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Abstract. Bootstrap percolation is a growth model inspired by cellular
automata. At the initial time t = 0, the bootstrap percolation process
starts from an initial random configuration of active vertices on a given
graph, and proceeds deterministically so that a node becomes active at
time t = 1, 2, . . . if sufficiently many of its neighbors are already active
at the previous time t − 1. In the most basic model, all vertices have
the same initial probability of being active in the initial configuration.
One of the main questions is to determine the percolation threshold (if it
exists) with the property that all nodes in the given graph become active
asymptotically almost surely (a.a.s.) for the initial probability above this
threshold, while this is not the case below the threshold. In this work, we
study a scenario where the nodes do not all receive the same probabilities,
but to keep the problem tractable, we impose conditions on the shape of
the graph and the initial probabilities. Specifically, we consider infinite
periodic trees, in which the degrees and initial probabilities of nodes on
a path from the root node are periodic, with a given periodicity. Instead
of the simple percolation threshold, we now obtain an entire region of
possible probabilities for which all nodes in the tree become a.a.s. active.
We show (i) that the unit cube, as the support of the initial probabilities,
can be partitioned into two regions, denoted by W0 and W 0, such that
the tree becomes (does not become) a.a.s. fully active for any initial
probability vector that belongs to W 0 (resp. W0); (ii) for every node in
the tree, we provide the probability that the node becomes eventually
active, for any initial probability vector that belongs to W0; (iii) further,
we specify the boundary of W0 and show how it can be numerically
computed.

1 Introduction

In classical percolation theory, nodes of a graph become active according to cer-
tain probabilities to form a static configuration. Bootstrap percolation is a vari-
ant inspired by cellular automata that proceeds dynamically afterwards: starting
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from an initial configuration (determined in the same way as in classical percola-
tion), the process proceeds in discrete time-steps, where a node is active at time
t if it is or sufficiently many of its neighbors are already active at time t− 1. It
may thus happen that all nodes become eventually active, which poses the nat-
ural question for the existence of a critical threshold probability (assuming that
all nodes have the same initial probability of being active) such that all nodes
(do not) become a.a.s. active if the initial probability is greater (resp. smaller)
than the threshold. There is a large body of work on bootstrap percolation on
different graph models: refgular or irregular, discrete or random, homogeneous or
inhomogeneous, as well as in isotropic or anisotropic environment [1–13,15–25].

In this work, we study a scenario where the nodes do not all receive the same
probabilities, but to keep the problem tractable, we impose conditions on the
shape of the graph and the probabilities and activation thresholds. Specifically,
we consider infinite periodic trees, in which the degrees of nodes on a path
from the root node are periodic, and also impose a periodicity condition on the
probabilities. The existence of a percolation threshold for periodic trees has been
established in [14] in the case where the initial probability of being active and
the activation threshold are the same for all nodes.

In this work the initial probability and the activation threshold are functions
of the node itself, which is the main generalization of the model analyzed in [14].
As motivation, consider a dynamical process (e.g. advertisement, rumor, or viral
spread). It is usually the case that particles in the system become initially active
(e.g. obtain the initial piece of information or become infected) with different
probabilities, as well as that the activation threshold differs among particles
(e.g. the level required to convince a customer to buy a new product or for one
to become infected depends on the individual itself).

Hence in this work we consider the following object. A periodic tree corre-
sponding to a sequence d0, d1, . . . , d`−1 is an infinite tree with a root node such
that every vertex at distance i mod ` from the root has degree di+1. In addition
to the degrees, we specify activation thresholds θ0, θ1, . . . , θ`−1 (2 6 θi 6 di− 1)
for the bootstrap percolation. This means that a node at distance imod ` from
the root will become active: either at the initial random phase t = 0, or once
θi of its neighbors are active at the previous time step. Finally, and this is the
main difference to all prior work, we allow the initial probabilities to be periodic
as well (rather than fixed throughout the tree): at time 0, a node at distance
imod ` from the root becomes active with probability pi. Note that the periods
of di, θi and pi do not a priori have to be equal, but we can assume so without
loss of generality, since we can otherwise replace ` by the least common multiple
of the periods.

