaussian
(as in all our examples) and non-Gaussian (as for example for the path length of a tree)
limiting distributions.

Such results partly exist: Fill and Kapur [11] state sufficient conditions for asymptotic
normality in the binary case if the toll function only depends on the order of the tree; however,
they mention that their arguments are somewhat heuristic. Hwang and Neininger [17] prove
very strong results for the quicksort recurrence (which is essentially equivalent to the binary
search tree model), and they even allow the toll function to be random, but it may only
depend on the size of the tree itself, not the whole tree. The fact that in our setting the toll
function can depend on the whole tree means that dependences might be amplified, which
could result in a shift in the border between Gaussian and non-Gaussian behaviour (and
conceivably a region where both are possible). It would definitely seem worthwhile to pursue
this question further.
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