In this work, we study bootstrap percolation on inhomogeneous periodic trees
with different initial probabilities. Instead of the simple percolation threshold, as
shown in [14], we now obtain an entire region of possible probabilities for which
all nodes in the tree become a.a.s. active. We show (i) that the unit cube, as
the support of the initial probabilities p0, p1, . . . , p`−1, can be partitioned into
two regions, denoted by W0 and W 0, such that: the tree becomes (does not
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become) a.a.s. fully active for any initial probability vector that belongs to W 0

(resp. W0); (ii) for every node in the tree, we provide the probability that the
node becomes eventually active, for any initial probability vector that belongs to
W0; (iii) further, we specify the boundary of W0 and how it can be numerically
computed. In fact we derive the explicit system of equations from which one can
numerically compute the boundary of W0.

2 Definitions and Preliminaries

Formally, bootstrap percolation is a cellular automaton defined on an underly-
ing graph G with state space {0, 1}V (G) whose initial configuration is chosen
by a Bernoulli product measure. In other words, every node is in one of two
different states 0 or 1, inactive or active respectively, and a node v is active
with some initial probability pv, independently of other nodes, within the initial
configuration at t = 0. In this work the initial probability pv is a function of the
node itself. After drawing an initial configuration, a discrete time deterministic
process updates the configuration according to a local rule: an inactive node v
becomes active at time t+ 1 if the number of its active neighbors at t is greater
than or equal to some specified activation parameter θv, which is a function of
the node v as well. Once an inactive node becomes active it remains active. A
configuration that does not change at the next time step is a stable configuration.
A configuration is fully active if all its nodes are active.

In this work we study the bootstrap percolation process on periodic trees
defined as follows.

Definition 1. (Periodic tree) Let `, d0, d1, . . . , d`−1 ∈ N. An `-periodic tree
Td0,d1,...,d`−1

is defined as follows. Consider a node v0, called root. The nodes
at distance imod ` from v0 have degree di + 1 for i ∈ N0. In particular, the root
has degree d0 + 1.

An infinite d-regular tree is a special case: a 1-periodic tree where each node has
degree d+ 1.

We also need to define the following oriented tree.

Definition 2. (Oriented periodic tree) Let `, d0, d1, . . . , d`−1 ∈ N. An oriented

`-periodic tree ~Td0,d1,...,d`−1
is defined as follows. Consider a node v0, called

root. The nodes at distance imod ` from v0 have in-degree di and out-degree 1
for i ∈ N0, except for the root, which has out-degree 0.

We note that an oriented `-periodic tree is a periodic tree with all edges
oriented towards the root, the exception being the root degree.

Definition 3. For ~p = (p0, p1, . . . , p`−1) define

~p−i := (p0, p1, . . . , pi−1, pi+1 . . . , p`−1) (1)

to be a vector obtained by erasing the i-th coordinate from ~p. Conversely, ~p is
obtained by inserting pi at the i-th coordinate in ~p−i, which we write as

~p ≡ (~p−i|pi) . (2)
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2.1 Notation.

Throughout this work, given d0, d1, . . . , d`−1, we will usually use T (resp. ~T) as

a shorthand for Td0,d1,...,d`−1
(resp. ~Td0,d1,...,d`−1

).
Given a tree T = Td0,d1,...,d`−1

, partition the node set V (T) into ` classes
of nodes Vi, where Vi contains the nodes of T at distance i mod ` from the
root with degree di + 1, activation threshold θi, and initial probability pi, for
i ∈ {0, 1, . . . , `− 1}.

In the following, all indices will be considered modulo `, e.g. x` = x0.

3 Bootstrap percolation

This section is devoted to bootstrap percolation on periodic inhomogeneous
trees. The main result is given by Theorem 1 and Theorem 2, showing the
regions of initial probabilities for which the tree ~T, respectively T, become a.a.s.
fully active. Finally, we show that these two regions are identical.

Functions of the form

ϕd,p,θ(x) := p+ (1− p)
d∑
k=θ

(
d

k

)
xk(1− x)d−k, (3)

where p ∈ [0, 1], will play a key role, as they capture one time step in bootstrap
percolation. Intuitively, the first term stands for the probability of a node to
be initially active, the sum in the second term for the probability of becoming
active because at least θ of its neighbors are. The following result appeared in
different forms in [11,17] and the proof is given in [14, Lemma 2.1].

Lemma 1. Given d, θ ∈ N such that 2 6 θ 6 d − 1 and p ∈ [0, 1], there exists
pc ∈ (0, 1) such that for any p > pc we have ϕd,p,θ(x) > x for every x ∈ (0, 1),
and 1 is the only solution of ϕd,p,θ(x) = x in [0, 1]. For p < pc, there are two
solutions in [0, 1] other than 1, and for p = pc there is one other solution (of
multiplicity 2).

3.1 Bootstrap percolation on an oriented tree ~T.

Following the methodology of [17], we first show the existence of a threshold
region for oriented trees, i.e. a region W0 of probabilities pi for which not all
nodes become active asymptotically almost surely (a.a.s), while for a choice of
probabilities in the complement W 0, all nodes become active a.a.s. Later we
show that the regions for oriented and unoriented periodic trees with the same
parameters are actually the same.

The dynamics must be defined in a slightly different way for bootstrap per-
colation, though (in other words, we need to define an oriented version of boot-
strap percolation): a node in class i becomes newly active if θi of its in-neighbors
(neighbors for which the orientation of the associated edge is towards the node)
are active in the previous step. For this slightly modified version, we obtain the
following result:
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Theorem 1. Consider bootstrap percolation on an oriented tree ~T with parame-
ters (di, θi, pi)

`−1
i=0 , where 2 6 θi 6 di− 1. Let W0 be the set of probability vectors

~p ∈ [0, 1]` such that there exists a solution in [0, 1]` of the system

xi = pi + (1− pi)
di∑
k=θi

(
di
k

)
xki+1(1− xi+1)di−k (4)

that is strictly less than ~1, i.e. xi < 1 for every i ∈ {0, 1, . . . , ` − 1}. Then

(i) for every ~p ∈ W0, ~T does not become fully active a.a.s.; (ii) for every ~p ∈
W 0 := [0, 1]` \W0, ~T becomes fully active a.a.s. Moreover, there exist constants
δ, σ ∈ (0, 1) such that W0 ⊃ [0, δ]` and W0 ⊂ [0, σ]`.

The dynamics of the bootstrap percolation process on ~T are captured by
knowing the states of every node v ∈ Vi, in every class Vi, at every time t ∈ N0.
These states are denoted by ~ζi,t(v) ∈ {0, 1}.

It is intuitive that the higher pi, the higher the probability that a node in
class i becomes eventually active. Also, if all pi are equal to 0, the system is
already in a state of equilibrium, where the state of every node in the tree is 0
(inactive). On the other hand, if all pi are equal to 1, the system is in yet another
equilibrium, where the state of every node in the tree is 1 (active).

3.2 Proof of Theorem 1.

The initial steps in the proof are analogous to those in [17] and [14]. However,
the main difference is that we consider different degrees di, different activation
thresholds θi and most importantly different initial probabilities pi.

For every class Vi, choose any node v ∈ Vi. Conditioning upon whether this
node v was active at time 0 or not (i.e., ~ζi,0(v) = 0 or ~ζi,0(v) = 1), the probability
that the node v is active at time t is given by

P
(
~ζi,t(v) = 1

)
= P

(
~ζi,0(v) = 1

)
+ P

(
~ζi,0(v) = 0

)
P

(∑
u v

~ζi+1,t−1(u) > θi

)
,

where the symbol “ ” indicates that u is a neighbor of v in the oriented tree ~T
and the edge orientation is from u to v.

Given symmetry and the dynamical rules of the bootstrap percolation pro-
cess, the ~ζi+1,t−1(u) in the equation above are independent Bernoulli random

variables with the same distribution; moreover, they are independent of ~ζi,0(v).

Introducing ~zi,t := P
(
~ζi,t(v) = 1

)
, we obtain the following system of recurrence

equations:

~zi,t = pi + (1− pi)
di∑
k=θi

(
di
k

)
~zki+1,t−1 (1− ~zi+1,t−1)

di−k , (5)

for i = 0, 1, . . . , `− 1.
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In order to simplify the notation, for given parameters (di, θi, pi)
`−1
i=0 that

characterize a tree ~T (as well as T), we define the auxiliary functions φi(x; pi) :=
ϕdi,pi,θi(x) on [0, 1], i.e.

φi(x; pi) := pi + (1− pi)
di∑
k=θi

(
di
k

)
xk(1− x)di−k , (6)

and the binomial tail

Bi(x) :=

di∑
k=θi

(
di
k

)
xk(1− x)di−k . (7)

Now, the recurrence system (5) can be rewritten as

~zi,t = φi(~zi+1,t−1; pi) , (8)

for i = 0, 1, . . . , `− 1, and all ~zi,t belong to [0, 1] since φi maps [0, 1] to [0, 1].

Claim. For every i, ~zi,t is non-decreasing in t.

Proof. For t = 0, ~zi,0 = pi. From (5) ~zi,1 > pi, thus the claim holds for t = 0.
Assume that for some t and every i, ~zi,t > ~zi,t−1. Bi(x) is increasing in x. Thus

~zi,t+1 = φi(~zi+1,t; pi) = pi + (1− pi)Bi(~zi+1,t) > pi + (1− pi)Bi(~zi+1,t−1) = ~zi,t,

and the statement follows by mathematical induction.

So the ~zi,t are non-decreasing in t and belong to [0, 1], thus by the monotone
convergence theorem the limits ~zi,∞ := limt→∞ ~zi,t exist, and they lie in [0, 1].
By (8),

~zi,∞ = φi(~zi+1,∞; pi) , (9)

for all i ∈ {0, 1, . . . `−1}. At this moment, we introduce the vector of the limiting
values for t→∞:

~z∞ := (~z0,∞, ~z1,∞, . . . , ~z`−1,∞) (10)

as well as the original ones at time t = 0:

~p := (p0, p1, . . . , p`−1) = (~z0,0, ~z1,0, . . . , ~z`−1,0) . (11)

Applying (9) ` times, for every i, we obtain the equations of one variable

~zi,∞ = φi (φi+1 (· · · (φi−1 (~zi,∞; pi−1) · · · ) ; pi+1) ; pi) = Fi(~zi,∞) , (12)

where we define

Fi := φi ◦ φi+1 ◦ · · · ◦ φ`−1 ◦ φ0 ◦ · · · ◦ φi−1 . (13)

Notice that by (9) and (5), ~z∞ 6= ~0 if and only if ~p 6= 0. Next, we show that
there exists a non-empty hypercube [0, δ]` (δ > 0) such that for all ~p ∈ [0, δ]`,
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the limiting vector satisfies ~0 < ~z∞ < ~1. In order to do so, define d = max`−1i=0 di
and θ = min`−1i=0 θi > 2 and introduce the function φ(x; p) : [0, 1] → [0, 1] given
by

φ(x; p) := p+ (1− p)
d∑
k=θ

(
d

k

)
xk(1− x)d−k . (14)

In view of Lemma 1, there exists pc ∈ (0, 1) such that 1 is the only solution in
[0, 1] of φ(x; p) = x for all p > pc. On the other hand there exist two solutions
in (0, 1) for p < pc, and one if p = pc. From stochastic dominance it follows that

P (Bin (di, pi) > θi) 6 P (Bin (d, pi) > θ) , (15)

so
φi(x; pi) 6 φ(x; pi) (16)

for all x. Choose 0 < δ < pc and consider the following mapping with ~Z0 = δ:

~Zt = φ(~Zt−1; δ). (17)

The limit ~Z∞ := limt→∞ ~Zt exists and ~Z∞ < 1 by the choice of δ, cf. [14]. Now
choosing all pi 6 δ, it inductively follows from (17) and (16) that

~zi,t = φi(~zi+1,t−1; pi) 6 φ(~zi+1,t−1; δ) 6 φ(~Zt−1; δ) = ~Zt . (18)

Hence ~zi,t 6 ~Zt for every i and t, and ~zi,∞ 6 ~Z∞ < 1 for all i. This concludes
the first part of the proof and shows that [0, δ]` ⊂W0.

By definition, for every ~p 6∈ W0 it follows that ~zi,∞ = 1 for some i, hence

~z∞ = ~1, i.e. ~T a.a.s. fully percolates for all ~p ∈W 0. This proves statement (ii).
Finally, we want to show that W0 is contained in some hypercube of volume

σ`, where σ > 0. In order to do so, for every ~p−i ∈ [0, 1]`−1, define the critical

value hc(~p−i) as the infimum of the probability pi necessary such that ~T fully
percolates a.a.s.:

hc(~p−i) = inf
{
s : ~T a.a.s. fully percolates for probabilities ~p = (~p−i|s)

}
. (19)

Taking pi = 1 will yield ~z∞ = ~1, so the critical value hc(~p−i) is well defined.
Next we want to show that hc is not trivially identical to 1 on the entire domain
[0, 1]`−1.

Lemma 2. There exists a constant σ ∈ (0, 1) such that for every vector of initial
probabilities ~p ∈ [0, 1]` and every coordinate i ∈ {0, 1, . . . , ` − 1}, the threshold
function satisfies hc(~p−i) 6 σ.

Proof. We have ϕd,p,θ(x) > ϕd,p,d−1(x) > ϕd,0,d−1(x) for every x ∈ [0, 1], so for
all i ∈ {0, 1, . . . , `− 1},

ϕdi,pi,θi(x) > ϕdi,pi,di−1(x) > ϕdi,0,di−1(x) = dix
di−1 − (di − 1)xdi . (20)
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It is easy to show that dix
di−1 − (di − 1)xdi = x has always one real solution

in (0, 1), call it si, and that dix
di−1 − (di − 1)xdi > x for si < x < 1. Without

loss of generality, let s0 be the maximum among all si. Choose any σ such that
s0 < σ < 1, and consider the recurrence system given by:

~u0,t = ϕd0,σ,d0−1(~u1,t−1) ,

~ui,t = ϕdi,0,di−1(~ui+1,t−1) ,

i = 1, 2, . . . , ` − 1, with initial value ~u0 = (~u0,0, ~u1,0, . . . , ~u`−1,0) = (σ, 0, . . . , 0).
The limit ~u∞ := limt→∞ (~u0,t, ~u1,t, . . . , ~u`−1,t) exists by the monotone conver-
gence theorem. Moreover, ~ui,∞ > σ for all i by the choice of σ, which in turn
implies ~ui,∞ = 1 for all i (using the aforementioned fact that ϕdi,p,di−1(x) >
dix

di−1 − (di − 1)xdi > x for si < x < 1). For every initial vector ~p for which
p0 > σ, it follows from (20) that ~zi,t > ~ui,t for all i, t, hence ~z∞ = ~1. Thus, for ev-
ery ~p, we have hc(~p−0) 6 σ < 1. In the same way, it follows that hc(~p−i) 6 σ < 1
for all i.

If ~p /∈ [0, σ]`, then pi > σ > hb(~p−i) for at least one i by Lemma 2. Hence ~T
a.a.s. fully percolates by definition of hc. This means that W0 ⊂ [0, σ]`, which
concludes the proof of Theorem 1.

3.3 Region of full percolation.

In the following lemma we provide better bounds on pi for full percolation.

Lemma 3. ~T a.a.s. fully percolates for any initial vector of probabilities ~p such
that for all i ∈ {0, 1, . . . , `− 1}, pi ∈ (1− 1/βi, 1], where

βi := di

(
di − 1

θi − 1

)(
θi − 1

di − 1

)θi−1(di − θi
di − 1

)di−θi
. (21)

We remark that βi > 1, as will be shown below.

Proof. Consider again the function Fi(z), given by (13). The first derivative of
Fi(z) is

F ′i (z) =

i−1mod `∏
j=i

φ′j (φj+1(. . . φi−1(z; pi−1) . . . pj+1); pj) . (22)

For every φi(x; pi), the first derivative is given by:

φ′i(x; pi) = (1− pi)di
(
di − 1

θi − 1

)
xθi−1(1− x)di−θi , (23)

and by differentiating again one finds that the maximum of φ′i(x; pi) is attained
at (θi − 1)/(di − 1):

max
x∈[0,1]

φ′i(x; pi) = φ′i

(
θi − 1

di − 1
; pi

)
= (1− pi)βi (24)
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by the definition of βi. Note that βi is the maximum of B′i(x), where Bi is given
by (7). Since Bi(0) = 0 and Bi(1) = 1, it follows from the mean value theorem
that βi > 1.

For pi ∈ (0, 1), the first derivative given in (23) is strictly greater than 0,
i.e. φ′i(x; pi) > 0. For pi > 1 − 1/βi, the maximum of the first derivative is
strictly less than 1, i.e. max06x61 φ

′
i(x; pi) < 1, see (24). Hence, for any vector

of probabilities that satisfies pi > 1−1/βi for all i, the convolution given in (22)
yields

F ′i (z)− 1 < 0 , (25)

for all i ∈ {0, 1, . . . , `− 1}. Thus the first derivative of the equation Fi(z)− z is
strictly negative on [0, 1]. Moreover F (0) > 0 and F (1) − 1 = 0, hence z = 1 is
the only solution of Fi(z) = z on [0, 1]. This implies that ~z∞ = ~1 for any ~p that
satisfies the condition of the lemma. Also note that if at least one pi is 1, i.e.
~zi,0 = 1, then ~zi,∞ = 1 for all i in view of (5), which concludes the proof.

3.4 Trajectory of ~zt.

In this section we analyze the trajectory of ~zt over time t = 0, 1, . . . . More
precisely, we show necessary and sufficient conditions on ~zt such that the initial
vector ~p lies in W0.

To start, consider again a function of the form φ(x; s) defined by (cf. (3))

φ(x; s) := s+ (1− s)
d∑
k=θ

(
d

k

)
xk(1− x)d−k (26)

for certain parameters d and θ. Let L(s) 6 R(s) be the real solutions of φ(x; s) =
x in (0, 1) if such solutions exist. We know that there exists some critical sc ∈
(0, 1), such that: (i) if s < sc, there are two real solutions L(s) < R(s) in (0, 1);
(ii) if s = sc, there is one solution L(s) = R(s) in (0, 1); (iii) if s > sc there are
no real solutions in (0, 1), see Lemma 1. It is easy to show the following.

Lemma 4. The limit of the sequence defined by the iteration xt+1 := φ(xt; p)
for t = 0, 1, . . . satisfies

lim
t→∞

xt =

L(p), x0 ∈ [0, R(p)) and p 6 pc,
R(p), x0 = R(p) and p 6 pc,
1, otherwise.

We will write Li and Ri for the functions of Lemma 4 associated with φi.

Lemma 5. We have ~z∞ < ~1 if and only if ~zi,t 6 Ri−1(pi−1) for every i and
every t.

Proof. First, ~zi,t = φi(~zi+1,t−1; pi). Iterating this equation ` times it follows that

~zi,t+` = φi (φi+1 (· · · (φi−1 (~zi,t; pi−1) · · · ) ; pi+1) ; pi) . (27)
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Assume that there exists some i such that ~zi,t > Ri−1(pi−1). Let b0 := ~zi,t and
define bk := φi−1 (bk−1; pi−1) for k > 1. The composition

φi ◦ φi+1 ◦ · · ·φ`−1 ◦ φ0 ◦ · · · ◦ φi−2

is increasing, as the convolution of increasing functions, hence from (27) we
obtain ~zi,t+`·k > bk. From Lemma 4 it follows that limk→∞ bk = 1, so ~zi,∞ = 1
and consequently ~zj,∞ = 1 for all j. Conversely, if ~zi,t 6 Ri−1(pi−1) for every i

and every t, then ~zi,∞ 6 Ri−1(pi−1) < 1 for all i and thus ~z∞ < ~1.

Lemma 6. Let a be the index for which Rj(pj) is maximal, and set Rmax :=

Ra(pa). We have ~z∞ < ~1 if and only if ~zi,t 6 Rmax for every i and t.

Proof. First, let us recall the following two facts: (1) ~za,∞ < 1 if and only if

~z∞ < ~1; (2) ~za,∞ = 1 if and only if ~z∞ = ~1.
To prove sufficiency, assume that there exist i and t such that ~zi,t > Rmax.

Then by Lemma 4 it follows that ~zi,∞ = 1 for every i, thus ~z∞ = ~1.
To prove necessity, let ~zi,t 6 Rmax for all i and t. It follows immediately that

~zi,∞ 6 Rmax < 1 for all i, completing the proof.

3.5 Bootstrap percolation on an unoriented tree T.

To determine the critical region for bootstrap percolation on T, we use the result
of Section 3.1 on oriented trees, as in [14]. Let zt be the probability that the root
is active at time t, and define the limiting probability z∞ := limt→∞ zt.

Theorem 2. The probability z∞ is given by

z∞ = p0 + (1− p0)

d0+1∑
k=θ0

(
d0 + 1

k

)
~zk1,∞(1− ~z1,∞)d0+1−k . (28)

Proof. As before, p0 simply stands for the probability that the root is initially
active, so we focus on the case that it is initially inactive, which happens with
probability 1 − p0. In this case, it can become active if at least θ0 of its d0 + 1
neighbors become active in the process. For the root activity, it is immaterial
whether or not a node can contribute to activating neighboring nodes that are
further away from the root, so we can consider the d0+1 root branches as oriented
trees (oriented towards the root) on which oriented bootstrap percolation is
performed. Thus we know that ~z1,∞ is the limiting probability for a root neighbor
to become active (if the root is not initially), which proves the desired formula.

Theorem 3. The percolation regions on oriented tree ~T and unoriented tree T
are the same and equal to W 0.

Proof. If the unoriented tree fully percolates a.a.s., then in particular z∞ = 1.
Note that z∞ = 1 by Theorem 2 if and only if ~z1,∞ = 1 (the case p0 = 1 is
trivial). However, if ~z1,∞ = 1, then also ~zi,∞ = 1 for all i, which means that
even the oriented tree percolates a.a.s. The converse is clear as well.
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4 Numerical estimation of W0

For a given tree ~T (as well as T by Theorem 2), the region W0 is determined in
Theorem 1. That is, W0 is the set of the initial probabilities (p0, p1, . . . , p`−1) ∈
[0, 1]` such that there exists a solution (x0, x1, . . . , x`−1) ∈ [0, 1)` (note: all xi <
1) of the system given by xi = φi(xi+1; pi), where i = 0, 1, . . . , `−1. At the same
time, this gives a criterion how one can decide whether (p0, p1, . . . , p`−1) ∈ [0, 1]`

belongs to W0.
In Figure 1, we demonstrate results of this method. We present the boundary

that separates W0 and W 0 in dimension 2 for a few different values of degrees
d0, d1 and activation thresholds θ0, θ1. Specifically, (d0, d1; θ0, θ1) takes the values
(7, 8; 5, 3), (7, 8; 3, 3), (7, 8; 4, 4) in the upper and (10, 4; 5, 3), (4, 10; 5, 3), (4, 10; 3, 3)
in the lower diagram. One can observe monotonicity of the boundary in (θ0, θ1).
Looking at these diagrams, it is also tempting to conjecture that W0 is always
convex.

5 Conclusion

We examined and showed the existence of the region of critical probabilities in
bootstrap percolation on infinite inhomogeneous periodic trees. The main dif-
ference to prior work is that we allow the initial probabilities and activation
thresholds to be periodic, rather than fixed throughout the entire tree. We char-
acterized the entire region of possible probabilities for which all nodes in the tree
become a.a.s. active, as well as provided the probability that a node becomes
eventually active, for any initial probability vector that does not belong to this
region. Finally, the region is specified through a set of equations whose solution
gives the boundary of the region. We demonstrated how one can numerically
find this boundary and provided a few numerical examples in dimension two.
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Fig. 1. Numerical evaluation of the boundary of the critical region W0 in di-
mension two for different values of degrees and activation thresholds. Concretely,
(d0, d1; θ0, θ1) takes the values (7, 8; 5, 3), (7, 8; 3, 3), (7, 8; 4, 4) in the upper and
(10, 4; 5, 3), (4, 10; 5, 3), (4, 10; 3, 3) in the lower diagram.


